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In trod u ction . S e ttin g  th e  P rob lem

We consider the following Cauchy-type problem in a Banach space E:

D au( t ) =  A u ( t ) +  F(t ,  B( t)u( t ) ) ,  t  > 0, (1)

lim D a~ 1u(t) = Uo, (2)
t—>o

where 0 <  a  <  1,
t

D a~ l u(t)  =  I 1~au( t ) =  — - f (t — s )~au (s ) ds
T(1 -  a) J 

o
is the left-side fractional Riem ann-Liouville integral of order 1 — a  (for a  = 1, we assume th a t 11 "

d
is the identity operator), D au(t) = — I l ~au(t)  is the left-side fractional Riem ann-Liouville derivative

of order a,  T(-) is the gamm a-function, A  is a linear closed densely defined operator, B(t)  is a linear 
closed densely defined operator depending on t  (no assum ptions about the boundedness of B(t)  are 
imposed), and F ( t ,w )  is a nonlinear operator acting in E  for any t  >  0; the la tte r operator is treated  
as a perturbation  of the operator A.

The results presented below are related to  the perturbation  theory of generators of semigroups 
(see [8, Chap. 9]). We add to  problem (1), (2) a term  with a nonlinear operator subordinated in a way 
to  the operator A  and investigate how this affects the solvability of the problem. Sufficient conditions 
providing the solvability of the problem with the perturbed  operator A  are presented.

In [5], solvability results for equations w ith fractional Riem ann-Liouville derivatives perturbed 
by a linear closed operator B( t)  are obtained. The study of problems of th a t kind is m otivated by



numerous applications of fractional-order differential equations in physics and m athem atical modelling 
(see, e.g., [18, Chap. 8], [13, Chap. 5], and [9, Chap. 8]).

A part from problem (1), (2), consider the following problem w ithout perturbations (assuming th a t 
/3 > a):

D^u(t)  = Au(t) ,  t  > 0, (3)

lim D ^ ~ lu(t)  =  «o- (4)
t —s-o

D efin itio n  1. A function u(t)  is called a solution of problem (3), (4) if it is continuous for t  > 0, takes 
values in D(A)  (here D(A)  is the dom ain of the operator A), / 1_/3-u(i) is continuously differentiable 
for t  > 0, and u(t)  satisfies (3) and (4).

D efin itio n  2. We say th a t problem (3), (4) is uniformly well posed if there exist an operator-valued 
function Tp(t)  defined on E  and comm uting with A,  a positive M i, and a real uj such th a t, for any 
uo € D(A) ,  the function Tp(t)uo is the unique solution of problem (3), (4) and

II Tfi{ t ) \ \ < M ^ - l e ^ .  (5)

According to  Definition 2, problem (3), (4) is uniformly well posed if its solution exists, is unique,
and continuously depends on the initial d a ta  uniformly w ith respect to  t  from any compact set of
(0, oo). The la tte r property follows from (5). A part from those standard  requirem ents, Definition 
2 includes additional information about the behavior of the solution as t  —> 0 and t  —> oo (see 
inequality (5)).

C o n d itio n  1. There exists (3 e  [a, 1] such that problem (3), (4) is uniformly well posed anduo belongs 
to D(A) .

In [4, 6, 10], the uniform well-posedness of problem (3), (4) is studied for 0 <  (3 <  1. If /3 = 1, then
the uniform well-posedness of the Cauchy problem requires th a t the operator A  be a generator of a
Co-semigroup.

C o n d itio n  2. (i) The domain of  the operator B(t) ,  denoted as D,  does not  depend on t and
D(A)  c  D.

(ii) Let x  e  D. Then either the funct ion w(t)  =  B ( t ) x  belongs to C((0 ,oo ) ,E) ,  is absolutely 
integrable at the origin, and takes values in D ( A ) and the funct ion Aw(t)  belongs to C ( ( 0, oo) ,E )  
and is absolutely integrable at the origin or the funct ion I 1~aw ( t ) =  I l ~aB ( t ) x  is continuous 
f o r t  > 0, continuously differentiable for  t > 0, and D aw(t) is absolutely integrable at the origin.

(iii) For any x  e  E,  there exist M 2 > 0, 7  e  (0 ,1), and w e R  such that T ^ { t ) x  g D  ( the smoothing 
effect) and

\ \B( t )Tp(T)x \ \  < M 2T - ' 1ebJT\\x\\, t , T  e  (0, 00). (6)

Note th a t if the operator —A  is strongly positive in the sense of [11], i.e., if

I K A I - A ) - 1!! <  Re A >  0, M 3 >  0,
1 +  | A |

then we can assign (3 = 1 in Condition 1. In this case, uj = 0 and inequality (6) means th a t the 
operator B{t)  is subordinated to  the fractional power (—A )7 (see [11, p. 298]).

If the operator B(t)  is bounded and the operator A  satisfies Condition 1, then  inequality (6) is valid 
for 7  =  1 — (3.

The operators A  and B{t)  are not assumed to  commute.

C o n d itio n  3. (i) The funct ion F  acts from  (0, 00) x E  to E;  i f  a funct ion w(t)  =  B{t)x ,  x  e  D,
satisfies i tem (ii) of  Condition 2, so does w\( t)  = F ( t ,w ( t ) ) .

(ii) The following inequality is valid for  w = 0: ||F(t ,  0 ) || <  Cq{1 +  t ^ ~ l ), m u  > 0, Cq > 0.



(iii) The operator F ( t ,w )  satisfies the following Lipschitz condition uniformly with respect to t > 0:

IIF  ( t ,w 2) — F  ( t ,w  1) || <  L \\w2 — wi\\ for  all w i , w 2 € E.

C o n d itio n  4. The Banach space E  possesses the Radon-Nikodym property (see [1, p. 15]), i.e., any 
absolutely continuous funct ion F  : R + — > E  is differentiable almost everywhere.

For example, reflexive Banach spaces possess th a t property (see [1, Corollary 1.2.7]), while the 
spaces Li(a,  b), C[a, b], and the space Co of sequences converging to  zero do not (see [1, Exam ple 1.2.8 
and Propositions 1.2.9 and 1.2.10]).

We will show below th a t Conditions 1-4 guarantee the unique solvability of problem (1), (2).
The following function (see [7, p. 357]) is needed for the proof:

{ <7+̂ 00

I  e x p ( te - r 2")<fa, ( > 0 ,  (7)

(7—io o

0, t < 0 ,

where a  >  0, r > 0, 0 <  z/ <  1, and the branch of the function z v is chosen to  satisfy the inequality 
R e /  >  0 for R e z  >  0. This branch is a one-valued function on the complex z-plane cut along the 
negative part of the real axis. The convergence of the integral in (7) is guaranteed by the factor 
exp ( - r / ) .

Below, we present certain properties of the function f TV{t) (see also [7, p. 358-361, Propositions 1- 
3]).

Consider the integral defining the function f T,v(t) and replace the line of integration R ez  =  a > 0 
by the contour consisting of the rays 2 =  r e x p ( —iff) and 2 =  r e x p ( i0), where 0 <  r < 00 and 
7r/2  <  9 <  7r. This yields the following representation of the function f T,v(t) for t > 0:

OO

frv{ t )  = — /  exp (tr cos 9 — r r "  cos vO) sin (tr  sin 9 — r r "  sin vQ +  9) dr. (8)
7T J 

0

The function f T,v(t) is nonnegative, and the following relations are valid:

OO

j  f T,v ( t )d t  = 1 (9)
0

OO

exp (—t \ v) =  J  exp (—At) f T,v(t) dt, r  >  0, A >  0, 0 <  v < 1. (10)
0

We also note th a t the function f T,v(t) can be expressed via the W right function (see [9, p. 54]) for 
t  > 0 : f r A t ) = t  V ( - ^ 0; - r t  v) , c/)(a,b]z) =

k\ T(ak  +  b) 'k=0

Another representation via the more general W right-type function (see [16, Ch. 1]) is valid as well:

zk
T(ak + n) T(5 — fik)f r A t )  = t ~ ‘e “  ( - T  t - )  , e Z f c )  = J 2  r l n t  . , , f  m  (11)

k = 0

where fi < 1, 5 +  fi > 0, max{0; /3} < a  < 2, a  +  fi < 2, and /j,,z € C.



1. C au ch y-T yp e P rob lem s for F ractional-O rder E quations: In h om ogen eou s E q u ation s

The following theorem  establishes conditions under which the uniform well-posedness of problem
(3), (4) implies the uniform well-posedness of the corresponding Cauchy-type problem for the equation
of order a,  where 0 <  a  < /3 < 1.

T h eorem  1.1. Let a  < (3 < 1, Conditions 1 and 4 be satisfied, and uj = 0 in inequality (5). Then 
the problem

D au{t) = Au{t),  t  > 0, (1.1)

Mm D a~ l u(t) = uq (1.2)
t—s-0

is uniformly well posed and its resolving operator is of  the form
CO

Ta (t)u0 = J  fr,v ( t)T^(T)u0 dr, (1.3)
o

where v  =  a / /3 and the funct ion f T>v (t ) is defined by relation (7).

Proof  The following is proved in [4]. If problem (3), (4) is uniformly well posed and uj = 0 in 
inequality (5), then  A  ̂ belongs to  the resolvent set p(A)  of the operator A  for Re A >  0, the resolvent 
R(\P )  = (AP i - A ) - 1 is representable in the form

+  CO

R ( \ ^ ) x  = j  exp(—At )Tp ( t )xd t  (1.4)
o

for any x  G E,  and the following inequalities are valid for any nonnegative integer n:

dnR  (X13) M T (n +  13)

(Re A)r

If the Banach space E  possesses the R adon-N ikodym  property, then  the validity of inequalities (1.5) 
(even for real positive A) is a sufficient condition for the uniform well-posedness of problem (3), (4). 
The resolving operator for this problem is of the form (see [4, formula (13)])

Tfi(t)v,o = -D1-/3^ — J  \ ^ ~ l exp(At)E(A/3)uo d \ ,  ujo > 0 . (1 .6)
(jjo—ico

Taking into account (1.4), (10), and (5), for v  =  a/(3, we have
CO CO CO

R ( p a ) x  = J  e x p ( —fjut )T f j ( t )xd t  = J  Tfi( t )xdt  J  exp (—r/x) f t ,v ( r)  dr.
o o o

In (8), we take 9 e  [7r / 2 , 7r] such th a t co s9 < 0 and cosv9 >  0. To achieve th a t, we actually take it 
from the interval ( 7 r / 2 ,  min{7r / ( 2z/); 7r}).

Hence, by virtue of (8), (9), and the theorem  on the differentiability of integrals with respect to  a 
param eter, the following inequalities are valid:

<  ^  VMI +7 > R e A > 0 .  (1.5)



CO

=  M 5 ||a;|| J  r n~ 1+a exp (—rR e  /x) dr =
M qT (n +  a)  ||a;|

n-\-a(Re n)
o

This proves the uniform well-posedness of problem (1.1), (1.2).
Due to  (1.6), (1.4), (7), and (11), the resolving operator for this problem is of the form

<7+̂ 00

Ta ( t ) u 0 = D l ~a —  f  A" -1 exp (At) R  (A") uq d \
2m  J

OO < 7 + 2 0

' J  Tp(T)uod,T-^—: J  A" -1 exp(Ai — \ ut )  d \

OO

: j  t~ae[Au~a ( - T t ~ v)Ti3(T)u0 dr. (1.7)

<7 —  2 0 0

OO < 7 + 2 0 0

D i-»

o

D
o

The following relation (implied by [16, formula (1.1.13)]) for the Laplace transform ation was used:

x—a „1,1—0:L t ae1’u a (—r t  V)',X =  A" * e x p (—t \ v)

Now we use the following relation for the fractional derivatives of W right-type functions (see [16, 
formula (1.2.12)]):

B 1- “ =  t - ' e l H - T t - n  = f TJ t ) .

Combining it w ith the limit relation

lim x) = — lim e\ ,v(—x) = 0a?—)>+oo ’ x^+oo ’

(see [16, formulas (1.2.3) and (1.2.6)] and note th a t this relation and the estim ate in (5) guarantee the 
convergence of the integral in (1.3) for uj = 0) and using (1.7), we obtain (1.3). This is the required 
representation. □

R em ark  1.1. Consider the particular case where v  =  a/(3 = 1/2. Then (see [7, p. 369, formula 
(32)])

f r 'l !2it )  = w s e x p { - i ) -
Thus, the relation in (1.3) takes the form

° °  2

2>/2 ( t ) u 0 = J  r e x  p Tfi(T)u0 dT. (1.8)
o

The representation in (1.8) can provide the smoothing effect (see item  (iii) in Condition 2) for the 
resolving operator T@/2 (t) in the case where this effect for the operator Tp (t ) is absent. For example, 
this takes place if A  and B  are differential operators.

The following assertion is the solvability theorem  for the Cauchy problem for the inhomogeneous 
equation.

T h eorem  1.2. Let /3 < 1, and let Condition 1 be satisfied. Let one of the following two conditions 
hold:

(a) a funct ion h(t) belongs to C  ((0, oo) ,E ) ,  is absolutely integrable at the origin, and takes values in 
D(A)  and the funct ion Ah( t)  belongs to C  ((0, oo), E)  and is absolutely integrable at the origin;



(b) a funct ion h(t) is such that the funct ion 1 1 ^h(t)  is continuous for  t > 0 and continuously 
differentiable for  t > 0 and D@h(t) is absolutely integrable at the origin.

Then the problem
D^u{t)  =  Au( t)  +  h(t), t  > 0 , (1.9)

lim D ^ ~ 1u(t) = uo (1-10)
t—s-o

has a unique solution, which is defined by the relation
t

u(t) = T/3(t)u0 + J  Tp ^ t -g )  h(£) d£. (1.11)
o

Proof. It suffices to  check th a t the function
I

v (t) = J  Tf3 ( t - £ ) h  ( 0  d(
o

satisfies Eq. (1.9) and condition (1.10), which is the zero initial condition. 
Let condition (a) be satisfied. Then, for t > 0, we have

t

Dl3v (t) =  J  -  T) 13 dr  J  T/3 (t  -  0  h ( 0  d£
0 0

t  t

=  m l— ) i t  f *  l ( t - r ) - 0T A r - i ) H Q d r
0 ?

t  t — £

1 d J  d£ J  ( t - £ - x )  fiTp(x)h{^)dx.
r  (1 — /3) dt

o o
Since the integrand (with respect to  £) is a continuous function of the variable t  — £, it follows th a t

t - i

= T { 1 \  J1™ /  ( t - t -  x ) ~ %  (x ) h ( 0  dx
o

t  t — §

+  T ( l - f 3 )  / d^ J t  /  dx

I

= lim (t - O h  (£) +  [  I) ’ , (t - O h  (£)
t -z - > + o  J

o
t

= h( t )  + j  Tf3 (t -  0  Ah(£) d£ = h (t) +  Av(t).
o

Hence, the function v(t)  satisfies Eq. (1.9).
Further, we check th a t the function v(t)  satisfies condition (1.10). We have

t  T

W  =  r ( i + )  i T  ! T^ -  «>
0 0



Since Tp (t ) satisfies the estim ate in (5), it follows th a t

t  T

J  ( t -  t ) - 13 dr  J  Tf3( T -  £) h(£) dg 
0 0

t

< M  J  ( t - r ) - P  dr  J  (T - 0 ^ l \ \ h m  d i  = M  J  ||fc (OH <%,
0 0 0 

for t  £ [0,1], where £>(•, •) is the beta-function. Hence, the function v( t ) satisfies condition (1.10). 
Now, let condition (b) hold. Then

t  t  £

D^v{t) = D fi J  Tfi(T)h(t - r ) d T =  T̂ _ ̂ J t J  (t ~ dg J  Tp (T)h(£ -  r) dr
0 0 0

t  t —T

= T ( T ^ p ) J t  J T^ dr f  { t - T - x ) - ^ h { x ) d x  
0 0

t  — T  t  t  — T

=  Tp(t) l i m ^ Y ^ y  J  ( t - r -  x )~ fih{x) dx  +  J  T ^ ( t )  d r - |  J  {t -  t  -  x )~ fih {x )  dx
0 0 0 

t  t

= Tfi (t ) D fi~l h (0) + Jrfi (r) D fih (t - r ) d r  = Tfi( t )D ?- lh(0) + J  Tfi(t -  0 D ? h ( 0  <%. (1.12) 
o o

On the other hand, it follows from the relation

I 13D^h{x)  =  h(x) — —^ ^ - x 13-1, 0 <  /3 < 1 (1-13)
\ P  )

(see [18, formula (2.61)]), th a t

t  t

v(t) = j  Tfi{t -  0  ^  -  O D ^ K  o)
0 0 

t  £ t

+ J  Tfi{t - Q < %  J  (£ -  r f - l D^h{T) dr  = J  ( t -  r f - % {r ) D ^ )  dr
o

t  t — T

1
+

m
0 0

Using (1.13) and the closedness of the operator A  again, we obtain

t  t

J  { t - r f ~ lTfi{T)vodT = J  { t - r f - l D ^ T fi{r)vodr
0 0

J  dr  J  ( t - T - g ) 13 1D l3h(g)d£.  (1.14)

=  I ^ D % ( r ) v 0 = T ^ t ) v 0 ~  0)vo = T ^ t ) v 0 ~  ^ v 0. (1.15)

It follows from (1.13)—(1.15) th a t



t

Av(t) = Tß{t)Dß~lh{0) -  ^ ^ - ^ ( 0) + J  ( Tß{t - 0Dßh(0 - {t~  ̂ V h(fl) dC
o

= Tp (t) Dl3~1h(0) -  0) + J  T ^ t -  0 D ? h ( 0  dg -  h{t) +  ^ ^ - ^ ( 0) =
o

D^v(t)  — h(t).

Hence, the function v(t)  satisfies Eq. (1.9).
To verify th a t the function v(t)  satisfies condition (1.10) if condition (b) is satisfied, one should 

represent D@v(t) as follows:
I

D ß~ l v{t) = J  Tß( s ) I l ~ßh(t  -  s ) ds.

□
2. C au ch y-T yp e P ro b lem s for P ertu rb ed  F ractional-O rder E q u ation s

We pass to  the investigation of the perturbed  problem (1), (2). In the sequel, we use the following 
function of the Mittag-Leffler type (see [2, Chap. III-IV]):

E ß , p ( z ) —  ^
f c 0 r  {uk + pY

T h eorem  2.1. Let a  < (3 < 1, Conditions 1 and 2 be satisfied, and uj = 0 in inequalities (5) and 
(6). Let Conditions  3 and  4 be satisfied. Then problem (1), (2) has a unique solution satisfying the 
estimate

u  N +  c QM i r +  c 0M 1m r ^ ) ta+u_ 1
-  r ( a )  1 ™  +  T (a  +  1) 1 + T{a + fjL)

+ L M 1M 2T(p)T(6 /u )  [ ta+s~ 1Esta+s (-L M 2T(6 /u ) t s

+Cota+sEsya+s+i ( L M 2T{5/u ) ts)  +  C0T(n)ta+s+^ - l E &ta+&+̂  ( l M 2T (5 /v ) t s) )  , (2 .1) 

where 5 = v ( l  — 7 ).

Proof. Taking into account Theorems 1.1 and 1.2, we reduce problem (1), (2) to  an integral equation. 
By virtue of (1.3) and (1.11), this integral equation can be w ritten  as follows:

OO t  OO

u(t) = J  fT,v{t)Tp(7)uQ dT + J  J  frAt-s)Tp(T)F(s’B(s)u(s))dTds, (2.2)
0 0 0

where uo, Tp (t )uq € D(A)  C D  and v  =  a / (3. Denoting B ( t ) u ( t ) by w(t),  we obtain
OO t  OO

w(t) = J  f T,v(t )B(t)Tp{r)uo dr  +  J  J  f TA t  ~  s )B(t )T p(T)F(s ,w(s) )  drds.  (2.3)
0 0 0

To solve Eq. (2.3), we use the iteration m ethod, assigning
t  OO

wo(t) = 0, wi( t)  = J  f r A t ) B ( t ) T ß ( T ) u 0 dr  +  J  J  f T A t -  s )B ( t )Tß (T)F(s,Ö) drds,
0 0



wn+i(t) = J  f T,v(t )B(t)Tfi(T)uo dr  + J  J  f i - A t  -  s )B {t)TA T)F (s i wn(s)) drds, n e  N.
o o

Using inequality (6) and item  (ii) of Condition 3, we estim ate the norm
t  CO

0 0 0 
Taking into account th a t the function f T,v(t) is defined by relation (7) and using [15, integrals 2.3.4.1

< 7 + 2 0 0  CO

J
0

< 7 + 2 0 0

\\wi(t)\\ < M 2 \\u0\\ J  U A t )T 1 dT + M 2C0 J  J  f r A t - s ) T  7(1 + s^ l )d rds .  (2.4)

3 account the 
and 2.3.3.4], we obtain

CO

J  f r A ^ ) T~1 dr  = J  ezt dz J  T-7  e x p ( - r ^ )  dr
0  <7 —  2 0 0  0

< 7 + 2 0 0

=  r ( 1 ~ 7) [  e^ - K i - 7 )  dz  =  ^(1 -  7) t K i-7 )- i  t > 0 . (2.5)
2iti J  r(z/(l — 7 ))

<7 —  2 0 0

Applying relation (2.5) to  (2.4) twice and com puting the obtained integral, we have

'■■«>' s  m A 1*'-'" * » « ' • r i a i S S i

* « » " ‘ n T S i r 1 «  S j T  ( ' “ • w - " ) -
Using item  (iii) in Condition 3, we estim ate (in the same way) the norm of the difference

t  CO

\\w2(t) -  wi(t)\\ <  J  J  f T A t - s ) \ \ B ( t ) T p ( T )  (F(s,  w\)  — F{s,  0)) || drds  
0  0

t  00

s  j  ,1» , ,  ! J , - ,  ..... .

Taking into account (2.6), for n  £ N ,  by induction, we obtain the inequality

. . .  M  ... MU ,  V ' U }  n w  I, . Co m  f t n « f ) T O . W , \
| K ( i ) - a . „ - i ( t ) | | < -------- ^ ---------[ t  I M  +  ^ i  +  r ( n i  +  „ )  ‘ ) '  {2J)

Hence, the series
CO

£ > n ( * )  -  Wn- i ( t )) 
n =  1

uniformly converges on any segment [io,£i], 0 <  to <  t \ .  Therefore, wn (t) uniformly converges to  a 
function w(t)  on the same segment, where w(t)  is continuous on [to,^i] and satisfies Eq. (2.3). By 
virtue of (2.7), the following estim ate holds for th a t function:



^  L kM k+lTk+l(5/v) /  j k+1)s_i  H H Co ,(k+i)s | CoT((k +  l)ô)T(^) (k+1)s+ l̂_ 1 
- 2 r f f b  + u f t  \ l  l|Mo|l +  f t 4 i ^  +  r ( ( h  + i U- i - i A 1T ( ( k  +  1 ) 5 )  V  ( k  +  l ) 5  T ( ( k  + l ) 5  +  i^)

<5-1 1 7  f  T i\,r -T-fx / , , \ + S \  \\„. i l  , n + S v  ( t  t v s  /,.\+<5=  M 2r ( V ^ )  ( r -1 ^  ( I M 2r ( W  ) IKII + C o f E s>s+1 [ L M 2T ( 5 /v ) td

+CoT{p)t&+i1- l E ëtë+ll ( L M 2T{5 /v ) t& ) ) , (2.8)

where E aA ' )  is a function of the Mittag-Leffler type, t  e  [io,ti], 0 <  to <  t \ .
Since the segment [to, ^i] is chosen arbitrarily, it follows th a t the function w(t)  is a solution of 

Eq. (2.3) continuous on (0, oo) and satisfying inequality (2.8) on (0, oo), i.e., w(t)  is absolutely inte
grable at the origin. Moreover, from relation (2.3), we conclude th a t the function w( t ) satisfies item 
(ii) in Condition 2.

Finally, using relation (2.2) and Theorem  1.2, we obtain the following representation of the solu
tion u ( t ) of problem (1), (2):

t CO

u ( t )  =  J  f r , v ( t ) T fi(T) u0 d r  + J  J  f T,v { t -  s)T/3 ( t ) F ( s , w ( s ) )  d r d s .  

o o o
By virtue of (5), (2.8), (2.5), and item  (ii) in Condition 3, it satisfies the inequality

CO

IHt)H < [  f r A t ) l|2>(r)«o|| d r

0
t CO t CO

+ J  J  fr,v(t -  s)\ \Ti3( t )F(s ,0) \ \  drds  +  J  J  f T A t - s ) \ \ T p ( T ) ( F ( s , w ( s ) )  -  F(s,0)\\  drds  
o o  o o

^ t a ~ l ...........C0M1r(/5)r C0M1r(/5)r(/x)r+^-1
S    Mo H------- 777------!  H

+

r(a) r(a; + l) T ( a  +  fi)

L M i M 2T(/3)T(1 -  7 )
j \ t -  s )" “ V “ 1^  ( l M 2T ( ô /v ) s 5^ ds

+

T(a)
o

CqL M i M2T(P)T(5/ v) f u  ^  Sjp , s\ ,
----------------------------------  J  ( t  -  s)a Ls°Es,s+i [ L M 2T(6/ v)s°J  ds

0
t

C0L M l M 2T{f i)T{5/u)T{n)

T(a)
Therefore, the solution satisfies the estim ate

J ( t -  s T ~ l s&+» - l E SMll  ( L M 2T ( S / v )ss)  ds.

<  +  C o M iT W V *  +  C'0M 1r(/5 )r(/x )ta+^ - 1
r(a) r(a; + l) T (a  + /j,)

+ L M 1M 2T(p)T(ô /u )  ( ta+&- l E s>a+s ( l,M2T{6 /v ) t&



+ C 0t a+sE s,a+s+1 ( L M 2T ( 5 / v ) t s )  + C 0T ( n ) t a+s+^ - l E &ta+&+̂  [ L M 2T ( 5 / v ) t s 

The following relation was used:

I a (tp~ l E a>p (cta)) = ta+p~ l E a>a+p (cta) , a, a, p > 0

(see [18, p. 141, formula (23)]).
To establish the uniqueness of the solution of problem (1), (2), we assume, to  the contrary, th a t 

there exists another solution. We denote it by U( t ) .  Then, by virtue of Theorems 1.1 and 1.2, we have
CO t  OO

U ( t )  =  J  f T>u( t )Tp( T)uo  d r  +  J  J  f T>u(t  ~  s)T[3 ( t ) F ( s , W ( s ) )  d r d s ,

o o o

where W (t )  satisfies Eq. (2.3).
Let us prove the uniqueness of the solution of Eq. (2.3) in the class of functions continuous on (0, oo) 

and satisfying the estim ate

\\W(t)\\ <  M i5_ 1ewt, M  >  0, w >  0, (2.9)

where 5 = v ( l — 7) < 1. Note th a t the functions satisfying estim ate (2.8) belong to  the specified class 
due to  the following asym ptotic behavior of the Mittag-Leffler function for 0 <  n  < 2 (see [2, p. 134]):

1 U 1 /  1 \
E,v U )  = - ^ - ^ e x p  ( ,* /- )  -  g  + O ( ^  , ,  e  R, t ^  + 00. (2.10)

Let b > 0 and t  e  (0, b]. Set
m  = sup ( t ^ e - ^ W W i t ) - w ( t ) | |) .

*€[0,6]
The suprem um  is finite because we consider the class of functions satisfying inequality (2.9).

The difference W (t )  — w( t ) satisfies Eq. (2.3) for uq =  0. Therefore, taking into account rela
tion (2.5), we have

t

\ \ W ( t ) - w ( t ) \ \  < LM2p ^  ^  J ( t - s f - ' W W i s )  - w ( s ) \ \ d s

0

= LM2r(l  -  7 ) l \ \ \ W ( t )  -  ™(*)||). (2.11)

Hence, the following inequality holds:
t

\ \ W ( t ) - w ( t ) \ \  < LM 2T^ r. 7 ^m f  (t — s)s~ 1ss~ 1eUJS ds = L M 2T(1 — j ) m  I s (ts~ 1eujt). (2.12)
r W  J

0

Substitu ting (2.12) into (2.11), we obtain the inequality

\\W(t) - w ( t ) \ \  < L 2M f r 2( l  -  7 ) m /2V 1ew*)- 

Continuing this procedure, we arrive a t the inequality

k k k *
\ \ W ( t ) - w ( t ) \ \  < L kM%Tk(l  - 7 ) m /fc<5(t‘5- 1ewt) =  L *M 2^ ( 1  ~  7 )m  f  ̂  ^

1 (kd) J 
0

< LfcM2fcr^(1 - t (k + l )S - l  u,t f all k e N ' (213) 
T((k + 1)5)



Taking the supremum, we obtain the inequality

771 -  T( (k  + 1)6)

The factor
LfcM2fcr fc( l - 7 ) r f f l  kS 

T((k + 1)5)
is the common term  of the series defining the Mittag-Leffler function (cf. (2.8)). Therefore, it vanishes 
as k —> oo. Thus,

m  = sup ( t ^ e - ^ W W i t )  -  w (t)||) =  0 .
*€[0,6]

Since the positive num ber b was chosen arbitrarily, it follows th a t W (t )  = w ( t ) for t  > 0. This 
completes the proof of the uniqueness. □

Note th a t estim ate (2.1) contains a detailed dependence of the solution on the d a ta  of the problem. 
This dependence can be used in further research. If only the behavior of solution of problem (1), (2) 
as t  —> 0 and i —>• oo is investigated, then, taking into account (2 .10), one can represent estim ate (2 .1) 
as follows:

\\u(t)\\ <  M ia _ 1ewlt||«o||, M  > 0, wi >  0. (2.14)
Theorem  2.1 establishes the solvability of problem (1), (2) for any a  provided th a t 0 <  a  < /3 < 1, 

Conditions 1-4 are satisfied, and uj = 0 in inequalities (5) and (6). Let us prove th a t if 0 <  a  = /3 < 1, 
then similar results can be obtained w ithout the requirem ent uj = 0 in inequalities (5) and (6) and 
w ithout Condition 4.

T h e o re m  2.2. Let Conditions 1-3 be satisfied, and let a  =  /3 < 1. Then problem (1), (2) has a 
unique solution satisfying estimate (2.14).

Proof. Taking into account Theorem  1.2, we reduce problem (1), (2) to  the integral equation
t

u( t ) =  Ta (t)u0 +  J  Ta ( t -  s )F  (s, B ( s )u ( s )) ds. (2.15)
o

Introducing w ( t ) =  B(t)u( t ) ,  we obtain the equation
t

w(t) = Ta (t)u0 + j  B ( t )T a (t -  s )F (s ,w ( s ) )d s .  (2.16)
o

To solve it by the iteration m ethod, we set
t

wo(t) = 0, wi( t)  = Ta (t)u0, wn+i(t) = Ta (t)u0 +  J  B ( t )T a (t -  s ) F ( s ,w n (s)) ds, n e N .
o

Using inequalities (5) and (6) and item  (iii) in Condition 3, we estim ate the norm  of the following 
difference:

t

I\w2(t) -  wi(*)|| <  L M 2 J ( t -  s Y ^ e ^ - ^  |K ( s ) | |  ds < L M \ M 2T(1 -  7 )eMtI l ^ ( t a- 1) | K | | . (2.17)
o

Taking into account (2.17), by induction, we obtain the relation

\\wn (t) - w ra_i(t) | |  <  M \ L n~ l M 2 ~ l Tn~ l (I — 7 )ewt/ ( ra-1)(1-7) (t“ - 1) l^oll



k M I I S M . r - e -   r ( a  +  * ( l - 7 ))

_  M . L - 1 M r  T t a l r - H l -  7 ) „ - m i- - , )c„,,, ,, №
r ( a + ( n - l ) ( l - 7 ) )  "

Further reasoning regarding the existence of a unique solution is similar to  the proof of Theorem  2.1. 
The following estim ate holds for the solution w(t)  of Eq. (2.16):

+  r(rv +  fcn -  Vrt -  0 1

(2.18)
where Md >  0 and ujq > uj.

Using (2.18), we deduce estim ate (2.14) of the solution u(t)  of problem (1), (2) from relation 
(2.15). □

R em ark  2.1. An assertion similar to  Theorem  2.2 is also valid for a  = fi =  1, but item  (ii) in 
Condition 2 should be replaced by the following assum ption: for any x  € D,  either the functions 
B ( t ) x  and A B ( t ) x  belong to  C([0, oo) ,E )  and the function B ( t ) x  takes values in D(A)  or the function 
B ( t ) x  belongs to  C 1([0, oo), E).

The following assertion is a theorem  on the continuous dependence of the solution of problem (1), 
(2) on the initial data.

T h eorem  2.3. Suppose that the conditions of  Theorem 2.1 are satisfied and un (t) is the sequence of  
solutions of  the problem

D aun (t) = A u n (t) +  F  (t, B ( t ) u n (t) ) , t >  0, (2.19)

lim D a~ lun (t) = gn e  D(A).  (2.20)
t —s-o

I f  9n ► uo G D(A) ,  Agn —> Auo, and B{t)gn —> B(t)uo uniformly with respect to t  e  (0, 6] for  any
positive b, then the sequence un (t) of  the solutions of  problem (2.19), (2.20) converges to a solution u{t)
of problem (1), (2) uniformly with respect to t  e  [to, b] for  any to € (0 , b).

t a ~  ^
Proof. Consider the sequence Un (t) = un (t) — gn , which satisfies the problem

T(a)
-̂Oi— 1 \  f,a~ ̂

D a Un (t) =  AUn (t) + F  ( t ,  B( t )Un (t) +  Y { a ) B<yt^9n)  +  f ( a ) A9n’ ('2'21')

l\m D a~ Un (t) = 0. (2.22)
t —s-0

By Theorems 1.1 and 1.2, the function Un (t) satisfies the integral equation

t  OO 1 1

Un(t) = j  j  f r A t  -  s)Tp{r) ( f  ^s,  B (s )Un (s) +  yA g ^ j drds.
0 0

Setting W n (t) =  B(t)Un (t), we obtain (as in the proof of Theorem  2.1) th a t

t  OO 1 1

Un(t) = j  j  f r A t  -  s)Tp{r) ( f  ^s,  W n (s) +  ^ J a ) A 9n^J drds,  (2.23)
0 0

where W n (t) satisfies the integral equation

t  OO 1 1

Wn (t) = J  J  f r A t  -  s)B{t)Tp{r)  (f ̂ s ,  W n (s) +  Y ^ B (s )9n^j + Y ^ A 9 n j  drds.  (2.24)
0 0



Let n  and k  be sufficiently large positive integers and e > 0. Taking (2.24) into account, we obtain 
(as in the proof of Theorem  (2.13)) th a t

t

IIW n (t) -  W ki t )II <  L M^ / v )  j { t -  s )“5- 1! ! ^ )  -  w k {s)\\ ds
0

M 2 T ( 5 /v  *
+  r ( 5) r ( a )

o

J ( t -  s)s 1 sa 1 (\\Agn -  Agk \\ +  L \\B(s)gn -  B (s )gk \\) ds

and
m =  sup ( t1 se u t \\Wn (t) -  W k{t)\\) < M 0m  +  e, M 0 <  1. 

te[o,&]

Hence, m  <  -----— . Then, by virtue of the completeness of the space E,  the sequence t 1_<5e~ujtW n (t)
1 — Mo

converges to  a function i 1-<5e~ujtW ( t )  continuous on [0,6] uniformly w ith respect to  t  € [0,6]. Thus, 
W n (t) converges to  a function W (t )  uniformly w ith respect to  t  e  [to, 6], 0 < to < b, where W (t )  
satisfies inequality (2.9) and item  (ii) in Condition 2.

Relation (2.23) implies the uniform (with respect to  t  € [to, 6]) convergence of Un (t) to  the function

t  OO 1 1

U(t) = j  j  U A t  ~  s )Tfi(T) ( f  W (s ) +  B ( s )u 0 ĵ +  drds,
o o

t a - 1
which satisfies problem (2.21), (2.22). Finally, u n (t) converges to  the function u ( t )  =  U ( t )  H r ^ u o

r ( a )
uniformly w ith respect to  t  € [to, 6], while u( t )  satisfies problem (1), (2). □

R em ark  2.2. An assertion similar to  Theorem  2.3 on the continuous dependence of the solution of 
problem (1), (2) on the initial d a ta  can also be form ulated and proved for a  =  /3 < 1.

In the particular case where the operator B  does not depend on t and is bounded and Condition 4 
is satisfied, the part of Theorem  2.2 regarding the unique solvability contains [6 , Theorem  8]. In [6], 
it is proved th a t (in the specified particular case) for a  =  /3 < 1, the resolving operator Ta (t, A  +  B)  
for problem (1), (2) is of the form

Ta ( t , A  + B)  = Y , S n (t),
n = 0

where S'o(t) =  Ta (t, A)  is the resolving operator for problem (3), (4) for /3 = a  and
t

Sn (t) = J  Ta ( t - s , A ) B S n- i ( s ) d s ,  n  = 1, 2, . . . .  
o

In [3], the perturbation  theorem  is proved for an equation which, unlike Eq. (1), contains the Caputo 
fractional derivative, provided th a t the operator A  is a generator of an analytic semigroup and (3 = 1. 
The following example is given in [3].

E xam p le  2.1. Let E  = L 2 (Mra). Then Condition 4 is satisfied (see [1, p. 20]). We define the operator 
A  on the set D(A)  =  W ^ m (Kra) as follows:

, , . , d Pl+'"+Pnu( t ,x )
A u ( t , x )  = ^  ap(x ) dxv i . . . dxvn >

\ p \= 2 m  1 U



where
£  ap( x ) e  > ( - i ) m+1M 0iei2m

\p \= 2 m

for all x, g G M™ and the coefficients ap(x), |p| =  2m, satisfy the Holder condition uniformly in R™. It
is known from [3] th a t the operator A  satisfies Condition 1 if (3 = 1 and oj = 0.

We define the operator B( t)  on D  = (Kra) D D(A)  as follows:

x , x v -  , , d Pl+- +Pnu( t , x )  f  , _,dPl+- +Pnu ( t , 0  1A
B{ t )u{ t ,x )  = 2 ^  av ^ x ) dx^ . . . d x ^  +  J  Z_> bp& X ’O d£pi ■■■()№ ^

\p \< 2 m — 1  ̂ U q  \ p \< 2 m —l  ^ n

where Q C  M™, the coefficients ap( t , x ) are continuous and bounded with respect to  x  G M™ for any 
\p\ < 2m — 1 and any t  > 0 and satisfy the Holder condition w ith respect to  t  w ith power /x >  a
uniformly w ith respect to  x  G M™, the coefficients bp(t ,x ,g )  are continuous,

J  J \ b P (t, x,  £)|2 dgdx < +oo,
I "  n

and
/  /  \bp (t2 ,x ,£ )  - b p ( t i , x ,g ) \ 2 dgdx < C \ t 2 - h f ,  n  > a, C  > 0.

Rn Q

It is known from [3] th a t there exists 7  e  (0,1) such th a t the operator B( t)  satisfies Condition 2 for 
w =  0 .

Let the operator F(t ,  w)  satisfy Condition 3. Then, by virtue of Theorems 2.1 and 2.3, problem (1),
(2) (the Cauchy-type problem for an integrodifferential equation) is well posed and uniquely solvable
for uo(x)  G Wr22m (Kra) and a  < 1.

3. L oaded F ractional-O rder D ifferen tia l E q u ation s

Consider the following Cauchy-type problem in a Banach space E:

D au(t)  =  Au(t)  +  g(u(t))p, t  > 0, (3.1)

lim D a~ 1u(t) = Uo, (3.2)
t —s-o

where 0 < c k <  l , c / i s a  nonlinear continuous functional defined on E, A  is a linear closed densely 
defined operator, and p is a fixed element of the space E.

Problem  (3.1), (3.2) is a particular case of problem (1), (2) for F(t ,  B(t)u( t ) )  = g(u(t))p.  Equa
tion (3.1) contains the functional g depending on the sought solution u(t).  Hence, it is natural to  call 
it a loaded differential equation (see the definition of a loaded differential equation, e.g., in [12, Chap. 
2 ])-

C o n d itio n  3.1. (i) I f  the funct ion I l ~au(t) is continuous for  t > 0 and continuously differentiable
for  t > 0, then the funct ion D ag(u(t )) belongs to C((0,  00), E) and is absolutely integrable at 
the origin.

(ii) For any u , v  G E, there exists a positive L  such that

\g(u) -  g(v)\ < L\\u -  v\\. (3.3)

Theorems 2.1 and 2.2 imply the validity of the following assertions.

T h eorem  3.1. Let a  < (3 < 1, Condition 1 be satisfied, and uj = 0 in inequality (5). Let Conditions 
4 and 3.1 be satisfied. Then problem (3.1), (3.2) has a unique solution satisfying the estimate

||-u(i)|| <  M ia - 1eWlt||-uo||, M  > 0, (3.4)

T h eorem  3.2. Let a  = (3 < 1 and Conditions 1 and 3.1 be satisfied. Then problem (3.1), (3.2) has 
a unique solution satisfying estimate (3.4).



The above solvability theorem s for the Cauchy-type problem for loaded abstract equations can be 
used for the investigation of inverse coefficient problems for fractional-order equations.

4. Inverse P ro b lem s for F ractional-O rder D ifferen tia l E q u ation s

Consider the problem of finding a pair (w(t),<p(t)) satisfying the following conditions:

D^w{t)  =  Aw(t)  +  <p(t)p, t  > 0 , (4.1)

lim D ^ ~ 1w(t) = Uo, (4.2)
t —s-o

f(w(t)) =ip(t), (4.3)
where 0 <  (3 <  1, p  and uq are fixed elements of D(A) ,  f  is a linear continuous functional over E  (i.e., 
/  belongs to  the adjoint space E*),  and ip(t) is a given scalar function.

For example, a problem to  reconstruct the dependence of the pertu rbation  on the time, using an 
additional observation at a space point, is a particular in terpretation of the considered inverse problem.

D efin itio n  4 .1 . A pair (w(t),<p(t)) is called a solution of problem (4.1)-(4.3) if w(t)  is an abstract 
function and <p(t) is an absolutely integrable function such th a t w(t)  satisfies Eq. (4.1) and Condi
tions (4.2) and (4.3).

In [14], one can find a review of publications devoted to  inverse problems for abstract integer-order
differential equations. In [17], their particular im plem entations can be found. The inverse problem
(4.1)-(4.3) for fractional-order equations was not considered before.

C o n d itio n  4 .1 . (i) 0 <  /3 <  1 and p £ D(A) ,  where D ( A ) is the domain of the operator A.
(ii) /  € E* and f (p)  /  0 ( the nondegeneracy condition).

(iii) The scalar funct ion  I 1-^ ^ )  is continuous for  t > 0 and continuously differentiable for  t > 
0, the fractional derivative D^ip(t) is absolutely integrable at the origin, and the conjugation 
condition

/ M  =  l i m ^  V ( t)
t —s-0

is satisfied.

In particular implem entations, the nondegeneracy condition f (p)  /  0 means th a t a reconstructable 
source acts a t the observation point (see [17]).

T h eorem  4.1 . Let Conditions 1 and  4.1 be satisfied. Then problem (4.1)-(4.3) has a unique solution. 

Proof. A solution of problem (4.1)-(4.3) is sought in the form

w(t) = 6(t)p + u(t),  (4.4)

where
0(t) = I ^ ( t ) .  (4.5)

It is easy to  verify th a t the function u(t)  satisfies the equation

D ^ u ^ )  = Au(t)  +  6(t)Ap, t  > 0,

and the initial condition
lim D ^ ~ lu(t)  =  Uo- (4.6)
t —s-0

Taking into account condition (4.3), we obtain the following linear equation for the function 0(t):

m  = m f ( p ) + f « t ) ) .  (4.7)

Thus, to  solve inverse problem (4.1)—(4.3), it suffices to  find a solution of the loaded equation

D@u(t) = Au(t)  +  g(u(t))q, t  > 0, (4.8)



9 W t »  =  « _ « ! !

is a continuous functional (its linearity is not assumed).
By assum ption, the operator A  satisfies Condition 1. Obviously, the functional g(u(t))  satisfies 

Condition 3.1. By virtue of Theorem  3.2, the Cauchy-type problem (4.8), (4.6) has a unique solution 
u(t).

The function ip(t) can be uniquely found from relations (4.5) and (4.7). It is of the form

vi f )  = -  f  ( V u m ) ) .

Finally, the function w(t)  is defined by relation (4.4). □
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