Discrete Operators and Equations: Analysis and Comparison

Alexander Vasilyev, Vladimir Vasilyev, and Asad Esmatullah

Abstract

We develop a discrete variant of a theory of pseudo-differential equations and boundary value problems in canonical domains which are model situations for manifolds with non-smooth boundaries. Using digitization process for ordinary functional spaces we construct certain discrete functional spaces or spaces of functions of a discrete variable and define discrete pseudo-differential operators acting in such spaces. A main problem in which we are interested is to establish a correspondence between continual and discrete solutions of considered continual and discrete equations and in future boundary value problems. We have illustrated our considerations by certain examples of Calderon-Zygmund operators for which we have some interesting conclusions.

Keywords Discrete operator • Solvability

1 Introduction

We deal with some special operators namely pseudo-differential operators. Our global main goal is to construct a theory of discrete pseudo-differential operators and corresponding boundary value problems on smooth manifolds with a boundary which may be non-smooth.

A basic equation in an operator form is the following

$$
\begin{equation*}
(A u)(x)=v(x), \quad x \in D, \tag{1}
\end{equation*}
$$

where $D \subset \mathbf{R}^{m}$ is a some domain, A is a pseudo-differential operator which is defined by the formula

[^0]\[

$$
\begin{equation*}
(A u)(x)=(2 \pi)^{-m} \int_{D} \int_{\mathbf{R}^{m}} e^{i(y-x) \cdot \xi} \tilde{A}(x, \xi) \tilde{u}(\xi) d y d \xi, \quad x \in D, \tag{2}
\end{equation*}
$$

\]

and a sign \sim over the function u denotes its Fourier transform

$$
\tilde{u}(\xi)=\int_{\mathbf{R}^{m}} e^{-i x \xi} u(x) d x
$$

Definition 1 The function $\tilde{A}(x, \xi)$ is called a symbol of a pseudo-differential operator A. A symbol $\tilde{A}(x, \xi)$ is called an elliptic symbol if ess $\inf _{(x, \xi) \in \mathbf{R}^{m} \times \mathbf{R}^{m}}|\tilde{A}(x, \xi)|>0$.

As far as I know it is impossible to find an exact solution of the equation (1) for an arbitrary domain D. Therefore all researches are interested in describing Fredholm properties of the equation at least. But for simplest cases it can very easy by the Fourier transform.

Example 1 Let $\mathrm{K}(\mathrm{x})$ be a Calderon-Zygmund kernel and the operator \boldsymbol{A} is defined by the formula [4]

$$
\begin{equation*}
(K u)(x)=v \cdot p \cdot \int_{\mathbf{R}^{m}} K(x-y) u(y) d y \tag{3}
\end{equation*}
$$

so that it can represented in the form (6)

$$
(K u)(x)=(2 \pi)^{-m} \int_{\mathbf{R}^{m}} \int_{\mathbf{R}^{m}} e^{i(y-x)-\xi} \sigma(\xi) \tilde{u}(\xi) d y d \xi,
$$

and the function $\sigma(\xi)$ is called a symbol of the operator A. It is well known that for the operator A to be invertible in the space $L_{2}\left(\mathbf{R}^{m}\right)$ necessary and sufficient its symbol $\sigma(\xi)$ should be an elliptic [4].

Let $D_{d}=D \cap h \mathbf{Z}^{m}, h>0$. We are interested in studying some discrete equations which we call discrete pseudo-differential equations and which are related to the Eq. (1). Let us define a discrete pseudo-differential operator by the formula

$$
\left(A_{d} u_{d}\right)(\tilde{x})=\sum_{\tilde{y} \in D_{d} \tilde{T}^{\mathbf{T}}} \int e^{i(\tilde{y}-\bar{x}) \cdot \xi} A_{d}(\tilde{x}, \xi) \tilde{u}_{d}(\xi) d \xi, \quad \tilde{x} \in D_{d}
$$

where $u_{d}(\tilde{x})$ is a function of a discrete variable $\tilde{x} \in h \mathbf{Z}^{m}, \tilde{u}_{d}(\xi)$ denotes its discrete Fourier transform

$$
\begin{equation*}
\bar{u}_{d}(\xi) \equiv\left(F_{d} u_{d}\right)(\xi)=\sum_{\bar{y} \in h \mathbf{Z}^{m}} e^{i \bar{y} \xi} \bar{u}_{d}(y), \quad \xi \in \hbar \mathbf{T}^{m} \tag{4}
\end{equation*}
$$

\mathbf{Z}^{m} is an integer lattice in $\mathbf{R}^{m}, \mathbf{T}^{m}$ is m-dimensional cube $[-\pi, \pi]^{m}, \hbar=\frac{h^{-1}}{2 \pi}$, and given function $A_{d}(\bar{x}, \xi), \tilde{x} \in h \mathbf{Z}^{m}, \xi \in \hbar \mathbf{T}^{m}$, is called a symbol of the discrete pseudo-differential operator A_{d}.

We would like to study the equation

$$
\begin{equation*}
\left(A_{d} u_{d}\right)(\tilde{x})=v_{d}(\tilde{x}), \quad \tilde{x} \in D_{d}, \tag{5}
\end{equation*}
$$

in some discrete functional spaces. Since it is difficult to study such general operators (as it was said above) for discrete cases also we'll consider certain model situations.

2 The Concept of the Research

We'll present here main ideas for studying this large problem. In contrast of algebraic approaches $[2,3,5]$ we use analytical methods based on properties of the Fourier transform and considered operators. A plan of the studying is the following:

- infinite discrete and finite discrete Fourier transform
- discrete functional spaces
- solvability of infinite discrete equation
- solvability of finite discrete equation
- comparison of continual and infinite discrete solution
- comparison of infinite and finite discrete solution.

2.1 Local Discrete Operators

We'll illustrated the above scheme with very simple model pseudo-differential operator namely operator A from example 1 because many our results are related to this operator. In addition we assume that kernel $K(x)$ of the operator A is differentiable on $\mathbf{R}^{m} \backslash\{0\}$.

2.2 Discrete and Continual

Discrete Fourier Transform To obtain a good approximation for the integral equation (1) we will use the following reduction. First instead of the integral in (1) we introduce the series

$$
\begin{equation*}
\sum_{\tilde{y} \in h \mathbf{Z}^{m}} K(\tilde{x}-\tilde{y}) u_{d}(\tilde{y}) h^{m}, \tag{6}
\end{equation*}
$$

which generates a discrete operator

$$
\begin{equation*}
\left(K_{d} u_{d}\right)(\tilde{x})=\sum_{\tilde{y} \in h \mathbf{Z}^{m}} K(\tilde{x}-\tilde{y}) u_{d}(\tilde{y}) h^{m}, \quad \tilde{x} \in h \mathbf{Z}^{m} \tag{7}
\end{equation*}
$$

defined on functions u_{d} of discrete variable $\tilde{x} \in h \mathbf{Z}^{m}$. Since the Calderon-Zygmund kernel has a strong singularity at the origin we mean $K(0)=0$. Convergence for the series (6) means that the following limit

$$
\lim _{N \rightarrow+\infty} \sum_{\tilde{y} \in h \mathbf{Z}^{m} \cap Q_{N}} K(\tilde{x}-\bar{y}) u_{d}(\bar{y}) h^{m}
$$

exists, where $Q_{N}=\left\{x \in \mathbf{R}^{m}: \max _{1 \leq k \leq m}\left|x_{k}\right|<N\right\}$. It was shown earlier that a norm of the operator $K_{d}: L_{2}\left(h \mathbf{Z}^{m}\right) \rightarrow L_{2}\left(h \mathbf{Z}^{m}\right)$ does not depend on h [11]. But although the operator is a discrete object it is an infinite one.

Let us define the infinite discrete Fourier transform for functions u_{d} of a discrete variable $\tilde{x} \in h \mathbf{Z}^{m}$

$$
\left(F_{d} u_{d}\right)(\xi)=\sum_{\tilde{x} \in h \mathbf{Z}^{m}} u_{d}(\tilde{x}) e^{i \bar{x} \xi} h^{m}, \quad \xi \in \hbar \mathbf{T}^{m} .
$$

Such discrete Fourier transform preserves all basic properties of the classical Fourier transform, particularly for a discrete convolution of two discrete functions u_{d}, v_{d}

$$
\left(u_{d} * v_{d}\right)(\tilde{x}) \equiv \sum_{\tilde{y} \in h \mathbf{Z}^{m}} u_{d}(\tilde{x}-\tilde{y}) v_{d}(\tilde{y}) h^{m}
$$

we have the well known multiplication property

$$
\left(F_{d}\left(u_{d} * v_{d}\right)\right)(\xi)=\left(F_{d} u_{d}\right)(\xi) \cdot\left(F_{d} v_{d}\right)(\xi) .
$$

If we apply this property to the operator K_{d} we obtain

$$
\left(F_{d}\left(K_{d} u_{d}\right)\right)(\xi)=\left(F_{d} K_{d}\right)(\xi) \cdot\left(F_{d} u_{d}\right)(\xi) .
$$

Let us denote $\left(F_{d} K_{d}\right)(\xi) \equiv \sigma_{d}(\xi)$ and give the following
Definition 2 The function $\sigma_{d}(\xi), \xi \in \hbar \mathbf{T}^{m}$, is called a symbol of the discrete operator K_{d}.

We will assume below that the symbol $\sigma_{d}(\xi) \in C\left(\hbar \mathbf{T}^{m}\right)$ therefore we have immediately the following

Property 1 The operator K_{d} is invertible in the space $L_{2}\left(h \mathbf{Z}^{m}\right)$ iff $\sigma_{d}(\xi) \neq 0, \forall \xi \in$ $\hbar \mathbf{T}^{m}$.

We say that a continuous symbol is called an elliptic symbol if $\sigma_{d}(\xi) \neq 0, \forall \xi \in$ $\hbar \mathbf{T}^{m}$.

So we see that an arbitrary elliptic symbol $\sigma_{d}(\xi)$ corresponds to an invertible operator K_{d} in the space $L_{2}\left(h \mathbf{Z}^{m}\right)$.

A very interesting fact was proved in $[8,9]$.
Theorem 1 Operators (3) and (7) are invertible or non-invertible in spaces $L_{2}\left(\mathbf{R}^{m}\right)$ and $L_{2}\left(h \mathbf{Z}^{m}\right)$ simultaneously $\forall h>0$.

If we consider the equation

$$
\left(K_{d} u_{d}\right)(\tilde{x})=v_{d}(\tilde{x}), \quad \tilde{x} \in h \mathbf{Z}^{m}
$$

in the space $L_{2}\left(h \mathbf{Z}^{m}\right)$ then we solve the equation by the discrete Fourier transform F_{d}. Indeed after applying the Fourier transform we have the trivial equation

$$
\sigma_{d}(\xi) \tilde{u}_{d}(\xi)=\tilde{v}_{d}(\xi), \quad \xi \in \hbar \mathbf{T}^{m}
$$

in the dual space $L_{2}\left(\hbar \mathbf{T}^{m}\right)$.
We have first difficulties when consider this equation in the space $L_{2}\left(h \mathbf{Z}_{+}^{m}\right)$, where $\mathbf{Z}_{+}^{m}=\left\{\tilde{x} \in \mathbf{Z}^{m}: \tilde{x}=\left(\tilde{x}_{1}, \ldots, \tilde{x}_{m}\right), \tilde{x}_{m}>0\right\}$. We can not apply the Fourier transform directly as above because the functions under consideration are defined not on a whole space. Thus we need to describe images of such function after the discrete Fourier transform, ant it leads us to the next extensions.

A Half-Space Case If we consider Eqs. (3) and (7) in spaces $L_{2}\left(\mathbf{R}_{+}^{m}\right)$ and $L_{2}\left(h \mathbf{Z}_{+}^{m}\right)$ or in other words operators $K: L_{2}\left(\mathbf{R}_{+}^{m}\right) \rightarrow L_{2}\left(\mathbf{R}_{+}^{m}\right)$ and $K_{d}: L_{2}\left(h \mathbf{Z}_{+}^{m}\right) \rightarrow L_{2}\left(h \mathbf{Z}_{+}^{m}\right)$ then for studying invertibility of the operator K_{d} one has constructed a special periodic Riemann boundary value problem [10]. A solvability of mentioned Riemann problem depends on a certain topological invariant æ related to a symbol of an elliptic operator. This number $æ$ is called an index of periodic Riemann boundary value problem. It was shown these topological numbers for elliptic operators K and K_{d} are the same and it implies the following [8, 9]

Theorem 2 Operators (3) and (7) are invertible or non-invertible in spaces $L_{2}\left(\mathbf{R}_{+}^{m}\right)$ and $L_{2}\left(h \mathbf{Z}_{+}^{m}\right)$ simultaneously $\forall h>0$.

Studying more complicated situations related to cones [6] was started in [14], first steps were done.

Discrete Boundary Value Problems These arise first in the case $h \mathbf{Z}_{+}^{m}$ then we have a boundary, and it is possible the mentioned index x is not a zero. To exclude a non-uniqueness of solution one needs some boundary conditions [1, 6]. Some similar situations were considered for difference equations in papers $[12,13,15]$.

2.3 Infinite and Finite

Finite Discrete Fourier Transform Here we will introduce a special discrete periodic kernel $K_{d, N}(\tilde{x})$ which is defined in the following way. We take a restriction of the discrete kernel $K_{d}(\tilde{x})$ on the set $Q_{N} \cap h \mathbf{Z}^{m} \equiv Q_{N}^{d}$ and periodically continue it to a whole $h \mathbf{Z}^{m}$. Further we consider discrete periodic functions $u_{d, N}$ with discrete cube of periods Q_{N}^{d}. We can define a cyclic convolution for a pair of such functions $u_{d, N}, v_{d, N}$ by the formula

$$
\begin{equation*}
\left(u_{d, N} * v_{d, N}\right)(\tilde{x})=\sum_{\tilde{y} \in Q_{N}^{d}} u_{d, N}(\tilde{x}-\tilde{y}) v_{d, N}(\tilde{y}) h^{m} \tag{8}
\end{equation*}
$$

Further we introduce finite discrete Fourier transform by the formula

$$
\left(F_{d, N} u_{d, N}\right)(\tilde{\xi})=\sum_{\tilde{x} \in Q_{N}^{d}} u_{d, N}(\tilde{x}) e^{i \tilde{x} \tilde{\xi}} h^{m}, \quad \tilde{\xi} \in R_{N}^{d}
$$

where $R_{N}^{d}=\hbar \mathbf{T}^{m} \cap \hbar \mathbf{Z}^{m}$. Let us note that here $\bar{\xi}$ is a discrete variable.
Finite Discrete Operator According to the formula (8) one can introduce the operator

$$
K_{d, N} u_{d, N}(\tilde{x})=\sum_{\tilde{y} \in Q_{N}^{d}} K_{d, N}(\tilde{x}-\tilde{y}) u_{d, N}(\tilde{y}) h^{m}
$$

on periodic discrete functions $u_{d, N}$ and a finite discrete Fourier transform for its kernel

$$
\sigma_{d, N}(\tilde{\xi})=\sum_{\tilde{x} \in Q_{N}^{d}} K_{d, N}(\tilde{x}) e^{i \tilde{x} \tilde{\xi}} h^{m}, \quad \tilde{\xi} \in R_{N}^{d} .
$$

Definition 3 A function $\sigma_{d, N}(\tilde{\xi}), \tilde{\xi} \in R_{N}^{d}$, is called s symbol of the operator $K_{d, N}$. This symbol is called an elliptic symbol if $\sigma_{d, N}(\tilde{\xi}) \neq 0, \forall \tilde{\xi} \in R_{N}^{d}$.

Theorem 3 Let $\sigma_{d}(\xi)$ be an elliptic symbol. Then for enough large N the symbol $\sigma_{d, N}(\tilde{\xi})$ is elliptic symbol also.

A proof of the theorem follows immediately.
As before an elliptic symbol $\sigma_{d, N}(\tilde{\xi})$ corresponds to the invertible operator $K_{d, N}$ in the space $L_{2}\left(Q_{N}^{d}\right)$.

3 Discrete Functional Spaces

Since we'll use projectors on points of lattice we need subspaces of continuous functions instead of Lebesgue spaces. We introduce the space C_{h} which is the space of functions u_{d} of discrete variable $\tilde{x} \in h \mathbf{Z}^{m}$ with the norm

$$
\left\|u_{d}\right\|_{C_{h}}=\max _{\tilde{x} \in h \mathbf{Z}^{m}}\left|u_{d}(\tilde{x})\right|
$$

In other words, the space C_{h} is the space of functions $u \in C\left(\mathbf{R}^{m}\right)$ restricted on lattice points \mathbf{Z}_{h}^{m}. Here we remind, that the operator K isn't bounded in the space $C\left(\mathbf{R}^{m}\right)$, but it is bounded in the space $L_{2}\left(\mathbf{R}^{m}\right)$, and it is well-known, that if the right hand side of the equation

$$
(K u)(x)=v(x)
$$

has some smoothness properties (for example, it satisfies the Hölder condition), then the solution of this (if it exists in the space $L_{2}\left(\mathbf{R}^{m}\right)$) has the same smoothness property [4].

Further we define the discrete space $C_{h}(\alpha, \beta)$ as a functional space of discrete variable $\tilde{x} \in h \mathbf{Z}^{m}$ with finite norm

$$
\left\|u_{d}\right\|_{C_{h}(\alpha, \beta)}=\left\|u_{d}\right\|_{C_{h}}+\sup _{\tilde{x}, \tilde{y} \in h \mathbf{Z}^{m}}\left|u_{d}(\tilde{x})-u_{d}(\tilde{y})\right|,
$$

and additional assumptions

$$
\begin{gathered}
\left|u_{d}(\tilde{x})-u_{d}(\tilde{y})\right| \leq c \frac{|\tilde{x}-\tilde{y}|^{\alpha}}{(\max \{1+|\tilde{x}|, 1+|\tilde{y}|\})^{\beta}}, \\
\left|u_{d}(\tilde{x})\right| \leq \frac{c}{(1+|\tilde{x}|)^{\beta-\alpha}}, \quad \forall \tilde{x}, \tilde{y} \in h \mathbf{Z}^{m}, \alpha, \beta>0,0<\alpha<1 .
\end{gathered}
$$

4 Approximate Solutions

4.1 Infinite Discrete Solutions

Let's denote P_{h} the restriction operator on the lattice $h \mathbf{Z}^{m}$, i.e. the operator, which an arbitrary function, defined on \mathbf{R}^{m}, maps to the set of its discrete values in lattice points $h \mathbf{Z}^{m}$.

Definition 4 The approximation rate for the operators K and K_{d} in vector normed space X of functions defined on \mathbf{R}^{m}, is called the operator norm

$$
\left\|P_{h} K-K_{d} P_{h}\right\|_{X \rightarrow X_{d}},
$$

where X_{d} is the normed space of functions defined on the lattice $h \mathbf{Z}^{m}$ with norm, which is induced by the norm of the space X.

For the space $C_{h}(\alpha, \beta)$ we have

Theorem 4 If $m<\beta<\alpha+m$, then the estimate

$$
\left\|K_{d} u_{d}\right\|_{C_{h}(\alpha, \beta)} \leq c\left\|u_{d}\right\|_{C_{h}(\alpha, \beta)}
$$

is valid, and c doesn't depend on h.
The continual analogue of such spaces is the space $H_{\beta}^{\alpha}\left(\mathbf{R}^{m}\right)$ of functions, which are continuous in \mathbf{R}^{m} and satisfy the Hölder condition of order $0<\alpha<1$ and with weight $(1+|x|)^{\beta}$. It is well known from results of S.K. Abdullaev (Sov. Math., Dokl. 40, No.2, 417-421,1990) that the operator K is a linear bounded operator $K: H_{\beta}^{\alpha}\left(\mathbf{R}^{m}\right) \rightarrow H_{\beta}^{\alpha}\left(\mathbf{R}^{m}\right)$ under the condition $m<\beta<\alpha+m$.

We will give the approximation rate for the operators K and K_{d} in the space $C_{h}(\alpha, \beta)$. It will permit to obtain the error estimate for approximate solution, if we will change the continual operator K by its discrete analogue K_{d}.

Theorem 5 The approximate rate for the operators K and K_{d} is the following

$$
\left\|P_{h} K-K_{d} P_{h}\right\|_{C_{h}(\alpha, \beta)} \leq c h^{\tilde{\alpha}}
$$

where c doesn't depend on $h, \bar{\alpha}<\alpha, \tilde{\beta}>\beta$.
Some of these results were obtained in [7].

4.2 Finite Discrete Solutions

Let us denote P_{N} the projector $L_{2}\left(h \mathbf{Z}^{m}\right) \rightarrow L_{2}\left(Q_{N}^{d}\right)$.
Theorem 6 For operators K_{d} and $K_{d, N}$ we have the following estimate

$$
\left\|\left(P_{N} K_{d}-K_{d, N} P_{N}\right) u_{d}\right\|_{L_{2}\left(Q_{N}^{d}\right)} \leq C N^{m+2(\alpha-\beta)}
$$

for arbitrary $u_{d} \in C_{h}(\alpha, \beta), \beta>\alpha+m / 2$.
Now we consider the equation

$$
\begin{equation*}
K_{d, N} u_{d, N}=P_{N} v_{d} \tag{9}
\end{equation*}
$$

instead of the equation

$$
\begin{equation*}
K_{d} u_{d}=v_{d} \tag{10}
\end{equation*}
$$

and give a comparison for these two solutions assuming that operator K_{d} is invertible in $L_{2}\left(h \mathbf{Z}^{m}\right)$.

Theorem 7 If $v_{d} \in C_{h}(\alpha, \beta), \beta>\alpha+m / 2, u_{d}$ is a solution of the Eq. (10), $u_{d, N}$ is a solution of (9) then the estimate

$$
\left\|u_{d}-u_{d, N}\right\|_{L_{2}\left(h \mathbf{Z}^{m}\right)} \leq C N^{m+2(\alpha-\beta)}
$$

is valid, and C is a constant non-depending on N.

Conclusion

These considerations are first steps to realize the declared programm. We hope that obtained results will help us to study more general discrete operators and equations and to describe a correspondence between discrete and continual objects, and also between finite and infinite discrete objects.

References

1. Eskin G (1981) Boundary value problems for elliptic pseudodifferential equations. AMS, Providence
2. Didenko V, Silbermann B (2008) Approximation of additive convolution-like operators. Real C^{*}-algebra approach. Birkhäuser, Basel
3. Hagen R, Roch S, Silbermann B (2001) C^{*}-algebras and numerical analysis. Marcel Dekker, New York
4. Mikhlin SG, Prössdorf S (1986) Singular integral operators. Akademie-Verlag, Berlin
5. Prössdorf S, Silbermann B (1991) Numerical analysis for integral and related operator equations. Birkhäuser, Basel
6. Vasil'ev VB (2000) Wave factorization of elliptic symbols: theory and applications. Kluwer, Dordrecht
7. Vasilyev AV, Vasilyev VB (2012) Numerical analysis for some singular integral equations. Neural Parall Sci Comput 20:313-326
8. Vasilyev AV, Vasilyev VB (2013) Discrete singular operators and equations in a half-space. Azerb J Math 3:84-93
9. Vasilyev AV, Vasilyev VB (2015) Discrete singular integrals in a half-space. In: Mityushev V, Ruzhansky M (eds) Current trends in analysis and its applications. Proceedings of 9th ISAAC congress, Kraków, Poland, 2013. Birkhäuser, Basel, pp 663-670
10. Vasilyev AV, Vasilyev VB (2015) Periodic Riemann problem and discrete convolution equations. Differ Equ 51:652-660
11. Vasil'ev AV, Vasil'ev VB (2015) On the solvability of certain discrete equations and related estimates of discrete operators. Dokl Math 92:585-589
12. Vasilyev AV, Vasilyev VB (2016) On solvability of some difference-discrete equations. Opusc Math 36:525-539
13. Vasilyev AV, Vasilyev VB (2016) Difference equations in a multidimensional space. Math Model Anal 21:336-349
14. Vasilyev VB (2016) Discrete equations and periodic wave factorization. AIP Conf Proc 1759:0200126
15. Vasilyev AV, Vasilyev VB (2016) Difference equations and boundary value problems. In: Pinelas S et al (eds) Differential and difference equations and applications. Springer proceeding mathematics \& statistics vol 164. Birkhäuser, Basel, pp 421-432

[^0]: A. Vasilyev (凶) • V. Vasilyev • A. Esmatullah

 Belgorod State National Research University, Belgorod 308015, Russia
 e-mail: alexvassel @gmail.com

