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Abstract. The article discusses the problems of non-destructive testing of 

multilayer composite materials. Technological influences during 

manufacturing and the influence of external factors during the operation of 

composite structures can lead to the occurrence of material defects, which 

manifests itself as heterogeneity and anisotropy of individual layers and, as 

such, affects thermomechanical processes in multilayer composites. In the 

work as a model of non-destructive testing, the mathematical problem of 

determining the thermomechanical characteristics of weakly 

inhomogeneous and weakly anisotropic layers of a multilayer half-space is 

formulated. The tests include measurements on the outer surface of the half-

space of temperature and displacements arising as a result of thermoelastic 

processes initiated in a special way in the layered medium under study. An 

approach to solving the formulated problem, based on the linearization of 

the original nonlinear equations and the application of the method of 

stationary basic processes, is proposed.   

1 Introduction 

The study of the mechanical properties of multilayer media is relevant not only within the 

framework of the mechanics of composite structural materials [1] and biomechanics [2], but 

also in geophysics (in particular, in seismology [3]). Despite the fairly widespread 

development of technical methods of non-destructive testing (NDT), the features of which 

are discussed, for example, in review works [4-6], the problem of theoretical justification of 

NDT and, in particular, mathematical modeling of the physical processes used for NDT 

remains relevant.  

The problem of thermoelastic diagnostics considered in this work is understood as the 

task of determining the thermomechanical characteristics of a material using experimentally 

obtained information about non-stationary stress and strain fields, as well as thermal fields 

arising in the solids under the influence of specially selected external influences [7-9]. 

In this paper, we study the problem of determining the characteristics of rigidity, density, 

specific heat capacity and thermal conductivity (which are functions of spatial variables) of 

weakly inhomogeneous and of weakly anisotropic thermoelastic layers, lying on a half-space. 
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In this case, the values on the outer surface of the upper layer of the characteristics of 

thermoelastic processes are used (as the results of measurements during the testing process). 

In mathematical terms, the problem under study belongs to the type of inverse problems 

of mathematical physics [10] or (more precisely) it can be attributed to the class of coefficient 

inverse problems of dynamic thermoelasticity (thermal elastic dynamics) [11]. 

The purpose of this article is to formulate and solve the problem of determining the 

thermomechanical characteristics of a layered medium based on mathematical modeling of 

thermoelastic processes initiated in a special way in this medium.  

2 Problem statement  

Let's consider inhomogeneous anisotropic layered half-space R+
3 ={(x1, x2,  x3 ) | x3   0}, 

where are the layers: R1={(x1, x2,  x3 ) |h1  x3   0}, R2={(x1, x2,  x3 ) |h2  x3  h1},…, RS={(x1, 
x2,  x3 ) |hS  x3 hS-1} lie on the half-space RS+1={(x1, x2,  x3 )|x3  hs} (Figure 1)  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 1. Inhomogeneous anisotropic layered half-space. 

Propagation of unsteady thermoelastic processes in layered half-space is described by the 

equations [12]: 

Cv
(r) t (r)–(Kij

(r),i(r)),j=f0
(r)

                                      (1) 

(r) t 
2ui

(r)–(Cijkm
(r)uk

(r),m–ij
(r)(r)),j=fi

(r)      (i,j,k,m=1,2,3),                         (2) 

whith initial conditions 

(r)(x,0)=0
(r)(x), ui

(r)(x,0)=i
(r)(x), t ui

(r)(x,0) = i
(r)(x)                  (3) 

and boundary conditions 

Ki3
(1) (1),i(x1,x2,0,t)=p(1)

0(x1,x2,t),                          (4) 

{Ci3km
(1)uk

(1),m–ij
(1) (1)}(x1,x2,0,t)=pi

(r)(x1,x2,t)                              (5) 

as well as contact conditions of ideal thermal contact of layers 

{(r+1)–(r)}(x1,x2,hr,t)=0,     {Ki3
(r+1)(r+1),i–Ki3

(r)(r),i}(x1,x2,hr,t)=0,                                    (6) 

and rigid adhesion at the boundaries of layers 

{ui
(r+1)–ui

(r)}(x1,x2,hr,t)=0     (i=1,2,3)                                       (7) 

{Ci3km
(r+1)uk

(r+1),m–i3
(r+1)(r+1)–Ci3km

(r)uk
(r),m+i3

(r)(r)}(x1,x2,hr,t)=0, 

(for r =1,…, S do not sum). 

Here the temperature and components of the displacement vector u = (u1, u2, u3) depend 

on the spatial variables x=(x1,x2,x3) and time t, and the specific heat capacity Cv, density  

and components of the thermal conductivity tensors Kij, volumetric temperature expansion 
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ij as well as the stiffness tensor Cijkm are assumed to be functions of x. Operators t, t 
2 mean 

derivatives first and second order with respect to time. The index after the decimal point 

means the derivative with respect to the corresponding space coordinate. For a repeating 

index (unless otherwise specified), summation is performed. The superscript (r) means that 

the value belongs to the layer numbered r. Curly braces delimit lists of functions 

(expressions) that have the same arguments (indices). 

The diagnostic problem considered in this work will be to determine {Cv, , Kij, ij, 

Cijkm}(x) from several problems of the form (1)-(7) for N different types of thermal force 

loading (after substituting into (1)-(7): ui 
n
      ui, {i,s,ps,fs}n  {i,s,ps,fs} (i=1,2,3; 

s=0,1,2,3; n=1,2,…,N)) according to additional information on the outer surface of the top 

layer 

    (1)n(x1,x2,0,t)=0
n(x1,x2,t),                                                                 (8) 

ui
(1)n(x1,x2,0,t)=i

n(x1,x2,t), 

{Ki3,i3,Ci3km}(r)(x1,x2,hr)={Ki3,i3,Ci3km}(r), (i,k,m=1,2,3). 

This information is assumed to be obtained from measurements on the surface. The value 

of N, corresponding to the number of tests with different types of thermal power loads, 

depends on the type of anisotropy of the layers under study (the number of spatially variable 

characteristics to be determined). 

3 Linearization of the problem of diagnostics  

In what follows, in accordance with the original formulation of the problem, we will assume 

that the ideal multilayer coating consists of homogeneous isotropic layers, but the layers 

included in the coating under study (due to external influences or imperfect manufacturing 

technology) have acquired slightly inhomogeneous and anisotropic properties. This means 

that for each layer R1, R2 ,…, RS and half-space RS+1the values |(r)- (r)0 |/(r)0,  |Cv
(r)

 - Cv
(r)0 |/ 

Cv
(r)0, |Kij

(r) – Kij
(r)0|/K(r)0,  |Cijkm

(r) - Cijkm
(r)0|/ (r)0  have the order of smallness О(), 0<  <<1, 

где (r)0, Cv
(r)0, Kij

(r)0, Cijkm
(r)0  are characteristics corresponding to the ideal homogeneous 

isotropic layers, and, therefore, Kij
(r)0=K(r)0ij, ij

(r)0=(r)0ij , Cijkm
(r)0=(r)0ijkm + 

(r)0(ikjm+imjk ). Here (r)0, (r)0are the Lame coefficients, ij is the Kronecker symbol, 

(r)0,Cv
(r)0,K(r)0,(r)0, (r)0 – const. 

Let us evaluate the difference between the thermoelastic process{,u}(r)n(x,t) and the 

similarly initiated process {,u}(r)0n(x,t), occurring in a ideal medium with homogeneous 

isotropic layers. {,u}(r)0n(x,t) is described by relations (1)-(7) after replacing {Cv, , Kij, ij, 

Cijkm}(r)0   {Cv, , Kij, ij, Cijkm}(r)(x,). We will assume that the influence of weak 

inhomogeneity and weak anisotropy of the layers under study on the quantitative 

characteristics of the processes excited in it is also quite small. Thus, on the external surface 

of the top layer 

n(x1,x2,0,t)=0n(x1,x2,0,t)+1n(x1,x2,0,t)=0n(x1,x2,t)+1n(x1,x2,t), 

ui
n(x1,x2,0,t)=u0n(x1,x2,0,t)+ui

1n(x1,x2,0,t)=i
0n(x1,x2,t)+i

1n(x1,x2,t), 

||0n(x1,x2,0,t)||C
2~O(||1n(x1,x2,0,t)||C

2 , 

||u0n(x1,x2,0,t)||C
2~O(||ui

1n(x1,x2,0,t)||C
2. 

Excluding quantities of order 2 from consideration, we obtain from relations (1)-( 8) with 

respect to {, ui}1n  the relation 

Cv
(r) 0 t

  (r)1n – Kij
(r)0(r)1n,ij = – Cv

(r)1t
  (r)0n + (Kij

(r)1(r)0n,i),j                             (9) 

(r)0t 
2ui

(r)1n
 –Cijkm

(r)0
 uk

(r)1n,mj +ij
(r)0(r)1n,j = – (r)1t 

2 u i
(r)0n

 +(Cijkm
(r)1

 uk
(r)0n,m –ij

(r)1(r)0n),j  , 

closed by initial, boundary and contact conditions 

(r)1n(x,0)=0, ui
(r)1n(x,0)=0,    tui

(r)1n(x,0)=0                (10) 

{Ki3
(1)0,i(1)1n+Ki3

(1)1,i(1)0n}(x1,x2,0,t)=0                              (11) 
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{Ci3km
(1)0uk

(1)1n,m+Ci3km
(1)1uk

(1)0n,m–i3
(1)0 (1)1 –i3

(1)1(1)0n}(x1,x2,0,t)=0   

     {(r+1)1n–(r)1n}(x1,2,hr,t)=0,                   (12) 

{Ki3
(r+1)1 (r+1)0n,i+Ki3

(r+1)0 (r+1)1n–Ki3
(r)1 (r)0n,i– Ki3

(r)0 (r)1n}(x1,x2,hr,t)=0, 
{ui

(r+1)1–ui
(r)1}(x1,x2,hr,t)=0     (i=1,2,3) 

{Ci3km 
(r+1)1uk

(r+1)0n,m–i3
(r+1)1 (r+1)0n+Ci3km 

(r+1)0uk
(r+1)1n,m–i3

(r+1)0 (r+1)1n – 

– Ci3km 
(r)1uk

(r)0n,m+i3
(r)1 (r)0n–Ci3km 

(r)0uk
(r)1n,m+i3

(r)0 (r)1n}(x1,x2,hr,t)=0, 

(1)1n(x1, x2,0,t)=0
1n(x1, x2,t),                                    (13) 

ui
(1)1n(x1, x2,0,t)=i

1n(x1, x2,t), 

{Ki3,i3,Ci3km}(r)1(x1,x2,hr)=0,  (i,k,l=1,2,3) 

(for r =1,…, S do not sum). 

In what follows, the characteristics of the ideal layers {Cv, , Kij, ij, Cijkm}(r)0 will be 

considered known, i.e. the diagnostic problem will be to clarify the properties of the layers 

under study. Note that the initial problem of determining Cv, , Kij, ij, Cijkm, n, ui
n from N 

relations of the form (1)-( 8) is nonlinear, because these equations contain terms that are 

products of unknown functions of spatial variables (characteristics of thermoelastic processes 

and thermomechanical characteristics of the layer material). In this sense, the transition from 

(1)-(8) to (9)-(13) can be considered as a linearization procedure, widely used in solving 

nonlinear problems [12]. 

4 Solution of a linearized diagnostic problem  

The process of propagation of thermoelastic waves in an ideal layered medium depends on 

the conditions of its initiation and can be quite complex. In what follows, for simplicity, we 

will assume the characteristics of this process are known and have the form {,ui}(r)0n(x,t) = 

exp(ant){g0,gi}(r)n(x), an<0  (do not sum over n). This naturally imposes restrictions on the 

functions {f0, fi, 0, i, i, p0, pi}n, i.e. on the conditions for the initiation of thermoelastic 

processes in the medium under study. Note that the specific form {f0, fi, 0, i, i, p0, pi}n  can 

be obtained by directly substituting {,ui}(r)0n(x,t) into (1)-(7) after replacing {Cv, , Kij, ij, 

Cijkl}(r)0   {Cv, , Kij, ij, Cijkl}(r)(x,). 

A feature of the problem of diagnosing a multilayer half-space is the ability to 

sequentially consider one layer after another and for each layer solve the diagnostic problem 

(determine the characteristics of the process occurring in a given layer and the characteristics 

of the layer material). We will show this using the example of diagnosing the first coating 

layer and describe the transition to diagnosing the second layer. 

The procedure of diagnosing the first layer within the accepted assumption of the 

stationarity of thermoelastic processes in the ideal layered medium is divided into two stages: 

stage 1 – determination of {, ui}(1)1n(x,t), n=1,N; 

stage 2 – recovery {Cv, , Kij, ij, Cijkl}(1)1(x)  from the equations (9). 

Stage 1. After applying to equations (9), considered for r = 1 in the layer R1={(x1, x2,  x3 ) 

|h1  x3   0} (i.e., describing thermoelastic processes in the first layer), the operator L=t+anI 

(here t – the operator of partial differentiation with respect to the t and I – the unit operator), 

we obtain for each fixed n for new unknowns T=L (1)1n, vi=L ui 
(1)1n   

Cv
(1)0t

 T– (Kij
(1)0T,i),j=  0,  (1)0vi

 – Cijkm
(1)0

 vk,mj  + ij
(1)0T,j = 0                     (14) 

vi(x,0)=0                                            (15) 

Ki3
(r)0T,i(x1,x2,0,t)=0, T(x1,x2,0,t)=L0

1n(x1, x2,t),                        (16) 

Ci3km
(r)0vk,m(x1,x2,0,t)=0,     vi (x1,x2,0,t)= Li

1n(x1, x2,t),   (i=1,2,3),          (17) 

The first equation (14) and boundary conditions (16) represent, with respect to T(x,t), the 

Cauchy problem for the heat equation with data on a non-spatial manifold [13]. This problem 

has a unique solution in the entire half-space R+
3={(x1, x2,x3)|x3  0}. Methods for its 
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construction are described, for example, in [8]. Thus, the desired solution T(x,t) in the first 

layer can be considered as a restriction of the function found in the half-space R+
3 to the layer 

R1={(x1, x2, x3 )|h1  x3  0}. 

Boundary conditions (17) allow us to find {U,U,3,W,W,3} for x3=0, where U=div v, 

W=(W1,W2,W3)= rot v. From condition (15) it follows that the initial conditions for these 

functions will be homogeneous: U(x,0)=0, W(x,0)=0. Application of the operators div and 

rot to the second equation (14) allows us to obtain 

0t 
2U –(0+20)U=–0T,            (18) 

0t 
2W –0W =0             (19) 

Thus, two independent Cauchy problems were obtained for wave equations with data on 

a non-spatial manifold. Methods for solving such problems in the R+
3 domain are also known 

[14]. The required functions vi(x,t) can be restored from the relations U=div v , W=rot v , 

considered as a system of three independent linear differential equations closed by boundary 

conditions vi(x1,x2,0,t)=Li
1n(x1,x2,t),   (i=1,2,3). Then, (as in the case of defining the function 

T(x,t)) the restriction of the functions (x,t) from the domain R+
3 to the domain R1={(x1, x2, 

x3)|h1 x30} is considered. 

Having determined {T,vi}(x,t), it is easy is from the relations T=L(1)1n, vi=Lui 
(1)1n, 

considered as ordinary differential equations for t, with homogeneous boundary conditions 

to {,ui}(1)1n(x,t) in the layer R1= {(x1,x2,x3)|h1 x30}. Having completed all the above steps 

for n=1,2,…,N, we will complete the first stage of the problem. 

Stage 2. Knowing 1n,ui
1n, you can determine the right-hand sides of equations (9), which 

will have the form exp(-ant){F0
1n,F1

1n,F2
1n,F3

1n}(x) (do not sum over n) . Thus, the task of the 

second stage will be to determine {Cv,,Kij,ij,Cijkm}1(x)  from the equations 

anCv1 g0n + (Kij1 g0n,i),j= F01n                  (20) 

–an21gin  +(Cijkm1 gkn,m – ij1 g0n),j  = Fi1n      (i=1,2,3)                 (21) 

(do not sum over n) and homogeneous boundary conditions with respect to {Ki3, i3, Ci3km}1 

from (13). The value N (the number of different test modes) is chosen so that the number of 

scalar equations (20), (21) corresponds to the number of unknown functions {Cv,, Kij, ij, 

Cijkl}1(x).  

In the case of general anisotropy, the stiffness coefficient tensor Cijkl contains 21 

independent components, and the tensors of thermal conductivity coefficients Kij and 

volumetric thermal expansion coefficients ij contain 6 independent components each. Thus, 

in this case there are 35 unknowns. A high order causes difficulties in solving a system of the 

form (20), (21). However, in a number of cases, consideration of special types of anisotropy 

and additional functional connections between individual thermomechanical characteristics 

of the material, as well as a special selection of functions {g0, g1, g2
 ,g3}n (test conditions) can 

significantly reduce the order and simplify the solution. 

As part of solving the problem of diagnosing the first layer, contact conditions at the 

boundary of the layers were not actually used. The influence of contact conditions is taken 

into account when considering the problem of diagnosing the second and subsequent coating 

layers. The conditions at the boundary of the first and second layers are a special case of 

relations (12) and can be presented in the form 

(2)1n(x1,x2,h1,t)=(1)1n(x1,x2,h1,t)           (22) 

{Ki3
(2)1 (2)0n,i+Ki3

(2)0 (2)1n}(x1,x2,h1,t)={Ki3
(1)1 (1)0n,i+Ki3

(1)0 (1)1n}(x1,x2,h1,t) , 

ui
(2)1(x1,x2,h1,t)=ui

(1)1(x1,x2,h1,t)     (i=1,2,3) 

{Ci3km
(2)1uk

(2)0n,m–i3
(2)1 (2)0n+Ci3km

(2)0uk
(2)1n,m–i3

(2)0 (2)1n}(x1,x2,h1,t)= 

={Ci3km 
(1)1uk

(1)0n,m+i3
(1)1 (1)0n–Ci3km 

(1)0uk
(1)1n,m+i3

(1)0 (r)1n}(x1,x2,h1,t) 

It is easy to see that with this form of writing, relations (22) have the form of boundary 

conditions (11) and (13), since their right-hand sides can be considered known (the right-

hand sides of (22) include quantities related to the first layer and considered to be found when 
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solving the diagnostic problem of the first layer). Thus, by conditionally discarding the first 

layer, we get the task of diagnosing a layered coating completely similar to the original one, 

but consisting in the study of a multilayer coating containing one less layer. Diagnostics of 

the second layer and transition to the third layer are carried out in a completely similar way. 

Thus, a procedure is constructed for sequentially solving diagnostic problems one layer after 

another. 

4 Conclusion 

The problem of diagnostics for a thermoelastic layered medium makes it possible to 

determine in each layer specific heat capacity, density and components of the thermal 

conductivity tensors, volumetric temperature expansion as well as the stiffness tensor which 

are assumed to be functions of spatial coordinates. As the data used to find these 

thermomechanical characteristics the values of temperature and displacement on the outer 

surface of the first layer (which arose as a result of a specially initiated stationary 

thermoelastic process in the layered medium) are taken. These values are assumed to be 

obtained as a result of measurements during testing. 

The problem of diagnostics for a thermoelastic layered medium studied in this work is 

nonlinear, since not only the relative temperature and displacements (which are functions of 

spatial variables and time), but also the characteristics of the material of the layers 

(coefficients of the equations) depending on spatial variables are unknown. The assumption 

of weak heterogeneity and weak anisotropy of layers (valid for a fairly wide class of 

materials) made it possible to linearize the diagnostic problem. The solution to the linearized 

problem is constructed using the method of stationary basic processes. 

Continuation of research (the main results of which are presented in the article) can be 

aimed at studying the possibility of NDT modeling of multilayer materials with different 

types of layer reinforcement (fine reinforcement, fiber reinforcement, etc.), with different 

types of microdamage (pores, solid inclusions, microcracks) and also taking into account 

complex physical effects that arise during dynamic thermal force loading of materials 

(thermo-visco-elasticity [15], thermo-electro-elasticity [16], etc.). In addition, the issue of 

organizing the NDT procedure is of undoubted practical importance, for the implementation 

of which it is advisable to use the mathematical apparatus of planning and control theory (for 

example, [17]). 
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