УДК 575.22; 502.4

Оценка жизнеспособности популяций особо охраняемого вида Helicopsis striata Müller (Mollusca, Gastropoda, Pulmonata) в условиях юга Среднерусской возвышенности

© 2011 Э. А. Снегин, к.б.н., доцент, зав. лабораторией, А. А. Сычев, магистрант, Белгородский государственный университет, e-mail: snegin@bsu.edu.ru

Изучено состояние генофондов девятнадцати популяций особо охраняемого вида Helicopsis striata Müller (улитка степная ребристая) в условиях юга Среднерусской возвышенности на основе анализа морфологической и генетической изменчивости, выявляемой методом гель-электрофореза белков. В большинстве изученных групп зафиксировано достоверное снижение уровня гетерозиготности и уменьшение аллельного разнообразия, вызванное как естественными историческими факторами, так и факторами антропогенного происхождения. Рассматрены генетико-автоматические процессы в популяциях и определены векторы естественного отбора. Проведён расчет эффективной численности исследуемых групп.

On the basis of analysis of the morphological and genetical variability revealed by a method of gel - electrophoresis of proteins, the state of gene pools of nineteen populations of especially guarded species *Helicopsis striata* Müller (a ridge steppe snail) in conditions of the south of Mid-Russia Upland is investigated. In the majority of the investigated bunches authentic decrease of a level of heterozygosity and the decrease of an allelic diversification caused, both is fixed by natural historical factors, and factors of an anthropogenic parentage. The genetic-automatic processes in populations are considered and vectors of natural selection are defined. Calculation of effective number of researched bunches is spent.

Ключевые слова: особо охраняемый вид, наземный моллюск популяционные генофонды, лесостепной ландшафт.

Key words: especially guarded species, terrestrial mollusk, population gene pools, a forest-steppe landscape.

Введение

Исследование состояния природных популяций видов находящихся под охраной, является одним, из основных направлений современного биомониторинга различных территорий. Одним из таких видов является Helicopsis striata Müller (улитка степная ребристая), занесённый в Красную книгу Белгородской области [1], а так же в списки охраняемых видов Польши, Чехии, и Словакии [2, 3].

Ареал вида охватывает территорию от Западной и Средней Европы до Восточной Украины, Курской, Белгородской и Воронежской областей [4]. В пределах Среднерусской возвышенности вид обитает на сухих, хорошо прогреваемых склонах балок, как правило, южной экспозиции, с меловой почвой. Период основной активности приходится на апрельмай, а так же сентябрь. В это время в местах обитания можно наблюдать массовые скопления моллюсков. Летние месяцы улитки проводят зарывшись в почву.

H. striata относится к средиземноморской реликтовой группе ксерофильных моллюсков. В исследованиях по восстановлению истори-

ческого прошлого биоценозов Европы вид используется в качестве индикатора сухих остепненных экосистем [5]. На территории Среднерусской возвышенности часто является компонентом реликтовых ценозов, называемых «Сниженные Альпы»[6].

Цель работы — оценить состояние популяций *H. striata* на границе его видового ареала в природоохранных целях.

Материал и методика

Выборки особей из популяций *H. striata* осуществлялись в девятнадцати пунктах юга Среднерусской возвышенности (рис. 1). Описание пунктов сбора приведено в таблице 1. Живых особей и пустые раковины собирали с поверхности почвы и в подстилке на глубине до 5 см. В сырую погоду проводили «кошение» энтомологическим сачком в местах обитания улиток. Определение видовой принадлежности проводили по конхиологическим признакам и по половой системе [4]. Измерение раковин осуществляли под бинокуляром МБС-10 при помощи окуляр-микрометра (измеряли только раковины особей, закончивших рост

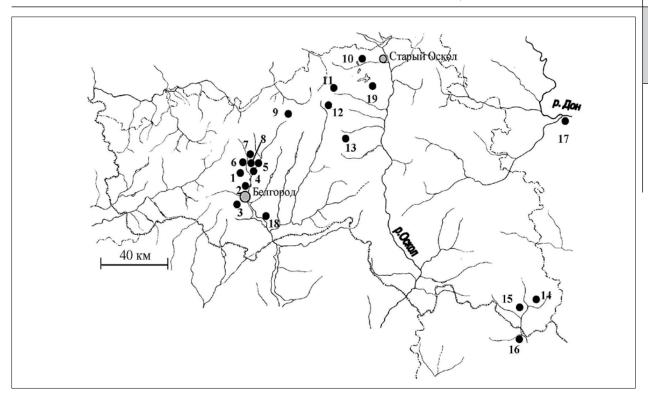


Рис. 1. Район исследования (черными точками обозначены пункты сбора моллюсков)

Описание пунктов сбора

$N_{\underline{0}}$ Описание Координаты пункта 50°42′20,17′′с.ш. «Шопино» – юго-восточный склон правого берега р. Липовый Донец; 1 депрессивные разнотравные луга; меловые почвы. 36°35′43,20′′в.д. 50°37′28,66′′с.ш. «Белая гора» – окрестности г. Белгорода, юго-западный крутой 2 36°37′15,97′′в.д. меловой склон правого берега р. Северский Донец. 50°35'30,20''с.ш. «Ботанический сад» – окрестности г. Белгород, территория 3 ботанического сада БелГУ, меловые обнажения. 36°32'20,66" в.д. «Петропавловка А» – меловой склон южной экспозиции в месте 50°41′32,48′′с.ш. 4 впадения р. Липовый Донец в р. Северский Донец 36°38'26,51в.д. «Петропавловка Б» – правый крутой берег р. Северский Донец, юго-50°42′16,15′′с.ш. 5 западная экспозиция, на месте бывшего мелового карьера. 36°39'29,89" в.д. «Терновка» – склон правого берега р. Липовый Донец южной 50°44′01,45′′с.ш. 6 36°35'46,02''в.д. экспозиции; почвы глинистые почвы; растительность обедненная. «Терновка А» – юго-восточный глинистый склон левого берега р. 50°43′37.58′′с.ш. 7 36°36'44,09"в.д. Липовый Донец рядом с автомобильной дорогой «Терновка Б» – юго-восточный склоне левого берега р. Липовый Донец, 50°43'30,75"с.ш. 8 почвы меловые, растительность разнотравно-луговая. 36°36′58,84′′в.д. «Беленихино» – меловой склон левого берега р. Саженский Донец юго-50°54'41,87" с.ш. 9 западной экспозиции; злаково-разнотравная растительность. 36°38'21,65" в.д. «Губкин» – территория г. Губкин; склон балки юго-восточной 51°17′50,56′′с.ш. 10 37°32′11,98′′в.д. экспозиции с дугово-степной разнотравной растительностью. «Мелавое» – юго-восточный меловой склон балки левого берега 51°08'02,93"с.ш. 11 р. Орлик; злаковое разнотравье. 37°25'05,72"в.д. «Телешовка» – крутой меловой левый берег р. Короча; растительность 51°02'20,91"с.ш. 12 37°17'06,22"в.д. в депрессивном состоянии из-за перевыпаса скота. 50°53'08,29''с.ш. «Хмелевое» – нижние участки меловых склонов южной экспозиции 13 в верховьях бассейна р. Халань. 37°27'38,97"в.д.

Таблица 1

Продолжение	таблицы	1
прооблжение	тиолицы	1

	11	рооолжение тиолицы 1
14	«Нагольное» — меловые склоны южной экспозиции правого берега р. Сарма; степная растительность; природный парк «Айдарский».	49°58′43.61″с.ш., 38°57′33.69″в.д.
15	«Калюжный яр» — меловая балка, выходящая в пойму реки Айдар, территория природного парка «Айдарский».	49°57′02.88″с.ш., 38°53′49.32″в.д.
16	«Крейдяная гора» – восточный меловой склон правого берега р. Айдар; окрестности с. Шаровка, Луганская обл., Украина.	49°49′54.75″с.ш., 38°53′47.71″в.д.
17	«Дивногорье» – правый берег р. Дон северной экспозиции; территория природного парка «Дивногорье», Воронежская область.	50°59'14,52''с.ш. 39°20'00,50''в.д.
18	«Ржавец» — участок железнодорожной насыпи; пологий берег Белгородского водохранилища.	50°59'14,52''с.ш. 39°20'00,50''в.д.
19	«Ямская степь» – юго-восточный меловой склон со степной растительностью; окрестности заповедного участка «Ямская степь».	51°10′07.54″с.ш., 37°38′23.18″в.д.

и имеющих отворот устья). Схема промеров представлена на рисунке 2. Нами были выбраны наиболее часто используемые в малакологии промеры раковины. Кроме того, рассчитывали отношение ширины раковины к ее высоте (IIIP/BP). Дополнительно вычисляли объём раковины ($V=IIIP^2xBP/2$), площадь устья (S=3,145xBYxIIIY/4) и отношение этих двух параметров. Также учитывали композиции коричневых продольных полос на раковине.

Экстракцию водорастворимых белков проводили из ретрактора ноги моллюсков, путем замораживания при -80 °C с последующим оттаиванием и механическим измельчением тефлоновым гомогенизатором в 0,05 М трис-HClбуфере (рН 6,7). Диск-электорофорез изоферментов проводился в 10% полиакриламидном геле. Окрашивание блоков на выявление неспецифических эстераз проводили в субстратной смеси: трис-HCl (рН 7,4), α-нафтилацетат, прочный красный ТВ; для выявления суперок-

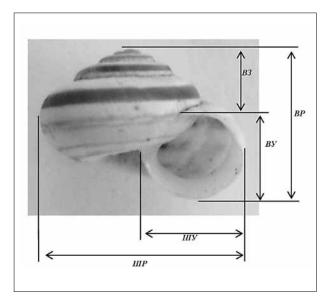
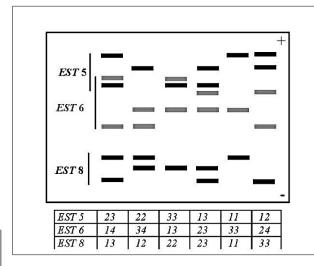
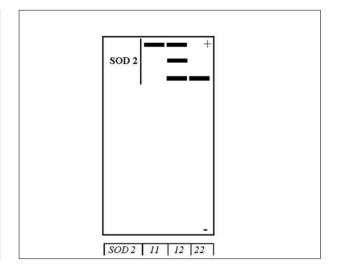




Рис. 2. Раковина *H. striata* (промеры: *BP* – высота раковины, *IIIP* – ширина раковины, *B3* – высота завитка, *BY* – высота устья, *IIIV* – ширина устья)

Рис. 3. Зоны активности трех локусов эстераз и соответствующие им генотипы *H. striata* (генотипы *EST6-11, EST6-22, EST6-44, EST6-24* на схеме отсутствуют)

Рис. 4. Зона активности локуса супероксиддисмутазы и соответствующие им генотипы *H. striata*

Таблица 2

Средние значения конхиологических признаков раковины *H. striata* в различных пунктах сбора

	001	005	005	002	002	005	001	002	001	013	001	001	003	003	014	005	005	003	005
A/S	0.050 ± 0.001	0.050 ± 0.002	0.062 ± 0.002	0.051 ± 0.002	0.053 ± 0.002	0.051 ± 0.002	$0,051\pm0,001$	0.055 ± 0.002	0.049 ± 0.001	0.058 ± 0.013	0.047 ± 0.001	0.047 ± 0.001	0.046 ± 0.003	$0,073\pm0,003$	0.073 ± 0.014	$0,056\pm0,005$	0.056 ± 0.002	0.071 ± 0.003	0.051+0.002
BP/IIIP	0.663 ± 0.007	$0,706\pm0,009$	$0,704\pm0,012$	0.682 ± 0.006	0.701 ± 0.007	$0,653\pm0,007$	$0,655\pm0,006$	0.669 ± 0.007	0.732 ± 0.008	0.703 ± 0.021	$0,722\pm0,005$	0.723 ± 0.004	0.728 ± 0.015	0.678 ± 0.009	0.671 ± 0.009	0.627 ± 0.018	0.694 ± 0.011	0.712 ± 0.016	0.681+0.011
$V_{\mathcal{MM}^3}$	$360,5\pm16,7$	$403,2\pm40,7$	$244,6\pm 22,3$	$370,4\pm19,3$	$359,5\pm19,1$	$326,4\pm18,7$	$319,9\pm14,8$	281,1±17,7	$384,3\pm 28,4$	$391,7\pm29,0$	$436,0\pm13,8$	463.9 ± 18.8	$486,0\pm50,3$	163.8 ± 16.9	$198,3\pm 9,6$	$296,2\pm37,1$	$230,3\pm13,3$	$174,3\pm13,5$	292 3+20 7
$S {\scriptstyle \mathcal{M} \mathcal{M}}^2$	$17,7\pm0,5$	$18,7\pm1,1$	$14,7\pm0,9$	$15,1\pm0,2$	$18,1\pm0,6$	$16,0\pm 0,6$	$14,1\pm0,2$	$13,6\pm0,3$	17.6 ± 0.8	$19,7\pm0,7$	$20,3\pm 0,5$	$21,0\pm0,5$	$21,6\pm 1,3$	$11,5\pm0,7$	$13,9\pm 2,4$	$15,4\pm 1,0$	12.7 ± 0.7	$12,1\pm0,6$	14.7+0.6
BY	$4,8\pm 0,1$	$5,1\pm 0,1$	$4,2\pm 0,1$	4.8 ± 0.1	4.8 ± 0.1	$4,4\pm 0,1$	$4,4\pm 0,1$	$4,3\pm0,1$	$4,7\pm0,1$	$5,0{\pm}0,1$	$5,1\pm 0,1$	$5.2{\pm}0.1$	$5,2{\pm}0,1$	$3,8\pm 0,1$	$4,0\pm 0,1$	$4,3\pm0,1$	$3,9{\pm}0,1$	$3,8\pm 0,1$	4.1+0.1
IIIV	$4,7\pm0,1$	$4,6\pm0,2$	$4,3\pm0,1$	4.8 ± 0.1	4.8 ± 0.1	4.5 ± 0.1	4.5 ± 0.1	4,3±0,1	4,7±0,1	$5,0\pm 0,1$	$5,0\pm 0,1$	$5,1\pm 0,1$	$5,2\pm 0,1$	$3,8\pm 0,1$	$4,4\pm 0,7$	$4,5\pm0,1$	$4,1\pm 0,1$	$4,0\pm0,1$	4.3+0.1
B3	$2,5\pm 0,1$	$2,8\pm 0,1$	$1,7\pm 0,2$	$2,6{\pm}0,1$	$2,6\pm 0,1$	$2,5\pm 0,1$	$2,2\pm 0,1$	$2,3\pm 0,1$	$2,9\pm0,1$	$2,7\pm 0,1$	$2,9\pm 0,1$	$2,9\pm 0,1$	$1,9\pm0,2$	$1,5\pm 0,1$	$1,9\pm 0,1$	$2,1\pm 0,2$	$2,5\pm 0,1$	$1,9\pm 0,2$	2,6+0,1
BP	$6,8\pm 0,1$	$7,1\pm 0,2$	$6,1\pm 0,2$	$6,9{\pm}0,1$	$7,0\pm 0,1$	$6,4\pm 0,2$	$6,4\pm 0,1$	$6,2\pm 0,1$	7.3 ± 0.2	$7,2\pm0,3$	$7,6\pm 0,1$	7.8 ± 0.1	7.9 ± 0.3	$5,2\pm 0,2$	$5,6\pm 0,1$	$6,1\pm0,3$	$6,0\pm 0,1$	$5,6\pm0,2$	6.4 ± 0.2
ШБ	$10,2\pm0,2$	$10,2\pm0,3$	$8,8\pm0,3$	$10,2\pm0,2$	$10,0\pm0,2$	$9,9\pm0,2$	$9,8\pm 0,2$	$9,3\pm0,2$	$10,0\pm0,2$	$10,3\pm0,2$	$10,6\pm 0,1$	10.8 ± 0.2	10.9 ± 0.4	7.8 ± 0.2	$8,3\pm0,1$	$9,7\pm0,4$	8,7±0,2	$7,8\pm0,2$	9.4±0.2
Oh	$5,0\pm0,02$	$5,2\pm0,06$	$5,1\pm 0,1$	$5,1\pm0,03$	$5,0\pm0,02$	$5,1\pm0,04$	$5,1\pm0,03$	5,0	$5,2\pm0,06$	$5,1\pm0,05$	$5,1\pm0,02$	$5,2\pm0,04$	$5,3\pm0,1$	$5,0\pm 0,1$	$5,0\pm0,02$	$5,1\pm0,09$	$5,0\pm0,02$	$4,9\pm0,1$	5.0
N	96	100	44	111	86	97	120	80	96	99	94	134	21	30	86	36	58	21	22
Пункт	1	2	3	7	5	9	7	~	6	10	11	12	13	14	15	16	17	18	61

Примечание: N – количество промеренных особей; ЧО – число оборотов. Остальные обозначения приведены в тексте. Приведены абсолютные значения признаков в миллиметрах и их доверительный интервал.

87

сиддисмутаз — калий-фосфатный буфер (рН 7,8), нитросиний тетразолий, феназин метасульфат. В качестве генетических маркеров использовались выявленные и диагностированные нами три локуса неспецифических мономерных эстераз (EST5, EST6, EST8) и один локус димерной супероксиддисмутазы (SOD2) (рис. 3, 4).

Сборы проводились в период с 2005-го по 2010 год. За весь период наблюдения было исследовано 1477 раковины и 1025 живых особей.

Обработка полученных данных проводилась с использованием программ GenAlEx и TFPGA [7, 8].

Результаты и обсуждение

Результаты морфометрического анализа приведены в таблице 2. Согласно полученным данным наибольшие размеры раковины отмечены в северо-восточной части района исследования (пункты 10, 11, 12, 13), находящейся в зоне влияния Стойленского и Лебединского горно-обогатительных комбинатов. В пунктах 12, 13, а так же в пункте 2 нами были найдены несколько крупных особей *H. striata*, ширина раковины которых превышала 16 мм, при известной максимальной для вида 12 мм. В этих же популяциях отмечены минимальные значения отношения площади устья к объему раковины (S/V). Возможным объяснением этого

явления может служить реакция животных на ксерофитизацию биотопов в этом антропогенноизмененном районе, вызванная разряжением растительных сообществ. По мнению ряда авторов, в аридных зонах увеличение объема тела моллюсков увеличивает запасы воды [9]. Уменьшение относительной площади устья призвано сократить количество испаряемой жидкости.

Нужно отметить, что в этом районе фиксируется повышенная магнитная активность (территория относится к району Курской магнитной аномалии). Вероятно, это явление может вызывать определенные генетические и фенотипические сдвиги в структуре популяций.

Проведенный однофакторный дисперсионный анализ морфометрических признаков показал значительную дифференциацию популяций в условиях лесостепного ландшафта (табл. 3). При этом весьма примечательно, что больший вклад в межпопуляционную изменчивость популяций внес индекс ВР/ШР, отражающий у большинства видов моллюсков видоспецифичную конституцию раковины. Данный факт, вероятно, косвенно свидетельствует о длительной и сильной изолированности популяций друг от друга, а так же о своеобразии микроклиматических условий различных биотопов, что привело к формированию оригинальных фенофондов изучаемых групп.

Оригинальность исследуемых популяций подтверждает так же изучение рисунка на ра-

 Таблица 3

 Результаты однофакторного дисперсионного анализа морфометрических признаков

Признак	Изменчивость	Сумма квадратов	Число степеней свободы	Средний квадрат	F	
ШБ	Между группами	853,8	18	47,4	10.0*	
ШР	Внутри групп	1395,3	1457	0,9	$49,6^{*}$	
DD	Между группами	673,8	18	37,4	CO /*	
BP	Внутри групп	785,4	1457	0,5	$69,4^{*}$	
DW	Между группами	181,6	18	10,1	8,4*	
ВУ	Внутри групп	1741,1	1457	1,2	0,4	
ШУ	Между группами	132,9	18	7,4	6.2^{*}	
шу	Внутри групп	1746,3	1457	1,2	0,2	
ВЗ	Между группами	204,2	18	11,3	48,3*	
ба	Внутри групп	342,3	1457	0,2	40,3	
ВР/ШР	Между группами	1,1	18	0,06	35,2*	
БР/ШР	Внутри групп	2,5	1457	0,002	33,4	
V	Между группами	9508644,2	18	528258,0	47,7*	
V	Внутри групп	16180928,3	1457	11105,6	41,1	
S	Между группами	9902,0	18	550,1	27,5*	
5	Внутри групп	29153,2	1457	20,0	21,3	
S/V	Между группами	0,079	18	0,0044	8,1*	
S/V	Внутри групп	0,787	1457	0,0005	0,1	

Примечание: F – критерий Фишера, * – достоверные отличия при P>0,95.

ковине, представленного продольными коричневыми полосами различной ширины. Число полос на раковинах варьирует от 0 до 12. Общее количество вариантов рисунка для района исследования составило 157. Но, несмотря на такое обилие фенов, в отдельных популяциях чаще всего встречаются несколько оригинальных комбинаций полос, что определяет своеобразный фенооблик группы. По данным показателя внутрипопуляционного разнообразия (H) [10], приведенным в таблице 4, наибольшего разнообразия достигает популяция «Белая гора», немного уступает ей популяция «Калюжный яр». Наименьшее разнообразие по рисунку раковины отмечено в пунктах 5, 10, 11, 12, 13, где в популяциях присутствуют два или три фена. Максимальные значения доли редких форм (h) для района исследования зафиксированы в пунктах 1, 5, 6, 8, 9.

Результаты фенотипического анализа во многом подтверждаются данными о состоянии генофондов изучаемых групп на основе изферментного анализа. Частоты аллелей и уровни гетерозиготности по используемым локусам представлены таблице 5. Согласно этим данным в 22,4 % случаев отмечается достоверный (Р≥0,05) дефицит гетерозиготных фенотипов, в 35,5 % процентов случаев отмечена полная гомозиготность по одному из аллелей. Досто-

Таблица 4 Показатель внутрипопуляционного разнообразия и доля редких морф по рисунку раковины

Популяция	$H\pm S_{_{\rm H}}$	h±S _h
1. «Шопино»	$10,5\pm1,3$	$0,42\pm0,07$
2. «Белая гора»	36,1±1,5	$0,18\pm0,03$
3. «Ботанический сад»	$10,3\pm0,9$	$0,21\pm0,07$
4. «Петропавловка А»	$16,5\pm0,8$	$0,09 \pm 0,05$
5. «Петропавловка В»	$5,0\pm0,6$	$0,45\pm0,07$
6. «Терновка»	14,1±1,5	0.5 ± 0.05
7. «Терновка А»	$17,6\pm0,9$	$0,07\pm0,04$
8. «Терновка Б»	$15,4\pm1,6$	$0,41\pm0,06$
9. «Беленихино»	$9,6\pm1,8$	$0,44\pm0,06$
10. «Губкин»	$4,4\pm0,3$	0.33 ± 0.06
11. «Мелавое»	$4,7\pm0,2$	$0,07 \pm 0,05$
12. «Телешовка»	$5,9\pm0,4$	$0,16\pm0,05$
13. «Хмелевое»	$6,7\pm0,8$	$0,26\pm0,08$
14. «Нагольное»	$8,8\pm0,6$	0.3 ± 0.06
15. «Калюжный яр»	$20,2\pm0,8$	$0,16\pm0,03$
16. «Кредяная гора»	15,4±0,9	$0,19\pm0,05$
17. «Ржавец»	17,3±1,1	0,21±0,05
18. «Дивногорье»	10,6±0,9	0.39 ± 0.07
19. «Ямская степь»	13,5±0,5	$0,1\pm0,03$

верность дефицита гетерозигот оценивалась по формуле $\chi^2 = F^2 N(k-1)$, df = k-1, где F – коэффициент инбридинга, N – объем выборки, k – число аллелей по данному локусу [11]. Достоверный избыток гетерозигот зафиксирован только в одном случае (пункт 3, Est8). Наименьшие уровни генетической изменчивости, в среднем по всем локусам, зафиксированы в пунктах 12, 14, и 19, в этих же пунктах отмечены наиболее высокие значения коэффициента инбридинга (табл. 6). В пунктах 10 и 11 наблюдается полная гомозиготность по всем локусам. При этом нужно отметить, что уровень гетерозиготности в различных популяциях неодинаков по разным локусам. Гетерозиготные варианты чаще всего встречаются в локусах EST6 (H_0 =0,328) и EST8 (H_0 =0,324). Именно эти локусы вносят наибольший вклад в межпопуляционное разнообразие, оцениваемое по коэффициенту инбридинга F_{st} (табл. 7).

Результаты кластерного анализа на основе генетических расстояний [12] невзвешенным парногрупповым методом (UPGMA) представлены на рисунке 5. Анализ показывает весьма пеструю картину распределения популяций по группам. При этом географическое положение популяций, как и в случае с раковинными фенотипами не оказывает решающего влияния на схожесть в соотношении частот аллелей и их комбинаций. Так, например, некоторые популяции, обитающие у истоков р. Северский Донец (пункты с 1 по 8), несмотря на близкое пространственное расположение, оказались, согласно схеме, в разных кластерах. Точно такую же картину мы наблюдаем и в отношении популяций, обитающих в бассейне р. Айдар (пункты 14, 15, 16). Об отклонении от панмиксии из-за подразделённости популяций говорят так же высокие значения коэффициентов инбридинга Fst и Fit (табл. 7). Всё это подтверждает выдвинутый нами ранее тезис о нарушении каналов миграции между изучаемыми группами H. striata и их длительной изолированности друг от друга в условиях лесостепи [13]. С другой стороны, популяции улиток, обитающие в условиях нарушенной среды, обусловленной возможным влиянием горно-обогатительных комбинатов (пункты 10, 11, 12, 19) образовали единый кластер, что свидетельствует о сходном здесь векторе естественного отбора. По степени приближения к этому кластеру, можно отчасти судить о степени изменения среды и состоянии генофондов других популяций. Ранее, аналогичную картину в районе исследования мы получили для популяционной структуры других индикаторТаблица 5

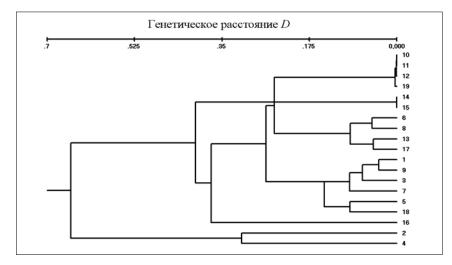
Частоты аллелей и уровни гетерозиготности локусов в популяциях Helicopsis striata

;	Аллели и							'			Популяции	ии		4	инивидин					
Локус	показатели	1	2	3	7	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19
	1	0,100	0,230	0,161	0,056	0,031	0,031	1 0,025	5 0,127	7 0,027	00000 2	0,000	0,000	0,000	0,000	0,000	0,725	0,218	0,160	0,000
	2	0,300	0,421	0,000	0,097	0,112	2 0,188	8 0,550	0,329	9 0,351	1 0,000	0,000	0,000	0,000	0,000	0,000	0,069	0,027	0,043	0,000
31232	3	0,600	0,348	0,839	0,847	0,857	7 0,781	1 0,425	5 0,544	4 0,622	1,000	1,000	1,000	1,000	1,000	1,000	0,206	0,755	0,798	1,000
E313	H_{0}	0,450	0,607	0,323	0,250	0,224	0,344	4 0,563	3 0,519	9 0,459	000,0	0,000	0,000	0,000	0,000	0,000	0,325	0,164	0,340	0,000
	$^{\circ}\mathrm{H}$	0,540	0,648	0,271	0,270	0,252	0,354	$4 \mid 0.516$	3 0,579	9 0,489	000'0 6	0,000	0,000	0,000	0,000	0,000	0,427	0,382	0,336	0,000
	F	0,167	0,064	-0,192	0,073	0,108	3 0,028	8 -0,090	0,104	4 0,061	- 1	ı	ı	-	_	_	0,239	0,572	-0,013	ı
	1	0,288	0,860	0,468	0,167	0,418	3 0,016	6 0,156	3 0,063	3 0,297	00000 2	0,000	0,000	0,000	0,000	0,000	0,000	0,027	0,691	0,000
	2	0,388	0,140	0,097	0,375	0,173	3 0,156	6 0,269	9 0,171	1 0,527	0000 2	0,000	0,000	0,000	0,000	0,000	0,013	0,018	0,309	0,000
	8	0,200	0,000	0,435	0,292	0,367	7 0,745	$5 \mid 0,369$	9 0,734	4 0.155	5 1,000	1,000	1,000	1,000	0,000	0,000	0,988	0,609	0,000	0,895
EST6	4	0,125	0,000	0,000	0,167	0,041	0,083	3 0,206	3 0,032	0,020	0,000	0,000	0,000	0,000	1,000	1,000	0,000	0,345	0,000	0,105
	H_{0}	0,400	0,101	0,226	0,611	0,408	3 0,281	1 0,300	0,215	5 0,365	5 0,000	0,000	0,000	0,000	0,000	0,000	0,026	0,455	0,234	0,211
	H_e	0,712	0,241	0,582	0,719	0,658	3 0,414	4 0,725	5 0,427	0,609	000,0	0,000	0,000	0,000	0,000	0,000	0,025	0,509	0,427	0,188
	F	0,438	0,581	0,612	0,150	0,380	0,320	0 0,586	3 0,496	0,401	- 1	ı	I	ı	-		-0,013	0,106	0,451	-0,118
	1	0,225	0,753	0,403	0,375	0,082	2 0,161	$1 \mid 0.244$	4 0,146	3 0,426	0,000	0,000	0,000	0,000	0,000	0,000	0,531	0,036	0,181	0,000
	2	0,388	0,174	0,597	0,444	0,561	0,432	2 0,419	9 0,184	4 0,149	9 1,000	1,000	0,934	0,000	1,000	1,000	0,469	0,018	0,787	1,000
84.84	3	0,388	0,073	0,000	0,181	0,357	7 0,406	6 0,338	3 0,671	1 0,426	0,000	0,000	0,066	1,000	0,000	0,000	0,000	0,945	0,032	0,000
6707	H_{0}	0,450	0,157	0,742	0,444	0,449	9 0,208	8 0,525	5 0,380	0,527	0,000	0,000	0,132	0,000	0,000	0,000	0,488	0,036	0,426	0,000
	H_{e}	0,649	0,398	0,481	0,629	0,551	0,622	2 0,651	0,495	5 0,616	0,000	0,000	0,123	0,000	0,000	0,000	0,498	0,104	0,347	0,000
	F	0,307	0,604	-0,542	0,294	0,185	5 0,665	5 0,194	4 0,233	3 0,144		1	-0,070	ı	_	-	0,021	0,652	-0,228	ı
	1	0,838	0,596	0,613	0,792	0,806	3 0,849	9 0,931	0,861	0,838	3 1,000	1,000	1,000	1,000	0.975	1,000	0,981	1,000	1,000	1,000
	2	0,163	0,404	0,387	0,208	6 0,194	4 0,151	1 0,069	9 0,139	9 0,162	2 0,000	0,000	0,000	0,000	0,025	0,000	0,019	0,000	0,000	0,000
zaos	H_{o}	0,325	0,472	0,452	0,361	0,306	6 0,240	0 0,113	3 0,278	8 0,270	000,0	0,000	0,000	0,000	0,050	0,000	0,038	0,000	0,000	0,000
	H_{e}	0,272	0,482	0,475	0,330	0,313	3 0,256	6 0,128	3 0,240	0 0,272	0,000	0,000	0,000	0,000	0,049	0,000	0,037	0,000	0,000	0,000
	F	0,194	0,020	0,048	-0,095	0,021	0,066	6 0,121	1 -0,162	2 0,005	_	1	ı	ı	-0,026	1	-0,019	ı	Ι	ı
	N	40	88	31	36	49	96 6	08 9	0 79	9 74	4 55	35	38	23	40	40	80	22	47	38

 IIpu мечание: H_0- средняя наблюдаемая гетерозиготность; H_e- средняя ожидаемая гетерозиготность; F- коэф fbu циент инбридинга (прочерк обозначает невозможность вычисления по мономорфному локусу).

90

Таблица 6 Показатели генетической изменчивости и значения эффективной численности в изучаемых популяциях *H. striata*


Популяция	N	P %	$A_{_{\varrho}}$	I	μ	H_{o}	$H_{_{\varrho}}$	F	Ne	Ne/N
1	40	100,0	2,466	0,930	2,8	0,406	0,543	0,179	33,9	0,848
2	89	100,0	1,937	0,715	2,3	0,334	0,442	0,317	67,6	0,759
3	31	100,0	1,899	0,682	2,1	0,435	0,452	-0,018	31,0	1,0
4	36	100,0	2,279	0,850	2,7	0,417	0,487	0,105	32,6	0,905
5	49	100,0	1,986	0,760	2,5	0,347	0,443	0,173	41,8	0,852
6	96	100,0	1,811	0,711	2,4	0,268	0,411	0,270	75,6	0,787
7	80	100,0	2,429	0,862	2,7	0,375	0,505	0,203	66,5	0,831
8	79	100,0	1,854	0,759	2,5	0,348	0,435	0,168	67,6	0,856
9	74	100,0	2,123	0,820	2,6	0,405	0,496	0,153	64,2	0,867
10	55	0,0	1,0	0,0	1,0	0,000	0,000	_	27,5	0,5
11	35	0,0	1,0	0,0	1,0	0,000	0,000	_	17,5	0,5
12	38	25,0	1,035	0,061	1,1	0,033	0,031	0,732	21,9	0,577
13	23	0,0	1,0	0,0	1,0	0,000	0,000	_	11,5	0,5
14	40	25,0	1,013	0,029	1,1	0,013	0,012	0,744	22,9	0,573
15	40	0,0	1,0	0,0	1,0	0,000	0,000	_	20,0	0,5
16	80	100,0	1,450	0,399	1,7	0,219	0,247	0,057	75,7	0,946
17	55	75,0	1,443	0,432	1,9	0,164	0,249	0,583	34,7	0,631
18	47	75,0	1,445	0,458	1,8	0,250	0,277	0,303	36,1	0,767
19	38	25,0	1,058	0,084	1,2	0,053	0,047	0,721	22,1	0,581

Примечание: P – процент полиморфных локусов; A_e – среднее эффективное число аллелей на локус; μ – среднее число фенотипов; I – индекс Шеннона; Ne – эффективная численность (показатель μ оценен по Животовскому [10])

Таблица 7 Значения полокусных значений гетерозиготности и коэффициентов инбридинга в изучаемых популяциях *H. striata*

	v				
Ower-person we never many		Лок	усы		Спониос
Оцениваемые параметры	EST5	EST6	EST8	SOD2	Среднее
Но	0,267	0,328	0,324	0,150	0,267
He	0,240	0,202	0,261	0,153	0,214
Fis	0,098	0,385	0,195	-0,018	0,165
Fit	0,369	0,692	0,557	0,159	0,444
Fst	0,300	0,499	0,450	0,174	0,356

Примечание: Fit – коэффициент инбридинга особи относительно большой популяции; Fis – коэффициент инбридинга особи относительно субпопуляции; Fst – коэффициент инбридинга субпопуляции относительно большой популяции.

Рис. 5. Дендрограмма генетических расстояний по Неи [13] (UPGMA)

ных видов наземных моллюсков *Bradybaena* fruticum Müll и *Chondrula tridens* Müller [14, 15].

Вместе с тем, нужно отметить, что современная генетическая и фенотипическая структура популяций во многом определяется не только современными факторами, но и историческими предпосылками, а также особенностями лесостепного ландшафта, который вносит определенные коррективы в действие различных внешних факторов, включая факторы антропогенного происхождения. Так группа «Ямская степь» (пункт 19), находящаяся в непосредственной близости от территории горнообогатительных комбинатов, достоверно отличается по размеру раковины от близлежащих популяций. Причем, эта оригинальность прослеживается и в отношении окрасочных признаков раковины. Причиной тому, вероятно, может служить исходный генофонд этой группы, сформировавшийся при освоении этого биотопа, а так же юго-восточная экспозиция склона, которая препятствует оседанию здесь промышленных выбросов (он обращен в другую сторону он комбинатов). Косвенно об этом свидетельствует химический анализ раковин моллюсков, проведенный нами здесь ранее [16].

Кроме того, наблюдаемое увеличение степени гомозиготности в различных популяциях может являться следствием не только стохатических процессов, вызванных «эффектом бутылочного горлышка» или «эффектом основателя», а также реакцией группы на внезапно возникшую изоляцию в ходе распашки территории, строительства дорог и т.д. Такие действия со стороны человека могли спровоцировать так называемый эффект «генетической революции», который описан для узколокальных изолированных групп [17]. Согласно данной гипотезе, в условиях изоляции, т. е. в условиях, в которых сегодня находится большинство изучаемых популяций региона, селективную ценность получили гены, которые особенно жизнеспособны в гомозиготном состоянии и редки в открытых популяциях из-за доминирования в них так называемых «хорошо смешивающихся генов». Попав в условия иной генетической среды так называемые «солисты» оказались в более выгодном положении. Причем, по мнению Майра этот процесс мог затронуть одновременно большое количество локусов. Такими «революционными» аллелями в изучаемых популяциях, возможно, являются *EST5-3*, *EST6-3*, *EST8-2*, *SOD2-1*. Именно эти аллели вносят наибольший вклад в уровень гомозиготности (табл. 5). Можно предположить, что доминирование в ряде популяций района исследования этих аллелей, вероятно, является адаптивной реакцией вида на существование в условиях урбанизации.

В заключении нами была рассчитана эффективная численность исследуемых групп улиток. Она рассчитывалась по формуле, учитывающей уровень инбридинга в популяции [12]:

$$Ne = \frac{N}{1+F}$$

где Ne- эффективная численность, N- численность особей в группе, F- коэффициент инбридинга.

Результаты расчетов приведены в таблице 6 (в мономорфных группах при расчете Ne значение F принималось равное единице). Ввиду того, что определение общей численности особей в исследуемых популяциях связано с определенными трудностями (из-за неравномерного выхода улиток на поверхность), для получения сопоставимых данных мы вычислили отношение эффективного размера выборки к ее общему объему. В дальнейшем полученные индексы можно будет использовать для вычисления Ne в больших популяциях, когда их общая численность будет определена. Согласно полученным данным соотношение Ne/N в среднем равно 0.72 ± 0.08 , что укладывается в общий диапазон доли Ne, предложенный Кроу, Мортоном и Кимурой [18, 19]. Авторы определили, что для большинства организмов доля *Ne* составляет в среднем 0,75, а для многих популяций человека лежит в диапазоне 0,69-0,95. Однако в ряде изучаемых нами групп (10, 11, 12, 13, 14, 19) это отношение равно или приближается к минимальному значению для предложенной формулы (0,5).

Еще меньшие значения Ne были получены нами при расчете эффективной численности с учетом особенностей биологии размножения изучаемого вида, для чего использовали формулу вычисления Ne для животных гермафродитов [19]:

$$N_e = \frac{4N-2}{V+2}$$
 $V = \frac{\sum (k_i - k)^2}{N}$

где N — численность половозрелых особей в популяции, V — дисперсия индивидуальной плодовитости, k_i — плодовитость отдельной особи, k — средняя плодовитость.

В ходе проведенного эксперимента, где спаривающиеся в природе особи были помещены в террариум, нами получены данные по тридцати четырем кладкам разновозрастных особей (табл. 8).

Исходя из этих результатов, размер клад-ки в среднем равен 19,9 яиц, а дисперсия ин-

Таблица 8

Количество яиц в кладке в разновозрастных группах *H. striata*

Число оборотов на раковине	5,25	5	4,75	4,5	4,25
Количество яиц в кладке	17, 19, 28	19, 23, 30, 27,	15, 13, 39,	11, 12, 13, 9, 12,	8, 10, 6, 8, 7,
		31, 28, 35, 20	33, 27, 47	6, 21, 14, 27, 7	8, 17
Среднее	21,3	26,6	29,0	13,2	9,1
V	22,9	27,2	149,3	39,7	12,7

Примечание: условный возраст определяли по числу оборотов на раковине, V – дисперсия индивидуальной плодовитости.

дивидуальной плодовитости -50,4 (результат получен при сопоставлении средних показателей по группам разновозрастных особей). При этом эффективная численность популяции составила лишь 7,5% от общей численности половозрелых особей (Ne/N=0,075).

Заключение

Исходя из приведенных данных, нельзя дать однозначного ответа об уровне жизнеспособности изучаемых популяций. Наблюдаемую нами мономорфность в ряде групп с одной стороны можно расценивать как фактор, уменьшающий жизненный потенциал вида, но с другой стороны, это, вероятно, является адаптивной реакцией улиток на обитание в условиях урбанизированного ландшафта. Вместе с тем, низкий уровень эффективной численности, вызванный большой дисперсией индивидуальной плодовитости, вызывает определенные опасения за дальнейшую судьбу популяций *H. striata*, существующих на границе своего видового ареала.

Литература

- 1. Красная книга Белгородской области. Редкие и исчезающие растения, грибы, лишайники и животные. Белгород: 2004. 532 с.
- 2. Ložek V. Z červené knihy našich měkkýšů suchomilka *Helicopsis striata* // Živa Academia Praha. 1980. V. 28(6). 223 pp.
- 3. Stępczak K. Aktualny stan występowania *Helicopsis striata* (O.F. Müller, 1774) w dolinie Odry (Mollusca: Gastropoda) w Polsce // Bad. Fizjogr. Pol. Zach. 1999. V. 46. P. 7–21.
- 4. Шилейко А.А. Наземные моллюски надсемейства Helicoidea. Фауна СССР. Моллюски. Л.: Наука, 1978. Т 3. Вып. 6. 384 с.
- 5. Sparks B. W. The former occurrence of both *Helicella striata* (Müller) and *H. geyeri* (Soós) in England // Journal of Conchology. 1953. V. 23. P. 372–378.
- 6. Снегин Э.А. Использование видов наземных моллюсков в качестве индикаторов реликтовых ценозов // Вестник Житомирского педагогического университета. 2002. Вып. 10. С.128-129.
- 7. Peakall R., Smouse P. E. GenAlEx V5: Genetic Analysis in Excel. Population genetic software for teaching

and reseach. Australion National University, Canberra, Australia. 2001. http://www.anu.edu.au./BoZo/GenAlEx/.

- 8. Miller M. P. Tools for population genetic analyses (TFPGA) 1.3. A Windows program for the analysis of allozyme and molecular population genetic data. Department of Biological Sciences Northen Arizona University, Flagstaff, USA. 1997. http://www.markgeneticsoftware.net.
- 9. Матекин П. В. Приспособительная изменчивость и процесс видообразования у среднеазиатских наземных моллюсков семейства Enidae // Зоологический журнал. 1959. Т. 33. Вып. 10. С. 1518-1536.
- 10. Животовский Л. А. Популяционная биометрия. М.: Наука, 1991. 271 с.
- 11. Ли Ч. Введение в популяционную генетику. М.: Мир, 1978. $560\,\mathrm{c}$.
- 12. Nei M. Estimation of average heterozygosity and genetic distance from a smoll numba of individuals // Genetics. 1978. V. 89. P. 583–590.
- 13. Сычев А. А., Снегин Э. А. Конхологическая изменчивость и полиморфизм изоферментов в популяциях наземного моллюска *Helicopsis striata* юга Среднерусской возвышенности // Биоразнообразие и роль животных в экосистемах. Днепропетровск. 2009. С. 172–173.
- 14. Снегин Э. А., Оценка состояния популяционных генофондов наземных моллюсков в условиях влияния горно-обогатительных комбинатов на примере *Bradybaena fruticum* Müll (Gastropoda, Pulmonata) // Экологическая генетика. 2010. Т. VIII. № 2. С. 45–55.
- 15. Иванова Е.В., Снегин Э.А. Анализ генетической структуры популяций *Chondrula tridens* Müller (Mollusca, Gastropoda, Pulmonata) в условиях трансформированных экосистем // Биоразнообразие и роль животных в экосистемах. Днепропетровск. 2007. С. 198–199.
- 16. Снегин Э. А. Содержание химических элементов в раковинах наземных моллюсков в условиях влияния горно-обогатительных комбинатов // Проблемы региональной экологии. 2009. № 1. С. 22-27.
- 17. Майр Э. Зоологический вид и эволюция. М.: Мир, 1968. 398 с.
- 18. Crow J. F., Morton N. E. Measurement of gene frequency drift in small population // Evolution. 1955. V. 9. P. 202–214.
- 19. Crow J. F., Kimura M. An introdution to population genetics theory. N.Y.: Harpers and Row, 1970. 591 p.

Работа выполнена при финансовой поддержке программы РНПВШ № 2.2.3.1/9731, РФФИ № 09-04-97513 р_центр_а., Министерства образования и науки РФ ГК П 1050.