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Abstract: This article describes the technology for manufacturing a metal composite structure of a
metal-cutting tool body. The main problem with using metal 3D-printing is its prohibitively high
cost. The initial data for carrying out finite element calculations are presented, in particular, the
calculation and justification of the selected loads on the drill body arising from metal-cutting forces.
The described methodology for designing a digital model of a metal-cutting tool for the purpose
of its further production using SLM 3D metal printing methods facilitates the procurement of a
digital model characterized by a reduced weight and volume of material. The described design
technology involves the production of a thin-walled outer shell that forms the external technological
surfaces necessary for the drill body, as well as internal structural elements formed as a result of
topological optimization of the product shape. Much attention in this article is paid to the description
of the technology for filling internal cavities with a viscous metal polymer, formed as a result of the
topological optimization of the original model. Due to this design approach, it is possible to reduce
the volume of 3D metal printing by 32%, which amounts to more than USD 135 in value terms.

Keywords: topological optimization; metal polymer; 3D-printing; composite; tool

1. Introduction

The mechanical engineering industry is striving to find new means and production
technologies that can reduce the cost of production. At the same time, new technologies
should ensure not only a reduction in production costs, but also the preservation or im-
provement of the functional parameters of the product, such as strength, the density of
the internal structure, surface roughness, dimensional accuracy, hardness, ergonomics,
and other parameters [1–3]. The labor intensity of manufacturing is of great importance
in the cost of manufacturing parts, especially when manufacturing products of complex
shapes that have complex internal holes, cavities, and undercuts. In works [4–6], methods
are given for calculating the labor intensity of manufacturing engineering products, the
analysis of which shows that it is often the machine processing time that has the most
significant impact on the cost of manufacturing engineering products. Despite the fact
that technologists strive to optimize the machining process by using CNC equipment or
universal equipment and tools, the ability of production to optimize machine production
time is largely limited.
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Modern additive manufacturing methods, such as SLM 3D metal printing, can sig-
nificantly reduce the labor intensity of manufacturing complex-profile parts [6–11]. The
described technologies make it possible to produce high-strength engineering products
from metal powders of various alloys to produce internal cavities and thin walls. The
possibility of additive manufacturing of metal products using SLM methods has recently
attracted more and more attention from the tool industry. In articles [12–16], researchers
propose using 3D-printing for the manufacture of metal-cutting tools, modular cutters and
drills, and equipment. In particular, the most relevant area of application for SLM 3D metal
printing is the production of prefabricated metal-cutting tool housings (Figure 1), since the
presence of cutting heads made of hard alloys or high-speed steel in such a tool allows
for highly efficient processing. The housing itself serves for the correct positioning of the
cutting plates or heads; for the location of the technological cavities necessary in it, such as
cooling channels; and for transmitting torque from the machine spindle to the cutting head.
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Figure 1. Case drill model TID250F20-1.5. 1—drill body, 2—cutting head.

Among the advantages of manufacturing metal-cutting tool bodies, researchers high-
light the following: no need for complex production preparation when changing the
nomenclature; the ability to grow curved spatial surfaces, such as cooling channels; low po-
sitioning error due to the manufacture of the part in one installation; and high productivity
(15 cm3 per hour). At the same time, 3D metal printing also has a number of disadvantages
for the purposes of using this technology when printing metal-cutting tool bodies. The
disadvantages include the low dimensional accuracy of the resulting products, correspond-
ing to accuracy grade 14 or +/−50 microns, as well as high roughness, corresponding
to Ra10 +/−2, which requires the inclusion of finishing operations of working surfaces
using subtractive production methods in the technological process of manufacturing the
product. But the main disadvantage of using metal 3D-printing is the excessively high, non-
competitive production cost. Depending on the region and the availability of equipment
and technology, the cost may vary, but, for example, in the Eastern European region, the
cost of 3D metal printing using SLM technology varies from USD 7 to USD 15 per 1 cm3,
depending on the brand of powder.

The market retail price of the TID250F20-1.5 drill body is about USD 400, which
makes the production of the tool body using additive technology generally unfeasible; in
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addition, the printed body will also require additional finishing of the working surfaces
using subtractive production methods.

At the same time, the relevance of searching for new, quickly mastered technologies
for enterprises remains an important and pressing task. If the task of processing the outer
surfaces of a body tool using CNC machines is solvable, then mastering technologies
for making internal, curved, spatial technological cavities remain an urgent task. For
example, electrical discharge machining technologies require, in addition to an electrical
discharge machine, the production of an electrode tool. Also, when piercing spiral holes, it
is necessary to combine the translational and rotational motion of the workpiece and the
electrode tool [17–22]. These and other technological limitations force many enterprises
to abandon the development of complex production technologies and limit themselves to
the production of simpler designs. Modern production places high demands on the tool
industry; there is often a request for the manufacture of special metal-cutting tools for a
specific workpiece or technological process, which can be characterized by a low weight,
high cooling efficiency, and complex outer surface profile, and could be manufactured in a
short time. Therefore, the development of additive technologies for 3D-printing with metals
is an attractive area for various machine-building enterprises, which makes it possible to
increase the competitiveness of their products while reducing the cost of 3D-printing.

Thus, there is an important and urgent task of developing a way to reduce the cost of
metal 3D-printing, which can give a wider range of engineering enterprises the opportunity
to use metal 3D-printing in their technological processes.

The purpose of this article is to provide a method for reducing the volume of 3D-
printing a cabinet tool and, as a result, reducing the cost of its production. This article
provides a methodology for designing a solid model of a drill body for its subsequent
production using metal 3D-printing methods. The proposed technology is a new, patented
method and has not previously been found in the scientific literature. At the same time,
the newly designed drill has a smaller volume of metal while providing the necessary
strength. This can significantly reduce the cost of 3D-printing such a drill bit. It is proposed
to achieve a reduction in the volume of metal material through the use of topological shape
optimization. This makes it possible to obtain internal load-bearing structural elements
that provide the necessary strength of the drill body. After obtaining the power structural
elements, through a Boolean operation, these elements are combined with models of
external working surfaces. In this way, an optimized model of the drill body is obtained,
in which the necessary structural strength is ensured and the working surfaces of the tool
are preserved, but also, internal cavities are formed after removing the residual material.
Since, in topological optimization, it is proposed to take into account only the loads from
the cutting force in order to obtain a maximum reduction in the volume of material, the
forces from the technological equipment are not taken into account. Therefore, the interiors
of any structures must also be reinforced to ensure the strength of new structures when
loaded from technological equipment. The article describes the technology of reinforcing
the internal cavities of a drill body of a new design with a durable metal polymer. This is
necessary to ensure the strength of the drill body when exposed to loads from technological
equipment that were not taken into account when solving the topological optimization
problem. The original design of a vibro-vacuum unit for reinforcing hollow forms with a
metal polymer is also described.

2. Materials and Methods

To describe the proposed method for manufacturing composite structures of metal-
cutting tools, the concept of a metal composite product has to be introduced. A metal
composite product (a special case is the composite body of a metal-cutting tool) is a
metal shell of a thin-walled body that has complex profile internal elements, such as
cooling channels or structural elements for rigidity, and is filled with a durable metal
polymer composition.
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Metal-polymer materials include a wide range of different cold-hardening thermosets,
presented in Table 1. In general, metal polymers are a compound consisting of a modified
polymer matrix (20%), which is 80% filled with various fine fillers (steel, ceramics). The
filler, metal or ceramic, imparts unique properties to the cured material, and the polymer
matrix ensures the uniform distribution of particles in the compound.

Table 1. Types of metal polymers by functional purpose.

No. Polymer Composite
Material Group Purpose Tradename

1 Steel
Restoration (filling the lost

volume of metal) and gluing
of metal surfaces

Leo-Stal, Leo-T, Leo-A; Belzona 1111, Belzona 1121,
Belzona 1131; Multiplast 110; Devson-Alyuminij,

Devson-Bronza; Diamant-Standart-Stal,
Diamant-CHygyn, Diamant-Bponza,

Diamant-Alyuminij; MM SS-Stal, MM SS-Stal 381, MM
SS-Alyuminij, MM SS-Latun, MM SS-Bronza; Loctite
3460, Loctite 3461, Loctite 3462, Loctite 3463, Loctite

3465, Loctite 3466; Unirep 1, Unirep 2, Unirep 3,
Unirep 9; Qualco Q303, Qualco Q602, Qualco Q603;

Hi-Geer HG6002, Hi-Geer HG6302; Magnum Steel V
44020; Rekom-B; Anaterm 216; Polirem; Desan;

Leo-Ferro-hrom

2 Steel ceramics

Restoration, protection, and
bonding of metal surfaces

operating in aggressive
environments

Leo-Stal-Keramika; Belzona 1311, Belzona 1321,
Belzona 1341, Belzona 1391; Mul’tiplast 111;
Devcon-WR-2; Diamant-Kepam-Stal; MM

SS-Stal-Keramika; Loctite 7218, Loctite 7219; Unirep 12

3 Ceramics
Protection of metal surfaces

operating in aggressive
environments

Leo-Keramika; Belzona 1811, Belzona 1812; Mul’tiplast
112; Devson-Mikrokeramik,

Devson-Brashebl-Keramik; Diamant-Kepamika; MM
Keramium; MM Keramium DW Loctite 7226, Loctite

7227, Loctite 7228; Unirep 13, Unirep 20

4
High-temperature

polymer composite
materials

Working at elevated
temperatures

Belzona 1521, Belzona 1522, Belzona 1591;
Devcon-Titanium, Devson-Nerzhavejka; Loctite 3464,
Loctite 7229, Loctite 7230, Loctite 7232, Loctite 7234;

Hi-Geer HG6502; Car Go CG 18003 Termostal

Metal polymers are dispersion-filled repair composite materials of the cold-welding
system. This class of materials is designed to eliminate various problems that arise during
the operation of equipment in industrial enterprises. Metal polymers are made on the basis
of epoxy resins and powder fillers modified by physical and chemical methods. High adhe-
sive properties combined with structural strength, corrosion resistance, and wear resistance
make it possible to use metal polymers when restoring machine parts, as well as as adhe-
sives, sealants, protective coatings, and when replacing surfacing welding. After curing,
they can be machined, just like metals. The unique properties of metal polymers include the
following: the ability to restore parts from any materials (ferrous and non-ferrous metals,
non-metals); gluing dissimilar materials, including metals and non-metals; high chemical
resistance to acids, alkalis, petroleum products, solvents, and other aggressive environ-
ments; the absence of temperature and installation stresses after hardening; and the ability
to restore defects without disassembling and dismantling components and mechanisms.

Table 2 shows the physical, mechanical, and thermophysical properties of polymer
composite materials and structural materials on the market. Structural materials include
various alloys and steels.
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Table 2. Comparison of physical, mechanical, and thermophysical properties of polymer composite
materials and structural materials.

Parameter
Operating Value Range

Polymer Composite
Materials

Operating Value Range
Construction Materials

Hardness HB, MPa (according to [23]) 120 . . . 180 103 . . . 380
Tensile strength, MPa

under compression (according to [24]) 170 . . . 210
under tension (according to [25]) 25 . . . 110
when bending (according to [26]) 10 . . . 40 324 . . . 1500

with normal separation 2 . . . 40
(according to [27])

Elasticity modulus, MPa 2 . . . 150 up to 300
Heat capacity, kJ/kg K 0.2 . . . 3 up to 100

Thermal conductivity, W/(m K) 0.1 . . . 2.5 0.46 . . . 390

Temperature resistance, ◦C −120 . . . +180,
for a short time +230 800

An analysis of Table 2 and studies [28–32] shows that the strength characteristics of
polymer composite materials are inferior to structural ones, and their anisotropy is also
observed. For example, the tensile strength under compression is 5 times more than the
tensile strength under tension, and the tensile strength with normal separation is 10 times
less than the tensile strength under tension. The thermal properties of structural materials
differ 30 times from the properties of polymer composites. The most important parameter
of polymer composite materials is a lower level of heat resistance.

Based on the experience of using polymer composite materials for their use as a
material for the formative parts of a mold [33], it can be concluded that for the need to
reinforce hollow, thin-walled shell forms grown by SLM 3D metal printing, it is most
rational to use the LEO Ferro-Hrom metal polymer [34], the characteristics of which are
given in Table 3.

Table 3. Physico-mechanical and technological characteristics of the LEO Ferro-Hrom metal polymer.

Characteristic Parameter Value

Specific gravity of the composition, g/cm3 2.5
Viability of the prepared composition, min (at 18 . . . 20 ◦C) 45
Temperature resistance, ◦C (according to Vicat) (according

to [35]) 300

Operating temperature, ◦C −120 to +170
Curing time, hour (at 20 ◦C):

- up to the possibility of machining
- full strength

3.5 . . . 4
24

Brinell hardness, MPa (according to [23]) 310
Tensile strength, MPa:

- under compression (according to [24])
- when bending (according to [26])

- with normal separation from steel (according to [27])

230
76
45

To study the strength of the drill body, the finite element method has been used [36–38].
For the topological optimization of the digital solid model, in order to develop curved cool-
ing channels and create an internal structural frame and internal cavities, the Altair Inspire
2022.1.1 software was used, as well as Kompas3D V20.0.0.3002. Topological optimization
methods are described in [39–42]. Topological optimization allows us to perform a strength
calculation of a digital model in order to identify those areas of the model material through
which payloads are transferred from the fastening points to the actuating surfaces. For
example, for a cabinet drill, this is the transfer of loads from the place where the shank
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is secured in the machine chuck to the surfaces of the seating planes of the drill head.
Based on the results of calculations, the material in the body of the digital model that is not
involved in the transfer of payloads is removed. This technique allows us to reduce the
material consumption of the model, taking into account a given safety margin.

To carry out strength calculations and topological optimization, it is necessary to
know the initial load data. To understand the cutting forces that a drill experiences during
drilling, a diagram of the cutting forces for a drill body is presented in Figure 2.
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Figure 2. Diagram of cutting forces acting on a drill body.

According to [43,44], the cutting force is laid out as shown in Figure 2 for several
components of forces, such as Px (the force parallel to the axis of the drill or axial force);
Py (the force perpendicular to the drill axis or radial force); and Pz (a tangential force), the
vector of which is tangent to the circle on which point A is located, that is, the point of the
resultant force. The presented diagram of forces is equal for both drill blades.

On the bridge, only the cutting forces represented by the axial forces (Pxo) are deter-
mined; the other two forces are negligibly small.

The auxiliary edge (ribbon) perceives force Pzr, the vector of which is directed tan-
gentially to the circle of nominal diameter (D), as well as force Pxr, the vector of which is
directed parallel to the axis of the drill. Early research suggests that the nature of these
forces represents frictional forces.

Using simple mathematical transformations, the total force acting along the axis of the
drill along the X axis (1) can be presented.

∑ X = 2Px + PxII + 2Pxπ = P0, (1)

The research [45,46] shows that the total cutting torque during drilling is spent on the
main cutting edges in the amount of 0.8 fractions of the total value on the main cutting
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edges, as well as 0.08 on the transverse edges; 0.12 of the total force is spent on friction from
chips on the drill and strips drills on the surface of the workpiece.

The research shows that the power (W) spent on cutting is the sum of the power spent
on rotating the drill and the power spent on the feed movement. Since the feed power is
in the range from 0.5 to 1.5% of the rotation power, it can be neglected in the calculations.
According to [47], the power spent on drill rotation can be calculated using Formula (2).

Nrot =
Mkrn
9.55

=
MkrV
0.03D

, W (2)

where Mkr is the torque during drilling processing, Nm; n is spindle rotation speed, rpm.
A significant reduction in feed force and torque occurs when using lubricating and

cooling technological means, and can reach up to 40%. But when calculating strength,
options with the most loaded cases of drill operation should be used in order to guarantee
performance under the most difficult conditions [48].

Also, axial force and torque depend on the characteristics of the material being pro-
cessed, the material of the cutting insert, the cutting conditions, and the tool geometry. Tool
geometry is one of the main factors when calculating the cutting force when drilling. The
cutting process is influenced by such tool geometry parameters as the cutter angle, the
inclination angle of the cutting edge, the radius of curvature of the tip of the cutting edge,
and the angle between the feed direction and the direction perpendicular to the workpiece
surface. All of these parameters are taken into account while calculating coefficients when
determining the cutting force. Usually, cutting forces are determined using standard ta-
bles and reference books or using special calculators The reference materials specify the
cutting force values, taking into account correction factors, particularly the observational
parameters of all cutting parameters and the geometric tool.

Thus, the power expended can be known, which can be determined experimentally by
removing it from the CNC machine rack. By calculating it using special calculators, the data
for loading the drill in programs, using the FEM module (finite element analysis module) to
calculate the strength of the elements of the drill body, are obtained. It facilitates the design
of a new drill body in the future, taking into account new approaches to its manufacture.

When referencing technological data [43–48], it has been established that when drilling
holes with a diameter of 20 mm with a feed value of S0 = 0.1 mm/rev in a steel workpiece,
the tabulated value of the axial cutting force is equal to Ptabl = 3600 N. The axial cutting
force of the line depends on the machinability coefficient of the material, which for steel
with a hardness HB = 170–229 is equal to Kp = 1.0. Thus, the axial cutting force is P0 = 3600
N, while the cutting force on the main sharp edges is P = P0*0.8 = 2880 N. Considering that,
within the frame drill model, there are 2 limits that perceive the cutting force from the main
edge, the cutting force on one edge is equal to 1440 N. The calculated value of the cutting
force on the main cutting edge, equal to 1440 N, was used when loading the model and
performing strength calculations using the finite element method.

An analogue of 40X steel was chosen as the body material of the model subjected
to research.

3. Results

The essence of the proposed technology for manufacturing metal composite structures,
proposed as a way to reduce the cost of the additive manufacturing of metal products,
such as a drill body, is to reduce the volume of 3D-printing. It is proposed to reduce
the volume of metal 3D-printing through the topological optimization of the product
shape. However, when solving the problem of topological optimization, when specifying
fastening locations, the program makes such surfaces conditionally rigid and unchangeable.
With this formulation of the problem, we do not always take into account the additional
loads on the product. On the other hand, calculating a product using the finite element
method and carrying out topological optimization on its basis, taking into account all
possible loading scenarios, on products whose shape has many spatial curves and small



J. Manuf. Mater. Process. 2024, 8, 44 8 of 23

dimensions, can overload the calculation model. Overloading the calculation model may
require a large number of calculation resources. A complex calculation model can lead to
calculation errors and the formation of various collisions. The results of the calculation can
be represented not only by the creation of solid load-bearing structures, but also by the
formation of various surface elements, etc. The optimized model itself can be overloaded
with additional structural elements, various internal trusses and supports, and excessive
thickening of structural elements. In this case, additional strength elements of the structure
can neutralize the usefulness of using topological optimization, which can be reflected in
the increased material consumption of the structure and negate the economic efficiency
of 3D metal printing. Further, this article reveals those surfaces that are not involved in
the direct transmission of cutting forces, but are important from the point of view of the
performance of the drill body.

3.1. Description of Important Technological Surfaces of the Drill Body

The main internal surface of the body frame is the surface of the cooling channels
(Figure 3).
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Making internal cooling channels using subtractive processing methods is a rather
complex technological task, requiring special equipment and the development of complex
technologies. Typically, cooling channels are made either along a broken path, by crossing
cylindrical holes, or by making a straight hole in the body blank, followed by heating
and twisting the turns of the drill. That is, the turns of the drill are formed by heating
and twisting the milled workpiece. Another technology is the use of electrical discharge
machining. Electroerosion requires significant technological preparation, the manufacture
of electrode tools, and the combination of translational and rotational motion. At the
same time, the most important and difficult-to-achieve factor when using subtractive
technologies is the manufacture of holes for cooling channels with a non-round profile and
variable cross-section. Changing the cross-sectional profile can increase the coolant flow,
which leads to a decrease in the thermal stress of the cutting process and an increase in
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tool life [49–51]. Figure 4 shows a comparison between the cross-sectional area of a circular
cooling hole (a) and the complex cross-sectional shape (b).
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Figure 4. Scheme for calculating the cross-sectional area of cooling channels of various shapes.
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From the automated calculations shown in Figure 4, it is clear that the area of the
optimized shape of the cooling channel is increased relative to the circular one by 1.56 mm2

or by 29.38% relative to the circular section with a diameter of 2.6 mm.
An increase in the cross-sectional area of the cooling channel can help to increase the

volume of coolant that flows to the cutting zone. This can help to effectively cool the work
tool, preventing it from overheating and improving the overall performance. Another
positive factor is the more efficient removal of chips and metal particles from the cutting
zone. A larger cross-sectional area can reduce coolant pressure, which can be helpful in
preventing unnecessary stress on the tool and can result in a longer tool life.

The next critical surface of the drill body, subjected to associated loads, is the surface
of the chip flutes (Figure 5).
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Figure 5. The outer surface of the chip flute of a drill body.

This surface absorbs the forces generated by the friction of the chips on this surface. In
addition, during the cutting process, the formation of a chip packing effect in the channel
formed by the surface of the hole being machined and the chip removal groove is possible.
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Due to the properties of the material being processed, incorrect processing modes, and high
roughness of the chip flute, chips may accumulate, become compacted, and be collected in
a bag. Then, the formed package, if not removed, begins to exert pressure on the surface of
the chip groove. Although the described forces are insignificant compared to the cutting
forces, when manufacturing the drill body in the form of a thin-walled shell, they can lead
to the deformation of the drill body and its failure. Therefore, it is necessary to provide
reinforcement to the inner surface of the chip flutes. For this purpose, it is proposed to use
filling voids with a metal-polymer composition.

The correct design of the tool shank area also requires a careful analysis of Figure 6.
The loads that the drill body shank absorbs when it is clamped in the chuck significantly
influence the topological optimization process. The compression forces of the shank from
three-jaw, collet, hydroplastic, and other types of chucks are significant, since it is thanks
to these forces that torque is transmitted from the machine spindle to the drill body.
Consequently, cavities formed during topological optimization cannot be left hollow, as
this leads to the deformation of the structure from accompanying loads that are not taken
into account in the optimization problem and are perceived by the structure of the drill
body. When designing a shank as a thin-wall structure, it is important to provide a bridge
from the opposing surfaces of the shank that are subject to clamping forces. In this case, the
clamping forces on opposite sides compensate themselves. This can be achieved by filling
the voids with a metal polymer that has sufficient compressive strength [32,34].
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Figure 6. Thin-walled area of the drill body shank.

Another group of surfaces that have special requirements are surfaces for mounting
the cutting head (Figure 7).

Section 2 (Materials and methods) provides the necessary data for the topological
optimization of the drill body shape. The material and loads arising from metal cutting are
indicated. In Section 3.1., the working surfaces of the drill body are described; all of these
surfaces have an important technological purpose to ensure the functionality of the drilling
process and must form a thin-walled shell when creating a topologically optimized design;
that is, they must be preserved. Next, this article reveals the description of the methodology
for creating the shell structure of a drill body using topological shape optimization tools.
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3.2. Methodology for Topological Optimization of the Drill Body

When solving a topological optimization problem, the first step is to make sure that
the original model subjected to the optimization procedure is able to withstand workloads
and has the necessary safety margin [39–42]. The margin of safety of the original model
indicates that there is the ability for optimization in the model. If the strength of the original
model is not ensured or the model has a safety factor equal to one, this means that such a
model cannot be optimized. The safety factor of the original model is calculated using a
standard FEM analysis, which is described in detail in earlier studies [36,38]. The process of
calculating the strength of the TID250F20-1.5 drill body model is deliberately not given in
this article to reduce its volume. It should be noted that the minimum design safety factor
for the drill body of the TID250F20-1.5 model corresponds to 1.2. In addition, this model is
widely used in industry and its initial strength has been confirmed in practice.

In the second step of the topological optimization method, it is necessary to modify
the original model by identifying unchangeable areas in it. Unchangeable areas include
those surfaces that are of significant technological importance, that is, those surfaces that
have been described in Section 3.1. At this stage, some difficulties arise.

To select immutable areas using standard tools, AltairInspire provides the “partition”
tool (Figure 8).

As can be seen from Figure 8, when using the “partition” tool, the generated un-
changeable areas when selecting working faces are generated in the form of prismatic
objects, and do not take into account the contours of the original model itself. Therefore,
zones 2 (Figure 8) are formed where unchangeable areas go beyond the contours of the
original model. Since these unchangeable areas are subsequently isolated in the form of
separate solid elements that can make up the final optimized model, the original geometry
of the tool is violated. When selecting many faces that form the contour of the original
model, collisions often arise, which leads to not the formation of a solid element, but to the
formation of a surface or situation where it is completely impossible to create a new object.

There are also other limitations when creating immutable regions, such as the need for
finishing, since the quality of 3D-printing does not meet the requirements for the roughness
of some surfaces (Ra 0.8) and dimensional accuracy corresponding to the six–seven accuracy
level. Therefore, it should be taken into account that some places in the model should
not only merely form a thin-walled shell, but also ensure the subsequent fastening of this
part in the machine, for example, in the centers. That is, the thickness of the metal part in
these places must ensure that the centering holes are made in these places, and the internal
structure must provide strength in the direction of the efforts to secure the workpiece on
the machine.
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The next question is what should be the minimum thickness of those unchangeable
surfaces that are necessary in the design of the drill, but do not experience significant loads.
It is advisable to make such surfaces as thin as possible, taking into account the fact that
they can subsequently be reinforced with a metal polymer from the inside. But, here, some
technological limitations appear. The first technological limitation is what minimum wall
thickness a 3D printer can provide. Since the printed workpiece is elongated, if the outer
walls are too thin and the thickness of the internal elements varies, internal stresses, ironing,
and deformations may occur. In addition, an important factor for the performance of the
drill body is the hardness of its outer surfaces, which can subsequently be ensured by
chemical–thermal treatment or thermal treatment. From reference [52], it is recommended
to use a minimum wall thickness of 2 mm.

During the iterative modeling of immutable regions, after many failures, it is most
advisable to avoid selecting immutable regions in elements such as the head of the drill
body; due to its small size and many faces and surfaces, this process is very labor-intensive
and does not provide effective material savings as a result of topological optimization.
Therefore, it is recommended to select a complex area by simply cutting a plane at the
transition point of this area to a simpler part of the model. In principle, when designing a
thin-walled shell of a drill body, it is recommended to completely divide the model into
separate parts and process these parts separately. For example, in the case of a drill body,
it is recommended to distinguish three parts, the mounting head (Figure 9a), the middle
screw part (Figure 9b), and the shank (Figure 6).

If it is not practical and difficult to process the seating head of the drill body (Figure 9a)
in order to obtain a shell from it, then obtaining a thin-walled shell for the screw middle
part of the drill body (Figure 9b) is not difficult.

At the final stage, it is necessary to design the unchangeable areas occupied by the
cooling channels. This task is trivial and does not pose any difficulty for the designer. This
is carried out by specifying a trajectory line, along which a sketch of the cross-sectional
contour of the cooling channel is drawn out. Tools for modeling cooling channels are
present in any modern CAD program; for example, in this study, the tools of the Kompas3D
V20.0.0.3002 software product were used.
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Figure 9. Selecting unchangeable areas of the drill body model in AltairInspire; (a) selection of the
landing head; (b) highlighting the thin-walled shell of the middle screw part of the drill body.

Thus, four parts of the model were obtained; these are the landing head (Figure 9a),
the thin-walled middle screw part (Figure 9b), the thin-walled shank (Figure 6), and the
cooling channel rods. By connecting these parts together using a Boolean operation and
subtracting the resulting region from the original drill model, the region of the topology
optimization space (Figure 10) was obtained.
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Figure 10. The area where the drill body changes is subject to the topology optimization procedure.

Next, the hollow body and optimization zone are assembled, the necessary fastenings
are specified and work loads are applied, the material characteristics are specified, and
the procedure for calculating the topologically optimized shape is carried out. As a result
of modeling and calculations, new models of drill bodies with round and profile cooling
channels are obtained, characterized by the presence of internal technological cavities. In
Figure 11, the assembly of the components of the drill body is shown with profile cooling
channels. The assembly consists of a head, surfaces of cooling channels, a load-bearing
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structural element obtained through topological optimization, and the thin-walled shell of
the housing and a shank.
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imum safety margin corresponds to the value of 1.2, which means that the created design 
provides the necessary safety margin for the drill body. 

Figure 11. Assembling the components of the drill body: (a) is a structural part of the cooling channels;
(b) is a structural part of the optimized zone and cooling channels; (c) is a structural part of the drill
body, consisting of an optimized zone, cooling channels, and landing head; (d) is the assembly of all
elements of the optimized drill body model.

By combining all of the resulting parts into a single model, it is possible to obtain
an optimized model of the drill body, for which it is necessary to calculate the strength
using the finite element method. Figure 12 shows the safety factor diagram of the new
optimized drill body design. Figure 12 also shows the symbols of the imposed restrictions
on the movement of the model, which are necessary for calculations by the finite element
method. The surfaces on which restrictions on the degrees of freedom are imposed are the
cylindrical surface of the drill shank (restriction 1) (Figure 12), installed in the chuck and
through which torque is transmitted from the spindle. There is also restriction 2 (Figure 12),
imposed on the end surface of the conical section of the drill body, which serves as a limiter
for the extension of the drill relative to the axis of the chuck hole. These restrictions are
conventionally depicted by red cones. An analysis of the diagram shows that the minimum
safety margin corresponds to the value of 1.2, which means that the created design provides
the necessary safety margin for the drill body.

Despite the fact that the safety margin of the drill is provided by the metal structure of
the drill body, it is necessary to take into account that the internal cavities formed as a result
of the optimization of the internal part of the drill can be reinforced with a metal-polymer
composition. The reinforcement of the internal cavities with a metal polymer increases
the strength and rigidity of the structure. However, the acquired strength provided by the
metal-polymer material is not taken into account in this stage of topological optimization.
This is due to the complexity of constructing a computational model, which requires
gluing together a large number of faces of the metal polymer and metal parts of the
computational model.
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Figure 12. Safety factor diagram of a drill model. (a) A diagram of the safety factor of the solid drill
body (min 1.3); (b) a safety factor diagram of the optimized drill body, but without the middle outer
part (min 0.5); (c) a safety factor diagram of the optimized drill body (min 1.2); 1 is a symbol of the
cylindrical part of the shank, deprived of the ability to move under loads; 2 is a symbol of the end of
the conical part of the body, deprived of the ability to move under loads.

In Figure 13, the mass-centering characteristics of the original, solid model of the drill
body are shown, and Figure 14 shows the resulting optimized model of the drill body.
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Figure 14. Mass-centering characteristics of a topologically optimized model of a core drill.

As can be seen from the calculation of the mass-centering characteristics, the weight of
the drill body model is reduced from 337.3 g to 134 g, which, with a density of 8000 kg/m3 of
the metal powder intended for use for the 3D-printing of the EP648 brand (XH55B5MБTУ),
can correspondingly be equal to a volume of 42.16 cm3 and 16.75 cm3.

The difference in the design of the metal part of the drill body is reflected in the change
in the coordinates of the center of gravity of the drill, which is shown in Figures 13 and 14.
However, in the future, when filling (reinforcing) the voids of the body with a liquid metal
polymer, the coordinates of the center of gravity will change, since new material will be
added to the structure. When constructing internal structural elements using topological
optimization methods, a plane of symmetry is specified in order to eliminate the imbalance
of the model relative to the longitudinal axis. However, SLM 3D metal printing cannot
ensure the absolute symmetry of the manufactured model due to various production factors.
Therefore, the finishing treatment of the composite drill body must include the operation
of balancing the finished tool in order to prevent the center of gravity from moving from
the axis of the tool and to eliminate vibrations during its operation.

3.3. Filling Internal Cavities with Metal Polymer

The proposed technology for obtaining a metal composite structure of a drill body, by
filling the internal cavities formed as a result of the topological optimization described in
the previous section, is not the simplest task. This is due to the rheological characteristics of
the metal polymer. The metal polymer itself has a viscous consistency and requires special
equipment to implement the technological process of filling hollow forms. Also, the shell
form itself requires minor modifications.

To implement a method for filling a hollow shell mold with a viscous metal polymer,
a vibration-vacuum method for filling hollow shell molds with viscous metal polymers has
been developed [53]. Regarding the modification of the drill body model, it is necessary to
provide the model holes through which the metal polymer can be fed into the hollow body.
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These holes must be located in the lower part, at the end of the shank. And in the upper
part, it is necessary to provide exit holes.

The essence of the vibration-vacuum method is illustrated in Figure 15, which shows
a digital model of the developed device.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 20 of 27 
 

 

has been developed [53]. Regarding the modification of the drill body model, it is neces-
sary to provide the model holes through which the metal polymer can be fed into the 
hollow body. These holes must be located in the lower part, at the end of the shank. And 
in the upper part, it is necessary to provide exit holes. 

The essence of the vibration-vacuum method is illustrated in Figure 15, which shows 
a digital model of the developed device. 

 
Figure 15. Digital model of a vibro-vacuum device for implementing a method of filling shell molds 
with a viscous metal polymer. 

Previously, using one of the known 3D-printing methods, a thin-walled shell mold 
(10) of the product is manufactured with projections (11) and the sprue (12) provided in 
it. The mold (10) is fixed in a clamp (9) inside the vacuum chamber (8) and, using a line 
(20), its sprue (12) is hermetically connected to the fitting (17), externally, using the line 
(20) and taps (18) connected to the container (21), which contains a liquid metal-polymer 
composition. The container (21) can be either a simple volume vessel or one of the known 
devices for mixing and dosing two-component compounds, such as metal polymers. The 
vacuum chamber (8) is closed from above with a lid (13). 

The vacuum pump (4) is turned on, which, through a vacuum line (19) connected to 
a valve (18), which in turn is connected through a fitting (17) to the vacuum chamber (8), 
pumps out air from the vacuum chamber (8), creating a vacuum in it of up to 400 Pa (to 
the level of boiling of the metal polymer). In this case, the cover (13), due to the seal (14), 
is tightly pressed against the open end of the vacuum chamber (8). The vacuum level is 
monitored by visually monitoring the readings of the vacuum gauge (16). Upon reaching 
the specified vacuum level in the vacuum chamber (8), valve (18) connects the vacuum 
chamber (8) with the vacuum line (19) closed and the vacuum pump (4) switched off. 

The vibrators (22) are turned on, as a result of which the base plate (5), under the 
influence of vibration excitation from the vibrators (22), as well as gravity on the one hand 
and the energy of the springs (7) on the other, begins to vibrate, making translational 
movements relative to the frame (1), being centered by the rods (6) coaxially relative to 
the racks (3). The vibrating base plate (5), due to its rigid connection with the vacuum 
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with a viscous metal polymer.

Previously, using one of the known 3D-printing methods, a thin-walled shell mold
(10) of the product is manufactured with projections (11) and the sprue (12) provided in
it. The mold (10) is fixed in a clamp (9) inside the vacuum chamber (8) and, using a line
(20), its sprue (12) is hermetically connected to the fitting (17), externally, using the line
(20) and taps (18) connected to the container (21), which contains a liquid metal-polymer
composition. The container (21) can be either a simple volume vessel or one of the known
devices for mixing and dosing two-component compounds, such as metal polymers. The
vacuum chamber (8) is closed from above with a lid (13).

The vacuum pump (4) is turned on, which, through a vacuum line (19) connected to
a valve (18), which in turn is connected through a fitting (17) to the vacuum chamber (8),
pumps out air from the vacuum chamber (8), creating a vacuum in it of up to 400 Pa (to
the level of boiling of the metal polymer). In this case, the cover (13), due to the seal (14),
is tightly pressed against the open end of the vacuum chamber (8). The vacuum level is
monitored by visually monitoring the readings of the vacuum gauge (16). Upon reaching
the specified vacuum level in the vacuum chamber (8), valve (18) connects the vacuum
chamber (8) with the vacuum line (19) closed and the vacuum pump (4) switched off.

The vibrators (22) are turned on, as a result of which the base plate (5), under the
influence of vibration excitation from the vibrators (22), as well as gravity on the one hand
and the energy of the springs (7) on the other, begins to vibrate, making translational
movements relative to the frame (1), being centered by the rods (6) coaxially relative to the
racks (3). The vibrating base plate (5), due to its rigid connection with the vacuum chamber
(8), transmits vibration to it, and it, in turn, to the clamp (9) fixed on its bottom, which in
turn transmits vibration to the form (10) installed in it.
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During the vibration of the mold (10), the valve (18) installed on the container (21)
with the liquid metal polymer and the valve (18) installed on the fitting (17) of vacuum
chamber (8), connected to each other by a line (20), open. The liquid metal polymer from
the container (21), under the influence of a vacuum formed in the vacuum chamber (8)
and, accordingly, in the mold (10), is sucked into the mold (10), filling it, while, due to
the presence of vibration in the mold, the liquid metal polymer has greater fluidity, which
makes it possible to fill all cavities and undercuts of the mold (10) formed, including both
the geometric design of the product itself and the technological features of the layer-by-
layer manufacturing of the mold (10) using 3D-printing methods. Monitoring the filling
of the mold (10) with the liquid metal polymer is carried out by visually monitoring the
filling of the vents (11) of the mold (10) with the liquid metal polymer, carried out through
the viewing window (15) in the lid (13).

After the appearance of the liquid metal polymer in the vents (11), by closing the
valves (18) on the vacuum chamber (8) and the container (21), through which the liquid
metal polymer is supplied, the supply of the liquid metal polymer to the mold is stopped,
and the vibrators (22) are turned off. The line (20) connecting the container (21) with the
vacuum chamber (8) is disconnected from the tap (18).

Next, the container (21) can be connected to the next device, with another mold (10), to
repeat the cycle of filling the mold (10) with the liquid metal polymer, or it can be cleaned
of liquid metal polymer residues chemically.

After curing the metal polymer in the mold (10), by opening the valve (18) connecting
the vacuum chamber (8) with the vacuum line (19), atmospheric pressure is established in
the vacuum chamber (8), and the cover 13 is removed. The internal line (20) connecting
the fitting (17) to the sprue (12) is removed and chemically cleaned before the next use. A
composite product consisting of a shell mold (10) and a metal polymer filling is removed
from the clamp (9). Next, the sprue (12) and protrusions (11) are removed mechanically.
In this way, a composite product is obtained, consisting of a thin-walled shell and a metal
polymer filler.

The fitting (17) and the tap (18) through which the metal polymer is supplied are
cleaned chemically (for example, using a special solvent) of the metal polymer residues in
them, after which the device can be reused. Figure 16 shows a laboratory installation for
filling thin-walled shell molds with a liquid metal polymer.
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The installation presented in Figure 16 was used for the manufacture of metal-
composite mold-forming plates. Figure 17a shows a composite mold plate manufactured in
the installation, consisting of a metal frame (1) and a metal polymer mold (2). In Figure 17b,
the composite mold (4) is shown, which is mounted on an injection molding machine. The
mold consists of a matrix and a punch (4) with metal polymer forming parts (2) made in
them. Figure 17b also shows part 3 (gear) cast from polypropylene in a composite mold.
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Figure 17. Composite metal metal-polymer-forming equipment, manufactured using a laboratory
installation (Figure 16): (a)—view of the parting plane of the forming part; (b)—view of the mold
installed on the injection molding machine; 1 is a metal clip; 2 is a metal-polymer-forming part; 3 is a
product cast in a mold (gear); 4 is a composite mold mounted on an injection molding machine.

4. Conclusions

This article describes a methodology for designing a thin-walled shell shape of a drill
body using topological optimization methods. Based on the design results, it is possible to
obtain a drill body model within the necessary safety margin and that, at the same time,
can be characterized by a reduced volume of material. Table 4 shows the calculation of the
cost of manufacturing a drill body using 3D-metal-printing methods for a solid model and
an optimized one with internal technological cavities.

Table 4. Calculation of the cost of 3D-printing with metal drill body TID250F20-1.5 using the SLM
method in various designs.

Execution Part Volume,
cm3

Support
Volume, cm3

Cost of 1 cm3 of
Printing (Product +

Support), USD

Manufacturing
Complexity, h

Manufacturing
Cost, USD

Safety
Margin

Full-bodied 42.16 18 7 12 421.12 1.3
Optimized 16.75 24 7 7.2 285.25 1.2

Table 4 shows that the estimated cost of manufacturing a drill body using metal 3D-
printing methods decreased by 32.26%, which makes the use of metal 3D-printing for the
purpose of manufacturing a drill body as an economically feasible solution. In this case,
simply manufacturing a drill body, even optimized by topological optimization methods,
with a reduced volume of material is also not applicable, since the formed cavities must be
filled with something in order to give the required rigidity to the entire structure.

The drill body does not experience significant thermal stress during the cutting process,
since effective cooling of the cutting zone is ensured, and the cutting zone itself is removed
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from the body due to the presence of a cutting head. Consequently, temperature expansions
are negligibly small and do not affect the performance of the metal-composite structure.

Many manufacturers use molten metal to fill internal processing cavities. By using
different materials in the design of body tools, manufacturers achieve the dampening of the
tool’s own vibrations, which has a beneficial effect on the quality of the machined surface
when working with such a tool. The influence of the metal–metal-polymer bond in the
composite structure of the drill body from the point of view of vibration damping has not
been studied to date, but is of significant research interest.

At the same time, the proposed vibration-vacuum method of filling voids with a
metal polymer and the equipment for its implementation are much simpler and cheaper
compared to the equipment used for filling cavities with molten metals. The vibro-vacuum
filling of voids is safer; the work does not require special training and can be carried out by
a specialist without high qualifications.

The technological holes provided at the end of the shank (Figure 18a) and in the head
part (Figure 18b), through which the supply of the liquid metal polymer into the cavity of
the thin-walled shell mold is ensured, are also necessary for removing non-sintered powder
from the internal cavity of the drill body after 3D-printing.
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Figure 18. Technological holes in the drill body: (a) technological holes in the end of the shank;
(b) technological holes in the head part.

Thus, using the example of optimizing the model of a drill body and the use of
technology for manufacturing a metal-composite structure, by filling the internal cavities
with a metal polymer, an economic justification was given for the feasibility of using metal
3D-printing technology in the manufacture of a body tool.

The described technology cannot be limited only to the manufacture of case metal-
cutting tools and can undoubtedly be used for the manufacture of other engineering
products. The scope of application of the described technology can only be limited by the
imagination of the design engineer.

Thanks to the proposed technology, it is possible to reduce the cost of 3D-printing
a drill body by USD 135.89, while the safety margin of the optimized model, although
decreased from the original model by 0.1, remained within the specified parameter of 1.2.

Author Contributions: N.S.L.: Conceptualization and methodology; M.C.: data curation and
writing—original draft preparation; B.S.C.: visualization and investigation; M.D.G.: software and
validation; A.A.P.: supervision; A.M.: resources; A.A.T.: writing—reviewing and editing; A.C.:
software. All authors have read and agreed to the published version of the manuscript.
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