MAGNETISM
AND FERROELECTRICITY

Electrical Conductivity and Magnetic Properties
of La$_{1-x}$Ca$_x$Mn$_{1-y}$Fe$_y$O$_3$ Ceramic Samples

($x = 0.67, y = 0, 0.05$)

V. S. Zakhvalinskiia, R. Laihob, T. S. Orlovac, and A. V. Khokhulina

aBelgorod State University, ul. Pobedy 85, Belgorod, 308015 Russia
e-mail: v_zakhal@rambler.ru, zakhvalinskii@bsu.edu.ru
bWihuri Physical Laboratory, University of Turku, Turku, FIN-20014 Finland
cIoffe Physicotechnical Institute, Russian Academy of Sciences,
Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia

Received December 5, 2006; in final form, May 14, 2007

PACS numbers: 75.47.Lx, 74.25.Fy, 74.62.Dh

DOI: 10.1134/S1063783408010137

1. INTRODUCTION

The La$_{1-x}$Ca$_x$Mn$_3$O$_3$ system has a rich phase diagram [1, 2], which includes paramagnetism, ferromagnetism, antiferromagnetism, and charge and orbital ordering depending on the temperature and doping level x. The compositions at the limits of the diagram $x = 0$ and 1 are antiferromagnetic insulators of the A and G types, respectively [2], and the material with intermediate compositions is either a ferromagnetic metal ($0.15 < x < 0.50$) or a charge-ordered (CO) antiferromagnet. In compositions with $x > 0.5$, the ratio between the ferromagnetic and charge-ordered antiferromagnetic phases varies depending on the temperature. Studies of the magnetic and relaxation properties [3, 4] suggest that the two phases coexist. Several explanations were advanced in the literature to account for this behavior. On the one hand, the coexistence of phases is attributed to electronic phase separation observed in the manganites [5], while, on the other hand, phase separation is ascribed to structural inhomogeneities in ceramic samples which mediate local magnetic properties. Neutron scattering experiments suggest that the charge-ordered antiferromagnetic state may be considered a manifestation of two interpenetrating lattices of the Mn$^{3+}$ and Mn$^{4+}$ ions [6].

Replacement of even a small number of atoms in position B in the perovskite manganite ABO$_3$ structure by another transition metal affects the charge-ordering and double exchange mechanisms [7, 8]. Iron enters into the perovskite manganite structure in the form of the Fe$^{3+}$ ion [9–11], which is close in size to Mn$^{3+}$ [12]. The properties of La$_{1-x}$Ca$_x$Mn$_{1-y}$Fe$_y$O$_3$, such as the temperature and magnetic field dependences of the electrical resistivity, magnetothermopower, and magnetization, for compositions $x < 0.5$ are presently known to a fairly good extent [9, 13–15]. The properties and fine details in the magnetic phase diagram of La$_{1-x}$Ca$_x$Mn$_{1-y}$Fe$_y$O$_3$ for compositions with $x > 0.5$...
have not thus far been studied to a good enough measure. Studies of charge ordering in the La$_{1-x}$Ca$_x$Mn$_{1-x}$Fe$_y$O$_3$ system for $x = 0.67$ and $0 \leq y \leq 0.06$ were reported in [16, 17]. It was shown that the charge ordering temperature T_{CO}, just as the Curie–Weiss temperature, falls off linearly with increasing iron doping y. Direct transmission electron microscopy observation identified the specific features of the superstructure formed in charge and orbital ordering, which are caused by substitution of Fe$^{3+}$ for Mn$^{3+}$ ions.

We report here on a study of the temperature dependence of the electrical resistivity and magnetic susceptibility of samples of La$_{1-x}$Ca$_x$MnO$_3$ (LCMO) with $x = 0.67$ and La$_{1-x}$Ca$_x$Mn$_{1-x}$Fe$_y$O$_3$ (LCMFO) with $x = 0.67$ and $y = 0.05$ in magnetic fields B ranging from 50 to 10^5 G and in the temperature range $T = 4.2–400$ K. The attention was focused on the irreversible magnetic behavior and electrical conductivity for temperatures $T < T_{CO}$.

2. EXPERIMENT

2.1. Preparation and Characterization of Samples

Ceramic samples of the La$_{1-x}$Ca$_x$Mn$_{1-x}$Fe$_y$O$_3$ ($x = 0.67$, $y = 0.05$) and La$_{1-x}$Ca$_x$MnO$_3$ ($x = 0.67$) compounds were prepared by the standard solid-state technology similar to that employed in the synthesis of La$_{1-x}$Ca$_x$MnO$_3$ in [18, 19]. A powder of the La$_2$O$_3$ oxide is hygroscopic and, therefore, was preliminarily annealed. Mixtures of La$_2$O$_3$, CaCO$_3$, MnO$_3$ and Fe$_2$O$_3$ oxide powders were calcined at 1320°C in air for 40 h with intermediate grinding. Then, the powder thus produced was pelletized at 2000 kg/cm2 and calcined at 1370°C in air for 22 h. The La$_{0.33}$Ca$_{0.67}$MnO$_3$ and La$_{0.33}$Ca$_{0.67}$Mn$_{0.05}$Fe$_{0.05}$O$_3$ samples were characterized by x-ray diffraction [16]. All the samples were single phase and had Pbnm-type orthorhombic perovskite structure with the lattice parameters $a = b = 5.360$ Å, $c = 7.609$ Å (LCMO) and $a = b = 5.364$ Å, $c = 7.580$ Å (LCMFO). Doping with iron practically did not affect the lattice parameters.

The chemical composition of a grain in both the iron-doped LCMFO and undoped LCMO samples was very homogeneous. Energy-dispersive x-ray analysis reported in [16] revealed that a change in the composition within a grain expressed in units of the La/Ca ratio was less than 3%. When crossing over from one grain to another, the content of La relative to that of Ca varied from 0.31 to 0.35, with an average of 0.33.

The ratio of the Fe content to the (Mn + Fe) content was equal to a nominal value of 5% in all the grains studied. The grain size was 1–3 μm.

2.2. Magnetic Properties and Electrical Resistivity

The temperature dependence of the magnetic susceptibility $\chi(T)$ of the LCMO and LCMFO samples was investigated with the use of a SQUID magnetometer in the temperature range $T = 4.2–400$ K and magnetic fields of up to 1 T. The sample was cooled from room temperature to 4.2 K in zero field (ZFC) or in a dc field $B = 50$ G or 1 T (FC).

Measurements of the electrical resistivity $\rho(T)$ were conducted by the traditional four-point probe method at temperatures $4.2 < T < 300$ K upon heating and cooling.

3. RESULTS AND DISCUSSION

3.1. Charge Ordering and Magnetic Behavior

Figure 1 presents the temperature dependence of magnetic susceptibility

$$\chi(T) = \frac{M(T)}{B}$$ \hspace{1cm} (1)

for the LCMO and LCMFO samples. Both samples undergo a transition to the charge-ordered state at $T_{CO} = 272 \pm 2$ K and $T_{CO} = 220 \pm 2.5$ K, respectively. As the temperature is lowered still more, the LCMO sample reveals a noticeable difference between the susceptibilities χ_{FC} and χ_{ZFC}. At temperatures close to helium temperatures, both samples exhibit differences between the χ_{FC} and χ_{ZFC} curves, which is a manifestation of the so-called irreversible magnetic behavior.

In both (LCMO and LCMFO) samples, the magnetization at high temperatures $T > T_{CO}$ (i.e., above the transition to the charge-ordered state) obeys the Curie–Weiss law

$$\chi(T) = \frac{C}{T-\theta},$$ \hspace{1cm} (2)

where C is the Curie–Weiss constant and θ is the Weiss temperature. The Curie–Weiss constant can be expressed through the effective number p_{eff} of Bohr
magnetons \(\mu_B \) and the concentration of magnetic ions
\((N = 1.74 \times 10^{22} \text{ cm}^{-3} \text{ [15]}) \)

\[
C = p_{\text{eff}}^2 \mu_B^2 \frac{N}{3k}.
\]

The fitting parameters for the approximation of the experimental data by the Curie–Weiss law are listed in Table 1. The difference between the theoretical figures (calculated from the mixture rule \(p_{\text{eff}}^2 = g^2 (S_{\text{Mn}^{3+}} (S_{\text{Mn}^{4+}} + 1)(1 - x - y) + S_{\text{Fe}^{3+}} (S_{\text{Fe}^{4+}} + 1)x + S_{\text{Fe}^{3+}} (S_{\text{Fe}^{4+}} + 1)y) \), where \(S_{\text{Mn}^{3+}} = 2, S_{\text{Mn}^{4+}} = 3/2, S_{\text{Fe}^{3+}} = 5/2 \) are the spins of the corresponding magnetic ions) and experimental values of \(p_{\text{eff}} \) suggests the presence of ferromagnetic clusters. The Weiss temperatures \(\theta = 175.8 \text{ K} \) (LCMO) and \(\theta = 134.1 \text{ K} \) (LCMFO) assume positive values. Below \(\theta \), the ferromagnetic interaction should be dominant. At the same time, the charge and magnetic ordering temperatures for \(\text{La}_{0.33} \text{Ca}_{0.67} \text{MnO}_3 \) as derived from neutron scattering measurements are \(T_{\text{CO}} = 270 \text{ K} \) and \(T_N = 160 \text{ K} \) (the Néel temperature of the transition to the antiferromagnetic state) [20, 21], thus indicating that the major phase is an antiferromagnetic phase, which implies that the temperature \(\theta \) should be negative. This contradiction suggests that the compositions under consideration undergo phase separation to produce an antiferromagnetic matrix with embedded ferromagnetic clusters. In the paramagnetic (PM) state at temperatures substantially above \(T_{\text{CO}} \), there are no magnetic interactions, the fluctuations are small, and ferromagnetic clusters are not formed. Since the Néel temperature (160 K) for the LCMO sample is lower than the charge-ordering transition temperature, it is conceivable that the magnetic order upon the transition to the charge-ordered state is due to the Coulomb and Jahn–Teller interactions rather than due to the major magnetic interactions (double exchange and superexchange). After the temperature has been lowered, ferromagnetic clusters appear against the paramagnetic background and their presence affects the susceptibility. On the whole, the observed PM–CO transition in the compositions studied reflects the interplay between the ferromagnetic and antiferromagnetic cluster orders.

There are both experimental [22] and theoretical [23] arguments that the perovskite-manganite systems under consideration are capable of forming droplet (cluster) states. Indeed, nonuniform carrier localization gives rise to a nonuniform density of Coulomb energy, which enhances the carrier energy. The system can transfer to an energetically more favorable state through formation of ferromagnetic states, and this is what should bring about formation of ferromagnetic clusters both in the paramagnetic and in the antiferromagnetic matrix.

The dependence \(M(B) \) (Figs. 2 and 3) supports the existence of a ferromagnetic component, which grows with decreasing temperature (Fig. 4). This growth is particularly pronounced in the iron-doped sample. Note that the remanent magnetization \(\Delta m \) is very small; indeed, even at 4.2 K, where it is maximum in both compositions, \(\Delta m \) does not exceed 0.3% of theoretical saturation. This evidences a low concentration of ferromagnetic clusters with respect to the antiferromagnetic phase.

The nonzero values of \((M_{\text{FC}} - M_{\text{ZFC}})/B\) (Fig. 5) for the LCMO and LCMFO samples suggest that the system is frustrated. A characteristic feature of frustrated

Table 1. Temperatures of the transition to the charge-ordered state and fitting parameters for the approximation of the susceptibility of the paramagnetic phase in the LCMO and LCMFO samples with the Curie–Weiss law

<table>
<thead>
<tr>
<th>Sample</th>
<th>(T_{\text{CO}}, \text{ K})</th>
<th>(\theta, \text{ K})</th>
<th>(p_{\text{eff}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCMO</td>
<td>271 ± 2</td>
<td>175.8 ± 1.2</td>
<td>4.83</td>
</tr>
<tr>
<td>LCMFO</td>
<td>222 ± 2.5</td>
<td>134.1 ± 1.1</td>
<td>4.77</td>
</tr>
</tbody>
</table>
not yet set in and the magnetic susceptibility does not exhibit an irreversible behavior. The charge (orbital) ordering forces formation of the magnetic structure, i.e., favors the interaction between ions or magnetic clusters. In doped compositions, frustration is weaker and Fe$^{3+}$ ions do not create Jahn–Teller distorted octahedra and initiate additional chaos in the stacking of distorted Mn$^{3+}$O$_6$ octahedra. This additional disorder in the orbital structure reduces the frustration of a system residing in the charge-ordered state. The temperature dependence of $(M_{FC} - M_{ZFC})/B$ displayed in Fig. 5 is very nearly linear in the low-temperature range and weak magnetic fields. The explanation of this dependence may lie in that a decrease in the temperature brings about the growth of the size of the ferromagnetic clusters interacting with one another as magnetic moments do in spin glass [13]. Moreover, the slope of the curve for both samples is the same, with the ordinates differing by a constant value. This implies that iron, rather than being involved in formation of the clusters, only reduces their concentration by its presence. We readily see (Fig. 5) that frustrations in the low-temperature range are less sensitive to the external magnetic field in the case of iron doping, the case where (as we believe) the clusters are of a smaller size and the fraction of the ferromagnetic phase is smaller.

Figure 6 plots the time dependences of the thermoremanent magnetization $M(t)$ of the LCMO and LCMFO samples at $T = 4.2$ K, as well as the magnetization decay rate

$$S(t) = -\frac{dM(t)}{d\log t}. \quad (4)$$

The $S(t)$ graphs for each sample reveal distinct first maxima, which correspond to the relaxation time τ. The
magnetic relaxation (aging) effect is similar to what one observes frequently in substances residing in the spin glass state, and it evidences a specific nonequilibrium state of a frustrated system. The more correlated is the system, the faster the first maximum appears and the more complex is the pattern of the dependence. The more frustrated LCMFO system does not show random magnetization variations and secondary maxima in the decay rate, which suggests a less correlated state of the system. The situation with LCMO is different; indeed, the primary relaxation occurs in a shorter time, and one observes a random oscillation in the $S(t)$ curve, which may evidence more complex correlations in the magnetic spin (or cluster) system in the undoped composition as compared to the composition containing iron.

The evolution of the thermoremanent magnetization can be fitted by a decay law that, to a first approximation, can be described by the relation

$$M(t) = M_0 + M_1 e^{-(t/T)^n}, \quad (5)$$

where $n = 0.65 \pm 0.12$ is the fitting parameter [16]. Equation (5) fits better the thermoremanent magnetization data for the LCMFO sample than those for the LCMO sample. The fitting coefficients and characteristic relaxation times are listed in Table 2. Hence, in the low-temperature range, frustrations become manifest more clearly in the iron-containing samples. Iron destroys the ferromagnetic interaction and enhances the frustrations. Besides, Fe$^{3+}$ ions are not involved in the double exchange interaction and strengthen at the corresponding temperatures the spin glass phase.

3.2. Behavior of the Electrical Resistivity

Figure 7 plots the temperature dependences of the electrical resistivity of the LCMO and LCMFO samples. The resistivity of both samples decreases with increasing temperature. The measurements were performed in the cooling and heating modes.

![Fig. 6. Time dependences of the (a) thermoremanent magnetization $M(t)/M(0)$ and (b) the rate of magnetization decay $S(t)$ for the (1) LCMO and (2) LCMFO samples. $T = 4.2$ K; $H(0) = 500$ G.](image)

![Fig. 7. Temperature dependences of the electrical resistivity $\rho(T)$ of the (1) LCMO and (2) LCMFO samples upon heating (open symbols) and cooling (closed symbols).](image)

Table 2. Fitting parameters for the thermoremanent magnetization decay and relaxation times for the LCMO and LCMFO samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>M_1, 10^4 emu/g</th>
<th>M_0, 10^2 emu/g</th>
<th>τ, 10^3 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCMO</td>
<td>4.85 ± 0.11</td>
<td>3.8225 ± 0.0003</td>
<td>1.318 ± 0.057</td>
</tr>
<tr>
<td>LCMFO</td>
<td>10.36 ± 0.04</td>
<td>1.4704 ± 0.0002</td>
<td>1.622 ± 0.057</td>
</tr>
</tbody>
</table>

reveals a broad range within which variable-range hopping mechanism operates [26]. The variable-range hopping mechanism described by the Shklovskii–Efros macroscopic law takes into account the Coulomb interaction between charge carriers. This theoretical model permits one to relate macroscopic parameters (the electrical resistivity and its temperature characteristics) with the microscopic parameters of carrier hopping from one localization center to another (the localization radius, characteristic values of the density of states near the Fermi level). We shall use this model to analyze the dependence of the electrical resistivity in order to derive the width of the soft Coulomb gap [15] in the density of states of the single-particle model from the relation

\[\Delta = k_\omega \sqrt{T_0 T_v}. \]

(8)

The characteristic parameters of this temperature dependence are presented in Table 3. The microparameter \(\Delta \) (the Coulomb gap width) can be estimated from the expression for the electrostatic interaction energy

\[\Delta = \frac{e^2}{4\pi \kappa \varepsilon_0 r}, \]

(9)

\[r = 2 \left(\frac{4}{3} \pi N \right)^{\frac{1}{3}}, \]

(10)

\[N = N_0 (1 - x - y), \]

(11)

where \(e \) is the elementary charge, \(\varepsilon_0 \) is the dielectric constant, \(\kappa \) is the effective permittivity, \(r \) is the average distance between Mn\(^{3+}\) ions, \(N_0 = 1.74 \times 10^{22} \text{ cm}^{-3} \) is the manganese ion concentration [15], and \(x \) and \(y \) are the Ca and Fe concentrations (\(x = 0.67; y = 0.05 \)). The Coulomb interaction energies for the undoped and Fe-doped materials were 0.569 and 0.538 eV, respectively. The concentration of localized electrons, just as that of Mn\(^{3+}\) ions, decreases as the latter ions are substituted by Fe\(^{3+}\) ions, provided the \(e_g \) iron electrons remain localized. The soft gap parameters derived from the fitting microparameters for the experimental curves were found to be 0.464 and 0.446 for the compositions with \(y = 0 \) and 0.05, respectively. They agree with the estimates and substantiate the suggestion that the \(e_g \) electrons of Fe\(^{3+}\) ions are not involved in the transport processes in the temperature range under consideration.

Table 3. Fitting and characteristic parameters used for approximating the temperature dependence of the electrical resistivity with the variable-range hopping model

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mode</th>
<th>(A \times 10^{-20}, \Omega \text{ cm K}^{-3/2})</th>
<th>(T_0, \text{ K})</th>
<th>(T_v, \text{ K})</th>
<th>(\Delta, \text{ eV})</th>
<th>(a/a_{\text{und}})</th>
<th>(T_{\text{infl}}, \text{ K})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCMO</td>
<td>(T \downarrow)</td>
<td>0.00459 ± 0.00009</td>
<td>131276 ± 220</td>
<td>220.5 ± 0.9</td>
<td>0.4640 ± 0.0014</td>
<td>0.880</td>
<td>245.3</td>
</tr>
<tr>
<td></td>
<td>(T \uparrow)</td>
<td>0.0132 ± 0.0009</td>
<td>122010 ± 680</td>
<td>210 ± 3</td>
<td>0.436 ± 0.004</td>
<td>–</td>
<td>239</td>
</tr>
<tr>
<td>LCMFO</td>
<td>(T \downarrow)</td>
<td>0.00105 ± 0.00009</td>
<td>128271 ± 800</td>
<td>208 ± 2</td>
<td>0.446 ± 0.003</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>(T \uparrow)</td>
<td>0.0006 ± 0.0001</td>
<td>134066 ± 1900</td>
<td>178.1 ± 0.5</td>
<td>0.421 ± 0.004</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
The microparameters thus obtained (A is the preexponential factor in Eq. (7), \(T_0 \) is the characteristic temperature, and \(T_v \) is the activation temperature of variable-range hopping, which is the highest temperature at which Eq. (6) is still valid, and, hence, the lowest on the \(T^{-1/2} \) scale) yield the relative localization radius \(a \) (one of the parameters in the percolation model [26]). The relation [15]

\[
A = \left(\frac{C}{2^q} \right) a^{11} T_0^{(7+q)p}
\]

permits one to estimate the ratio of the localization radii for the samples under study (C is a constant). Based on the light iron doping and the closeness in magnitude between the ionic radii of Fe and Mn, it was assumed that the C constants of the two compositions are comparable. The \(q \) and \(p \) parameters in Eq. (12) are 0 and 1/2, respectively; they were adopted from the problem of variable-range hopping conduction including Coulomb interaction (the Shklovskii–Efros mechanisms) under the assumption of a hydrogen-like electron wave function [15]. The ratio of the localization radii for the iron-doped and undoped samples is 0.88. This suggests that the iron doping enhances the degree of carrier localization. In this case, the probability for an electron to hop from one localization center to another is lower. The electric resistivity of the LCMFO sample is, however, lower than that of the LCMO sample. This may be attributed to the fact that the doping with iron destroys orbital (and, hence, stripe) order of the charge-ordered state to a larger extent than it increases carrier localization. Orbital ordering induces antiferromagnetic ordering, thus enhancing the electrical resistivity [2]. At high iron concentrations, however, the two mechanisms may produce comparable effects, and the resistivity of the material will start to grow.

Thus, the behavior of electrical resistivity in the samples under study depends, in many respects, on the charge (orbital) ordering and the doping with iron initiates additional disorder into the charge (orbital) and magnetic structures.

As follows from an analysis of the dependence of the electrical resistivity on the temperature (Fig. 7), in the vicinity of the charge-ordering transition, one observes a shoulder, which is particularly noticeable for the undoped composition. It occurs at the temperature \(T_s \) satisfying the relation

\[
\frac{d \log p(T)}{dT} \bigg|_{T = T_s} = \text{min}.
\]

The phase transition to the charge-ordered (orbitally ordered) state induces antiferromagnetic order and charge nonuniformity [2]. This is most clearly seen in the LCMO sample, whose temperature dependence exhibits a distinct shoulder (245.3 K) near the charge-ordering temperature, which we determined from magnetic measurements.

4. CONCLUSIONS

We have studied the effect of iron doping on the electron-doped perovskite manganites. We have performed studies of the magnetic susceptibility, magnetization, magnetic relaxation, and electrical resistivity of \(\text{La}_{1-x-y} \text{Ca}_x \text{Mn}_{1-y} \text{Fe}_y \text{O}_3 \) samples \((x = 0.67, y = 0 \) and \(x = 0.67 \) and \(y = 0.05 \)). The results obtained suggest that these compositions exhibit charge (orbital) ordering, as well as phase separation. Below the temperature of the transition to the charge-ordered state, magnetic order sets in through correlation with orbital ordering, which, in turn, is initiated by the so-called Jahn–Teller vibronic interaction [2]. The orbital ordering is conducive to the frustration, which is most clearly pronounced in the undoped composition. While the Fe-doped composition also exhibits charge (orbital) ordering, frustrations manifest themselves to a lesser extent because of the Mn\(^{4+}\)–Fe\(^{3+}\) ion pairs not being involved in the double exchange interaction. Studies of the magnetization revealed the presence of a ferromagnetic component in both samples. The remanent magnetization of the doped sample is much lower in the temperature range 100–200 K, which evidences the disordering part played by iron and suggests that iron ions are not involved in the double exchange interaction. As the temperature is lowered still more, the remanent magnetizations of the undoped and doped samples become equal to each other. The studies of thermoremanent magnetization relaxation, combined with the data obtained on the magnetic susceptibility, permit the conclusion that, in the low-temperature range, the LCMO and LCMFO compositions are in the cluster spin-glass state. The specific features observed in the behavior of LCMFO relaxation give grounds to assume that clusters in LCMFO are of a smaller characteristic size than those in LCMO. An analysis of the data on the electrical resistivity showed that the formation of the charge-ordered phase (particularly in LCMO) increases somewhat the electrical resistivity (particularly in LCMO) as a result of the formation of the weakly conducting antiferromagnetic phase. The growth of the electrical resistivity in the LCMO sample is accompanied by an increase in the degree of charge carrier localization. For the iron doping level and carrier concentrations realized in the samples, the formation of the charge-ordered state affects the magnetic properties and the electrical resistivity of the LCMO sample stronger than the charge carrier localization does.

ACKNOWLEDGMENTS

This study was supported by the Wihuri Foundation (Finland) and the Belgorod State University (project no. VKG 005-07).
REFERENCES

Translated by G. Skrebtsov