Наибольший прирост надземной массы за 10 суток, повышение урожайности товарных плодов после внесения жидкого органического удобрения «Эффлюрост» был отмечен у растений перца сладкого при разбавлении 1:10-10,6 т/га, а у баклажана – при разбавлении 1:5-27,2 т/га.

При внесении жидкого органического удобрения «Эффлюрост» в разбавлении 1:3 отмечено увеличение количества аммонифицирующих микроорганизмов до 5,3х106 КОЕ/г, но уменьшалось число микроорганизмов, использующих минеральные формы азота с 4,8х106 КОЕ/г в контроле до 4,7х106 КОЕ/г при разбавлении 1:3 и до 4,5х106 КОЕ/г при разбавлении 1:10.

Также отмечено снижение количества микроорганизмов, участвующих в минерализации гумусовых веществ с 3,7х106 КОЕ/г в контроле до 3,0х106 КОЕ/г, кислотности почвы на 0,1-0,4 единицы.

Литература

- 1. Соловиченко В.Д., Тютюнов С.И., Никитин В.В., Навольнева Е.В. Свиные стоки ценное органическое удобрение. Белгород: «Отчий край», 2017. 28 с.
- 2. Инструкция по производству органического удобрения, полученного в результате анаэробной переработки биомассы. Белгород: ООО «Альтэнерго», 2018. 8 с.
- 3. ТУ 20.15.80-001-76522675-2018. Удобрение органическое на основе свиного навоза // URL://www://http://docs.cntd.ru/document/437232067.
- 4. Ветеринарно-санитарные правила подготовки к использованию в качестве органических удобрений навоза, помета и стоков при инфекционных и инвазионных болезнях животных и птицы // URL://https://www.fsvps.ru/fsvps/laws/164.htm
- 5. Доспехов Б.А. Методика полевого опыта (с основами статистической обработки результатов исследований). М.: Книга по Требованию, 2012. 352 с.
- 6. Литвинов С.С. Методика опытного дела в овощеводстве. М.ГНУ ВНИИО, 2011. 649 с.

ПРИМЕНЕНИЕ НАНОСТРУКТУРИРОВАННОГО L-АРГИНИНА ПРИ ПРОИЗВОДСТВЕ МОРОЖЕНОГО

Кролевец А.А.¹, Мячикова Н.И.², Глотова С.Г.¹, Семичев К.М.²

- 1 ЧОУ ВО «Региональный открытый социальный институт», Россия, Курск
- 2 ФГАОУ ВО «Белгородский государственный национальный исследовательский университет», Россия, Белгород, myachikova@bsu.edu.ru

В настоящее время проведено достаточное количество экспериментальных и клинических исследований, подтверждающих целесообразность применения L-аргинина при заболеваниях, развитие которых сопровождается дефицитом оксида азота (NO). Так, введение L-аргинина при экспериментальной легочной гипертензии новорожденной крысе повышало как содержание оксида азота в легких, так и функцию дыхания. Немаловажную роль L-аргинин играет и для обеспечения функции эндотелия. Эндотелий представляет собой тонкую полупроницаемую мембрану, которая выстилает все кровеносные и лимфатические сосуды, а также сердечные полости. В артериях и венах эндотелий служит барьером между кровью и гладкомышечными клетками. Стенки капилляров построены целиком из эндотелиальных клеток.

Физиологическая активность биологически активных соединений в организме в значительной степени определяется размером капсул [3]. Кроме того, при исследовании многих лекарственных веществ установлено, что их биодоступность и эффективность повышаются с уменьшением размеров частиц [4].

Цель данного исследования заключается в изучении отдельных свойств наноструктурированного L-аргинина и возможности его применения при производстве мороженого.

В качестве оболочек для L-аргинина использовали альгинат натрия, конжаковую камедь, геллановую камедь, натрий карбоксиметилцеллюлозу, каррагинан, ксантановую камедь. Подготовку образцов и проведение исследований проводили в соответствии с методикой, описанной в работе [5]. Результаты исследований по определению размеров наноструктурированного L-аргинина в различных оболочках представлены в табл. 1.

Анализ полученных данных по определению размеров наноструктурированного L-аргинина показывает, что размеры наночастиц в значительной степени определяются природой оболочки.

Мороженое является любимым лакомством не только детей, но и взрослых, поэтому его обогащение, в том числе L-аргинином, является одним из возможных путей попадания данного жизненно необходимого вещества в наш организм.

Таблица 1 — Статистические характеристики распределений частиц по размерам в образцах нанокапсул L-аргинина в различных оболочках (соотношение ядро: оболочка 1:3)

(commone nopo : ocono ma 1 : 2)						
	Значение					
Параметр	альги-	конжа-	гелла-	натрий карбоксиме-	карра- гинан	ксанта-
	нат	ковая	новая			новая
	натрия	камедь	камедь	Tristiquesismosiosa	THIIGH	камедь
Средний раз-						
мер, нм	259	191	194	344,1	163	259
D10, нм	70	83	101	65,4	66	70
D50, нм	112	166	165	247,9	123	112
D90, нм	955	340	310	691,2	234	955
Коэффициент						
полидисперс-						
ности, (D90-						
D10)/D50	5,22	1,55	1,27	2,52	1,37	5,22
Общая кон-						
центрация						
частиц, $\times 10^{12}$						
частиц/мл	0,66	4,18	8,82	7,99	0,69	0,66

Мороженое с наноструктурированным L-аргинином производили по традиционной технологии.

Готовый продукт характеризуется следующими показателями: кислотность – 20-21°Т; взбитость составляет 100%; вкус и запах – характерные для

мороженого, приготовленного без наполнителей, посторонние привкусы и запахи отсутствуют; консистенция — плотная; структура — равномерная; цвет — равномерный по всей массе.

Таким образом, наноструктурированный L-аргинин вполне может использоваться в функциональных продуктах питания профилактического назначения.

Литература

- 1. Furchgott, R. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle be acetylcholine / R. Furchgott, I. Zawadski // Nature. 1980. Vol. 288, №5789. P. 373-376.
- 2. Марков, X. М. Молекулярные механизмы дисфункции сосудистого эндотелия // X.М. Марков // Кардиология. 2005. Т. 45. №12. С. 62-72.
- 3. Patent 20110223314 United States, International Class B05D 7/00 20060101 B05D007/00. Efficient Microencapsulation. ZHANG; Xiaoxiao; (Honolulu, HI); Garmire; David; (Honolulu, HI); Ohta; Aaron; (Honolulu, HI). Serial No.: 045244. Filed: March 10, 2011.
- 4. Vidhyalakshmi, R., Bhakyaraj, R., Subhasree, R. S. A Review // Advances in Biological Research. Vol. 3-4. 2009. Pp. 96-103.
- 5. Кролевец, А. А. Исследование нанокапсул природных биологически активных соединений. Нанокапсулы унаби / А. А. Кролевец, И. А. Богачев, О. В. Жданова // Евразийский Союз Ученых. Фармацевтические науки. 2015. №1-2 (18). С. 54-59. Режим доступа: https://www.elibrary.ru/item.asp?id=27439053.

ИСПОЛЬЗОВАНИЕ НАНОСТРУКТУРИРОВАННОГО ВИТАМИНА D ДЛЯ ПРОФИЛАКТИКИ КОРОНАВИРУСА COVID-19

Кролевец А.А.¹, Мячикова Н.И.², Биньковская О.В.², Глотова С.Г.¹, Мамаева Е.М.¹, Шкондин Е.А.²

- 1 ЧОУ ВО «Региональный открытый социальный институт», Россия, Курск, <u>a krolevets@inbox.ru</u>
- $2-\Phi\Gamma AOY$ BO «Белгородский государственный национальный исследовательский университет», Россия, Белгород

Больше 80% россиян страдают от нехватки витаминов в организме. К такому выводу пришли ученые ФИЦ питания и биотехнологии. Острее всего стоит проблема с нехваткой витаминов D, B₂ и каротиноидов. Из-за этого люди чаще болеют, у взрослых снижается работоспособность, а дети хуже развиваются физически и психически. Ученые ФИЦ питания и биотехнологии выяснили, что в России лишь 14% взрослых и 16,8% детей старше четырех лет получают все необходимые для здоровья витамины в нужном количестве. Массовое обследование представителей разных возрастных групп и жителей разных регионов проводилось в 2015–2017 гг. Принципиальным отличием этой работы стало внимание к обеспеченности людей сразу несколькими витаминами. Полигиповитаминоз нашли у каждого пятого взрослого и почти у 40% детей. Исследование у взрослых проводили по анализу крови, а у детей нетравматичным методом – по анализу мочи.