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Abstract— The energy quantization of transverse particle motion in continuous potentials of atomic chains 
and planes can occur when fast charged particles travel in crystals. In the proposed paper, the energy levels of 
electrons moving in the mode of axial channeling in a system of parallel atomic chains have been found 
(Si crystal [110] chains have been used as an example). The energy eigenvalues were determined numerically 
using the so-called spectral method, which shows itself to good advantage in the problem of the plane chan
neling of charged particles in crystals.
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IN TRODU CTIO N

The m otion o f fast charged particles in a crystal 
near one of the crystallographic axes or planes is 
mainly determ ined by the continuous potential of the 
crystal lattice, i.e., the crystal potential averaged 
along the axis or the plane near which the m otion 
occurs. The particle-m om entum  com ponent p  that 
is parallel to the crystallographic axis or plane is 
retained in such a field. Thus, the problem  o f particle 
m otion in a crystal reduces to that of its m otion in the 
transverse plane. The finite m otion in potential wells 
formed by the continuous potentials o f atomic planes 
(axes) is called plane (axial) channeling [1—3]. 
Q uantum  effects can be significant in this case; in 
particular, the energy o f the transverse particle 
m otion can be quantized. Potential wells in the cases 
under consideration have rather complicated forms 
not perm itting analytical integration o f the 
Schrodinger equation, which requires the develop
m ent o f num erical m ethods for finding the energy 
levels o f the transverse m otion and other quantum  
characteristics of the particle m otion in continuous 
potentials o f crystal atomic planes and chains.

The aim of this paper is to study the capabilities of 
the so-called spectral m ethod for finding the energy 
levels in the case of fast-electron channeling in the 
two-dimensional field of an atomic chain or a system 
of chains (Si crystal [110] chains are used as an exam
ple). This m ethod has been successfully used previ
ously to find the energy levels in the one-dimensional 
potential of an atomic plane and a system of parallel 
atomic planes [5].

PROCEDURE

The spectral m ethod for finding the energy eigen
values of a quantum  system is based on calculation of 
the correlation function T  between two wave func
tions T (x, t) and T (x , 0) of the system at the current 
and initial time instants:

да

P(t) = I  ¥*(x,0)¥(x, t)dx. (1)
—да

(for simplicity, we restrict ourselves to the one-dim en
sional case).

It turns out that such a correlation function, more 
precisely, its Fourier transform

да

PE = |  P(t)exp(iEt/ %)dt, (2)
—да

contains inform ation on the energy eigenvalues of 
the system. Indeed, any solution of the Schrodinger 
equation

£T¥ (x, t) = ih - |^ ( x ,  t) (3)

can be represented in the form of the superposition

¥(x, t) = ^  AnJunJ(x) exp(-iE nt/ %), (4)
n, j

of the eigenfunctions unJ (x) of the Hamiltonian

H  = - — V 2 + U (x) (5)
2m
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(whereV2 is the Laplace operator), i.e., the functions 
satisfying the equation

fc2 2
V u„j + U(x)un>j = E„u„j,

2m
(6)

PE = 2 п й £ |A„tj\2 S(E -  E n). (8)

¥(x,0) = 1 exp pxx _ x _
h 2a2

terion (which is known as the Kotel’nikov theorem  in 
Russian publications)

At < nh (9)

where the subscript j  labels the degenerate states cor
responding to the energy En. Calculation of the corre
lation function (1) for the wave function in the form of 
(4) gives

P(t) = X  exp(-iE„j/tyAljAnij J  u*(x)u„. f (x)dx
n,njj -да

= X  exp(-iEnt/K)A*jAnifb nri5jf (!)
n,n \jj

= XI Anj\2 exp(-iEntj ft).

The calculation of its Fourier transform (2) leads to 
the expression

In accordance with [4], good results are obtained for

At < nh (10)

(iii) Calculation of integral (1) for each time step in 
the range from 0 to the maximum T  gives the values of 
the correlation function P(t), and subsequent calcula
tion of integral (2) gives its Fourier transform. In this 
case, integration in (2) turns out to be limited by a 
finite time interval

Pe = J P(t) exp (iEt/ fi)dt, (11)

as a result, instead of infinitely narrow 8-like peaks, we 
obtain a series of peaks with finite widths, which are 
inversely proportional to T . Indeed, substituting P (t) 
in the form of (7) into (11) yields

We see that the Fourier transform of the correlation 
function is a series of 8-like peaks the positions of 
which correspond to the eigenvalues of the Ham ilto
nian (5) (to the energy eigenvalues of the system).

Thus, the determination of the energy levels of the 
system reduces to the following steps:

(i) The initial wave function T(x, 0) is chosen in its 
arbitrary form. The only restrictions affecting the 
choice of it are as follows: (a) the tendency to zero as 
x  ^  ±да, which corresponds to any coupling state; (b) 
a rather broad spectrum including the energy range 
from the bottom to the walls of the potential well, 
which provides the determination of all energy levels 
of the system in this range; and (c) the lack of symme
try, which could lead to a loss of a part of the Ham ilto
nian eigenfunctions. In particular, all these require
ments are satisfied by the Gaussian wave packet of the 
form

= X I  A«. j
2 exp[i'(E -  E„)T/fi] -  1 

i(E -  E n) / f

= T  X I  An '' exp [i(E -  E n)T / 2f]sin[(E En)T/ 2f].
n ' (E -  E n)T/ 2f

(12)

It is easy to see that, in accordance with the Nyquist 
criterion, to resolve the levels spaced by the distance 
AEmin, it is necessary to choose the time interval T  dur
ing which our wave function satisfying the inequality

T  > 2nh
AEm

(13)

is generated.
The resolution of closely located levels can be com 

plicated because of overlapping of the lateral bands of 
the function sinc(x) =  sinx/x in (12). The resolution 
can be improved [4] by multiplying the correlation 
function P(t) by the so-called normalized window 
Hanning function

(14)

with the appropriate width a  (we recall that the spec
tral width is inversely proportional to the packet 
width).

(ii) The values of T(x, t) for a discrete set of time val
ues t > 0 with the step At are found using numerical inte
gration of time-dependent Schrodinger equation (3) 
with the initial condition T (x, 0). The value of the 
time step is determined by the width of the range of 
energy eigenvalues (in our case, by the depth Umax of 
the potential well) in accordance with the Nyquist cri-

w(t) 1 (1 -  cos(2nt/T), 0 < t < T ,
T  ~ T  [0, t > T. 

before calculation o f the integral (11).

RESULTS AND DISCUSSION

The m otion of a fast charged particle incident at a 
small angle у  to a crystallographic axis densely packed 
with atoms in a crystal can be represented with a good 
accuracy as that in the continuous potential of the 
atomic chain, i.e., in the potential averaged along the 
chain axis.
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The transverse component p  of particle m om en
tum  (i.e., the component that is parallel to the chain 
axis) is retained during m otion in such a potential. The 
motion in the transverse plane in this case is described 
by a two-dimensional analogue of the nonrelativistic 
Schrodinger equation [1]

Г
2E|,/i

2 'A
2 I 2 c \ox dy

+ ■ + U (x, y) >¥(x, y, t)
(15)

= ih—¥(x, y, t),
dt

which contains the quantity Ец/ c 2, where E ц =
i 2 4 2 2

yjm c + p c  , instead of the particle mass m (as it 
would be in the nonrelativistic case).

The continuous potential of the atomic chain can 
be approximated by the formula [1]

U i(x, y) = -U  oln 1 + p R 2
2 , 2 ,  T>2x + y + aR

(16)

Y(x, y,0) =■ 1 -exp (x -  xo)2 -  (y + a/ 8 -  yo)2
2ct x

1
2na xa

exp (x -  xo)2 (y -  a/ 8 -  yo)2 (18)

where ax =  0.05 A, ay =  0.06 A, x0 =  a/35, and y 0 =  
a/45 (the high symmetry of the initial wave function 
can lead to the lack of several eigenfunctions in super
position (4) and, consequently, to the loss of several 
energy levels).

The results of calculating the energy levels for an 
electron with E  ц =  2o MeV in the double potential well 
(17) and the single well (16) are shown in Fig. 2. The 
logarithm of the absolute value of the Fourier trans
form of the correlation function (11) is plotted on the 
ordinate axis, and the energy E L in the potential well is

where, in particular, U0 =  6o eV, a  =  0.37, P =  3.5, and 
R  =  0.194 A (the Thomas—Fermi radius) for the [1Ю] 
chain of a Si crystal; in this case, the distance between 
the axes of two neighboring chains is a /4  =  5.431/4 A 
(where a is the period of the crystal lattice). Thus, the 
continuous potential in which the electron moves is 
described by the two-well function in the form

U(x, y) = U1(x, y  + a j8) + U1(x, y  -  a j8) (17)
the influence of distant chains is not taken into 
account in this case (Fig. 1). The finite electron 
motion in such a potential (corresponding to the neg
ative energies E L of transverse motion) is called axial 
channeling.

To find the energy levels of transverse m otion in 
such a potential by means of the spectral method, we 
chose the initial wave function of the asymmetric 
Gaussian form

Fig. 1. Potential energy of an electron in the field of con
tinuous potentials of two neighboring [11o] chains of a 
Si crystal.

plotted on the abscissa axis. For convenience of com 
parison, these graphs corresponding to the single and 
double wells are located in a specular way; in this case, 
the negative value U[(0, a /4 ) ~ —4.111 eV is added to 
the potential energy in the single well (16) in order to 
shift the bottom  level of the single potential well to that 
of the double one.

It can be seen that the structure of the energy levels 
repeats that in the single well in the E L range located 
below the saddle point of the double-well potential; 
however, splitting is observed for certain levels. The 
reason for the splitting of deeply located levels is that 
the degeneracy with respect to the projection of the 
orbital moment on the well axis (the atom ic-chain 
axis) is removed. Indeed, in accordance with the gen
eral principles of quantum  mechanics, the states in the 
two-dimensional centrally symmetric field is charac
terized by two quantum  numbers, namely, the radial 
one nr (coinciding with the number of zeros of the 
radial wave function; zeros at zero distance and infin
ity from the field center are not taken into account in 
this case) and the projection m of the orbital m om en
tum  on the field symmetry axis (see, e.g., problem 4.7 
in [6]). In this case, the states with m =  o are nonde
generate, and those with |m| Ф 0 are doubly degenerate 
(the positive and negative values of m correspond to 
the same energy). The lower graph in Fig. 2 shows the 
Fourier transforms of the correlation function (11) of 
an electron in the single axially symmetric potential 
well (16) calculated with the initial wave functions in 
the general and axially symmetric forms. In the last 
case, the maxima of the correlation-function Fourier 
transform indicate positions of only nondegenerate 
energy levels corresponding to m =  o. Comparison 
with the upper graph in Fig. 2 shows that only levels 
corresponding to |m| Ф 0 are split.
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Fig. 2. Upper graph: Fourier transform (11) of the correlation function for an electron with the energy E\\ = 20 MeV in a double
potential well (17) as a function of the transverse-motion energy E ±; the dashed line denotes the position of the saddle point of 
the potential (17). The lower graph: the Fourier transform of the correlation function for an electron in a single well (16) shifted 
by —4.111 eV; it was calculated for the initial wave function in the general form (the solid curve) and for the axially symmetric 
initial wave function (the dashed curve).

In addition, the splitting related to the tunneling 
effect becomes noticeable for energy levels that are 
close to the saddle point of the two-well potential and 
for which the potential barrier between the wells 
becomes more penetrable.

Figure 3 shows the graphs of the correlation-func- 
tion Fourier transform for different E  ||. It can be seen 
that, as the electron energy increases, the energy levels 
are shifted deep into the potential well. In this case, 
new levels are split from the continuous spectrum 
(E± > 0) and are pulled into the well so that the total 
number of them  increases with increasing Ey.

Fig. 3. Fourier transforms (11) of the correlation functions 
calculated for different energy values E|| of longitudinal 
electron motion in a double potential well (17). The posi
tions of maxima indicate the eigenvalues of the transverse- 
motion energies E ±.

CONCLUSIONS
The conditions under which quantum effects in the 

interaction of particles with continuous potentials of 
atomic chains and planes are important can be satis
fied when fast charged particles travel through ori
ented crystals under channeling conditions. In this 
paper, we considered the quantum-mechanical prob
lem of the interaction between a particle and the con
tinuous potential of a separate atomic chain and two 
adjoining chains in a crystal. We showed that the spec
tral method for determining Ham iltonian eigenvalues 
can be used in this problem. Based on this method, we 
have developed a procedure for calculating the energy 
levels of particle transverse motion, which can be used 
in the case of the axially symmetric potential well pro
duced by a separate atomic chain and in the case of a 
potential in a more complicated form, which is formed 
by two parallel atomic chains o f the crystal. In the last 
case, we demonstrated the energy-level splitting pro
duced by the violation of axial symmetry in such a 
potential and also by the tunneling effect between 
neighboring wells. The obtained results indicate that 
this method can be used to analyze the formation of 
the band structure of energy levels of transverse 
m otion for the axial channeling of fast particles in 
crystals.
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APPEND IX

Numerical Integration 
o f the Time-Dependent Schrodinger Equation

The evolution of the wave function (for simplicity, 
we restrict ourselves to the one-dimensional case) dur
ing the infinitesimal time interval dt is described by a 
well-known formula in quantum  mechanics,

Y(x, t + dt) = exp - i — H  
. % .

4 (x , t). (19)

Therefore, if the initial condition T(x, 0) is used, the 
wave function T(x, t) can be found at time instants t > 0 
by means of the approximate iteration procedure:

Y(x, t + A t) = exp - i— H
% .

4 (x , t). (20)

The Hamiltonian (5) contained in the evolution oper
ator is the sum of the kinetic and potential terms, one 
ofwhich is diagonal in the m om entum  representation, 
and the other, in the coordinate representation. In this 
case, it is convenient to use the so-called splitting 
m ethod [7], which involves the successive implem en
tation of the free evolution of the wave function under

the action of the operator exp i At Й_ у  2 
Й 2m

local interaction with the potential under the action of

and of the

the operator exp However, the case—i —  U (x)
_ h _

becomes complicated by the fact that the kinetic and 
potentials terms in this Hamiltonian do not switch one 
with another. Therefore, the evolution operator can
not be represented in the form

exp - i — H = exp i A t h2 у 2 exp - i  A/ u  (x)
_ h _ _ h 2m _ _ h _

However, we can show that

exp [At (  + B )]

= exp "At 
L 2 J

exp [A/B] exp A tA  (1 + О ((At)3)),

therefore, in the process of numerical simulation, we 
act on the wave function ¥ (x , t) at each iteration by 
the sequence of the three exponents:

exp ■ At f 2 ^ 2 ■ A tTTI ч ■ A t f 2 ^ 2i ------- V exp - i  —  U (x) exp i ------- V
_ f  4m _ _ f  _ _ f  4m _

. (21)

To find the result of acting on the “kinetic”-opera- 
tor wave function, it is convenient to represent it in the 
form of the expansion in terms of eigenfunctions of the

kinetic-energy operator, i.e. in the form of the Fourier 
integral:

¥(x, t) = f ¥  k(t) exp(ikx) — , (22)
J 2n

¥  k (t) = J  ¥(x , t)exp(-ikx)dx. (23)

The result of the “kinetic”-exponent action on the 
wave function written in such a way is as follows:

exp i At Н_ у  2 
h 4m

¥(x ,t)

= J  ¥  k (t)exp
—да 

да

J  ̂  k (t)ex

i At h_ у  2 

h 4m

■ A th 2 , 2 - i --------k
h 4m

exp(ikx)—  
2n

(24)

exp(ikx) dk
2n

The function T(x, t) given in the finite interval 0 < 
x < L  is represented by the Fourier series rather than by 
the integral:

да
¥(x, t) = -j= £  ¥ k(t) exp ( i k L x), (25)

k=-да

L
¥ k(t) = JY (x ,t)exp ( - i k 2 ^ x ) dx. (26)

For numerical calculations, the wave function is 
specified at a discrete mesh with the step Ax. The cor
responding relations similar to (25) and (26) have the 
forms

44x, t) = J n  £  ^k(t) exp (ik L  x),
k--kmax +1

N
¥  k (t) = -^=  £  ¥(nAx, t)exp (- ik  nAxj,

n=1

(27)

(28)

where N  =  L/Ax is the num ber of steps of the coordi
nate m esh and kmax =  N /2  (it is convenient to choose 
the num ber N  o f steps to be even). We see that Fourier 
transform ation (28) in this case is equivalent to m ul
tiplication of the vector o f values o f the wave function 
y n =  T ( nAx , t) by the unitary matrix Qkn with the ele
ments

Qkn = J n  cxp (~ik  2П nAx ), (29)

да

да

0
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and inverse transformation (27) is equivalent to multi
plication of the vector of the Fourier components x¥k 
by a matrix that is inverse to Qkn:

Ш  = (Q k « )+ = Q„k-

The result of the action of the “kinetic” part of the 
evolution operator on the wave function (25) looks 
similar to (24):

exp j A t h  у  2
ti 4m

V ( x j )

?.A t f l  у  2
ti 4m

- j f i  X  Y *(0exp

^max Г” 9 / ч ) / ч

= 1 V xp (0exp Й )k2 exp/A.
> /# , , П 4 m \ L !  I Z /

Thus, one time iteration (20) can be written in the 
matrix form:

4 V | , +A, — Q ri" k " " K k “" k " 'Q k " 'n V r i'n Q n k 'K k 'k Q k t№  n

or

M t+At QKQVQKQ\|/,

where Кkl. is the diagonal (in the m om entum  repre
sentation) matrix corresponding to the “kinetic” part 
of the evolution operator with the elements

K k 'k -  & k k  exp
. At h2 12n 

ti 4 m \ L

and V„'„ is diagonal (in the coordinate representation) 
matrix corresponding to the “potential” part of the 
evolution operator with the elements

V ■ = 5' n n V-/ Vl , exp - i  —  U(nAx) 
h

Generalization of this algorithm to the two-dimen- 
sional case is not difficult.

The spatial mesh containing 128 x 128 elements 
with the step Ax =  0.042 A was used in actual calcula
tions. The time step was determined in accordance 
with criterion (10).
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