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ON DISCRETE BOUNDARY-VALUE PROBLEMS
AND THEIR APPROXIMATION PROPERTIES
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Abstract. Discrete analogs of pseudo-differential operators and equations in discrete Sobolev–
Slobodetsky spaces are considered. Using suitable discrete boundary conditions, we prove the unique
solvability of the discrete boundary-value problem.
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1. Introduction. The theory of approximate methods for solving boundary-value problems for
elliptic differential equations is a fairly developed branch of mathematics. The most common methods
are the grid method (see [16]), method of finite elements (see [17]), and various variational methods
(see [14]). In recent years, the method of difference potentials (see [15]) has received some development;
in a certain sense this method is a combination of the grid method and the method of boundary integral
equations (see [6]). We also mention approximate methods for solving integral equations, in particular,
the method of singular integral equations and the method of equations in convolutions (see [5, 9]),
to which a large number of boundary-value problems are reduced. Unfortunately, the general theory
of approximate methods of functional analysis (see [1, 4, 7, 8]) is difficult to apply to problems listed
above; in fact, this led to the emergence of special developments.

In the overwhelming majority of cases, the technique of the discrete Fourier transform and spaces
of periodic functions is not widespread; the exceptions are works [3, 10–13].

Let Zm be a integer lattice in R
m, Tm = [−π, π]m be the m-dimensional cube, h > 0, and � = h−1.

For function ud of a discrete argument defined on hZm, we introduce the discrete Fourier transform

ũd(ξ) ≡ (Fdud)(ξ) =
∑

x∈hZm

ud(x)e
ix·ξhm, ξ ∈ �T

m.

Let Ad(ξ) be a periodic function in R
m with the principal cube of periods �T

m. An operator of the
form

(Adud)(x) =
1

(2π)m

∑

y∈hZm

∫

�Tm

Ad(ξ)e
i(y−x)·ξud(y)hmdξ, x ∈ Dd = D ∩ hZm,

where D is a domain in R
m, is called a discrete pseudo-differential operator in the discrete domain Dd.

To this operator, we relate the equation

(Adud)(x̃) = vd(x̃), x̃ ∈ Dd, (1)

where vd is a given function in Dd.
One of the main problems is the description of conditions for the unique solvability of Eq. (1) in

suitable functional spaces over the discrete domain Dd and the application of the obtained results
to the construction of suitable approximations of classical pseudo-differential equations (see [2]). The
main difficulty is that if the domain is a part of Rm (for example, a half-space or a cone), the standard
condition for the symbol A(ξ) to be elliptic is no longer sufficient. Thus, for the case of a half-
space, conditions for the solvability of Eq. (1) in discrete Sobolev–Slobodetsky spaces Hs(Dd) were
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described in [23–25]. The theory of the periodic Riemann problem constructed earlier (see [21]) played
a fundamental role.

Consider the boundary-value problem

(Au)(x) = 0, x ∈ R
m
+ ,

∂u

∂xm
|xm=0 = g(x′), x′ ∈ R

m−1, (2)

where A is an elliptic pseudo-differential operator whose symbol A(ξ) satisfies the condition

c1(1 + |ξ|)α ≤ |A(ξ)| ≤ c2(1 + |ξ|)α, α ∈ R; (3)

here c1 and c2 are positive constants.
It is well known that the boundary-value problem (2) is uniquely solvable in Sobolev–Slobodetsky

spaces Hs(Rm
+ ) for any right-hand side g ∈ Hs−3/2(Rm−1) under some restrictions for the factorization

index κ of the symbol A(ξ), namely, κ − s = 1 + δ, |δ| < 1/2 (see [2]).
To find an approximate solution of the problem (2), we construct a discrete pseudo-differential

operator Ad acting in the spaces of functions of a discrete argument Hs(hZm
+ ) (see [23, 24]) and

formulate the corresponding discrete boundary-value problem, whose unique solvability is studied by
the methods proposed in [23–25] (see also [18, 22, 26–30]).

2. Discrete spaces and operators. For modeling the original operator A whose symbol satisfies
the condition (3), we consider periodic symbols satisfying the following similar condition:

c1
(
1 + |ζ2|)α/2 ≤ |Ad(ξ)| ≤ c2

(
1 + |ζ2|)α/2; (4)

here c1 and c2 are positive constants independent of h and ζ2 = h−2
m∑
k=1

(
e−ih·ξk − 1

)2
.

We use the discrete analog S(hZm) (see [23]) of the Schwartz space S(Rm) of infinitely differentiable
functions rapidly decreasing at infinity.

To study simple pseudo-differential equations (equations of the convolution type), the authors pre-
viously used the restriction operator Ph to the lattice; this was expedient since integral operators are
defined by their kernel functions. We introduce the restriction operator Qh for functions u ∈ S(Rm).
First, we calculate the Fourier transform ũ(ξ), then we restrict it to �T

m and continue periodically
to R

m. Further, applying the inverse discrete Fourier transform F−1
d , we obtain the discrete function

(Qhu)(x̃), x̃ ∈ hZm. For many reasons, this projector Qh is much more convenient than the projector
Ph mentioned above. It turns out that, according to the following result, the projectors Ph and Qh

are almost the same.

Lemma 1. For u ∈ S(Rm) and for all β > 0, the following estimate holds:
∣∣∣(Phu)(x̃)− (Qhu)(x̃)

∣∣∣ ≤ Chβ ∀x̃ ∈ hZm,

where the constant C depends only on u.

Proof. We must compare two Fourier transforms. Indeed, by definition,

(Phu)(x̃) =
1

(2π)m

∫

Rm

eix̃·ξũ(ξ)dξ, (Qhu)(x̃) =
1

(2π)m

∫

�Tm

eix̃·ξũ(ξ)dξ;

therefore,

(Phu)(x̃)− (Qhu)(x̃) =
1

(2π)m

∫

Rm\�Tm

eix̃·ξũ(ξ)dξ.

Now the required assertion follows from the invariance the Schwartz class S(Rm) under the Fourier
transform and the simple estimate

∣∣ũ(ξ)
∣∣ ≤ Cu|ξ|−γ , γ > 0. �
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Further, we define the symbol Ad(ξ) as follows: we periodically continue to Rm the restriction of A(ξ)
to the cube �T

m. We consider this h-operator as an approximating operator for A. Thus, ti find a
discrete approximate solution of the equation

(Adud)(x̃) = vd(x̃), x̃ ∈ Dd, (5)

in the case where D = R
m we can use the following discrete equation:

Adud = Qhv. (6)

Definition 1. The space Hs(hZm) is the closure of the space S(hZm) with respect to the norm

‖ud‖s =
⎛

⎝
∫

�Tm

(
1 + |ζ2|)s∣∣ũd(ξ)

∣∣2dξ

⎞

⎠
1/2

.

Note that these discrete spaces were introduced and examined in [3].
For a domain D ⊂ R

m, we introduce the discrete domain Dd = D ∩ hZm and define the following
functional spaces.

Definition 2. By definition, the space Hs(Dd) consists of discrete functions of the space Hs(hZm)
whose supports are contained in Dd. The norm in Hs(Dd) is induces by the initial space Hs(hZm).
The right-hand side of Eq. (1) belongs to the space Hs

0(Dd), which consists of discrete functions ud
with supports in Dd continuable to the whole space Hs(hZm). The norm in Hs

0(Dd) is defined by the
formula

‖ud‖+s = inf ‖
ud‖s,
infimum is taken over all continuations 
.

Of course, these norms are equivalent to the L2-norm, but the equivalence constants depend on h. In
our case, all constants involving in the estimates are independent of h (this is essential when comparing
discrete and continuous solutions).

Definition 3. A periodic factorization of an elliptic symbol Ad(ξ) is its representation in the form

Ad(ξ) = Ad,+(ξ)Ad,−(ξ),

where the factors Ad,±(ξ) admit analytical continuations with respect to the last variable ξm into the
half-bands �Π± for almost all fixed ξ′ ∈ �T

m−1 and satisfy the estimates
∣∣∣A±1

d,+(ξ)
∣∣∣ ≤ c1

(
1 + |ζ̂2|)±κ/2

,
∣∣∣A±1

d,−(ξ)
∣∣∣ ≤ c2

(
1 + |ζ̂2|)±α−κ/2

with constants c1 and c2 independent of h,

ζ̂2 ≡ �
2

(
m−1∑

k=1

(
e−ihξk − 1

)2
+

(
e−ih(ξm+iτ) − 1

)2
)
, ξm + iτ ∈ �Π±.

The number κ ∈ R is called the index of periodic factorization.

3. Boundary conditions and solvability. Consider Eq. (1) under the following conditions. In
the case D = R

m
+ , we search for a solution in the space Hs(Dd). The symbol Ad(ξ) admits a periodic

factorization with index κ, where κ − s = 1 + δ, |δ| < 1/2. It was proved in [23, 24] that in this
case, the structure of the general solution of Eq. (1) is as follows (for completeness, we present the
corresponding result from [23]).

Theorem 1. If κ− s = n+ δ, where n ∈ N and |δ| < 1/2, then the Fourier images of all solutions of
Eq. (1) are described by the formula

ũd(ξ) = Ã−1
d,+(ξ)Xn(ξ)P

per
ξ′

(
X−1

n (ξ)Ã−1
d,−(ξ)
̃vd(ξ)

)
+ Ã−1

d,+(ξ)
n−1∑

k=0

ck(ξ
′)ζ̂km,
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where Xn(ξ) is an arbitrary polynomial of degree n that depends on the variables ζ̂k = �(e−ihξk − 1),
k = 1, . . . ,m, and satisfies the condition (3), and ck(ξ

′), j = 0, 1, . . . , n − 1, are arbitrary function
from Hsk(hTm−1), sk = s− κ + k − 1/2. The following a priori estimate holds:

‖ud‖s ≤ a

(
‖f‖+s−α +

n−1∑

k=0

[ck]sk

)
,

where [·]sk is the norm in the space Hsk(hTm−1) and a is a constant independent of h.

Taking into account the conditions imposed above, we obtain the following formula for the general
solution:

ũd(ξ) = Ã−1
d,+(ξ)c̃0(ξ

′),

which involves only one arbitrary function. To define it uniquely and model the boundary condition
of the problem (2), we impose a discrete boundary condition

�π∫

−�π

�
(
e−ihξm − 1

)
ũd(ξ

′, ξm)dξm = g̃d(ξ
′), ξ′ ∈ �T

m−1, (7)

where g̃d(ξ
′) is a given function.

Thus, for numerical simulation of the problem (2), we consider the discrete problem (1), (7). It
remains to prove the unique solvability of the problem (1), (7) and compare the discrete and continuous
solutions.

Taking into account Theorem 1 and the condition (7), we have

�π∫

−�π

�
(
e−ihξm − 1

)
Ã−1

d,+(ξ
′, ξm)c̃0(ξ

′)dξm = g̃d(ξ
′), ξ′ ∈ �T

m−1.

Introduce the notation
�π∫

−�π

�
(
e−ihξm − 1

)
Ã−1

d,+(ξ
′, ξm)dξm = t̃d(ξ

′); (8)

then we obtain the equality

t̃d(ξ
′)c̃0(ξ′) = g̃d(ξ

′).

Definition 4. The boundary-value problem (1), (7) is said to be elliptic if

inf
ξ′∈�Tm−1

∣∣t̃d(ξ′)
∣∣ > 0.

Remark 1. Note that as h → 0, the condition (8) turns into the well-known condition

+∞∫

−∞
(−iξm)A−1

+ (ξ′, ξm)dξm = t̃(ξ′),

(see [2]), where A+(ξ
′, ξm) is an element of factorization in the Vishik–Eskin sense.

Theorem 2. The elliptic boundary-value problem (1), (7) is uniquely solvable in the space Hs(Dd)

for any right-hand side g ∈ Hs−3/2(hRm−1). For s ≥ 1, the following a priori estimate holds:

‖ud‖s ≤ C‖gd‖s−3/2,

where C is a constant independent of h.
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Proof. Indeed, according to the above calculations

ũd(ξ) =
g̃d(ξ

′)
Ad,+(ξ′, ξm)t̃d(ξ′)

.

Then

‖ud‖2s =

∫

�Tm

∣∣∣∣
g̃d(ξ

′)
Ad,+(ξ′, ξm)t̃d(ξ′)

∣∣∣∣
2 (

1 + |ζ2|)sdξ ≤ �
2(s−κ)‖gd‖22.

Therefore,

‖ud‖s ≤ C‖gd‖s−κ ≤ C‖gd‖s−3/2,

since the inequality s− κ ≤ s− 3/2 is fulfilled due to the condition κ − s = 1 + δ and the inequality
1− δ ≤ s− 3/2 is equivalent to the inequality s ≥ 1/2− δ. Since |δ| < 1/2, it suffices to require s ≥ 1.
�

4. Approximation estimates.

Lemma 2. For ξm ∈ [−�π, �π], the following estimate holds:
∣∣∣�
(
e−ihξm − 1

)
+ iξm

∣∣∣ ≤ C�,

where C is a constant independent of h.

Proof. Indeed, since

e−ihξm =
∞∑

k=0

(−ihξm)k

k!
,

we have

�
(
e−ihξm − 1

)
+ iξm =

∞∑

k=1

hk(−iξm)k+1

(k + 1)!
,

and hence
∣∣∣�
(
e−ihξm − 1

)
+ iξm

∣∣∣ ≤ �

∞∑

k=1

1

(k + 1)!
,

which implies the required estimate. �
It was proved earlier (see [2]) that the Fourier image of a solution of the problem (2) is defined by

the formula

ũ(ξ) =
g̃(ξ′)

A+(ξ′, ξm)t̃(ξ′)
if the ellipticity condition inf

ξ′∈Rm−1
|t(ξ′)| > 0 is fulfilled. In the discrete case, we have the following

similar formula

ũd(ξ) =
g̃d(ξ

′)
Ad,+(ξ′, ξm)t̃d(ξ′)

.

Below, we compare discrete and continuous solutions for a sufficiently smooth right-hand side of
the boundary condition under some restrictions for the factorization index.

Lemma 3. For κ > 2, the following estimate holds:
∣∣t̃(ξ′)− t̃d(ξ

′)
∣∣ ≤ C�

−κ+2, (9)

where C is a constant independent of h.
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Proof. Due to the coincidence of the symbols A+(ξ
′, ξm) and Ad,+(ξ

′, ξm) on �T
m, we must estimate

the difference of the following two integrals:

+∞∫

−∞
(−iξm)A−1

+ (ξ′, ξm)dξm −
�π∫

−�π

�
(
e−ihξm − 1

)
Ã−1

d,+(ξ
′, ξm)dξm

=

⎛

⎝
−�π∫

−∞
+

+∞∫

�π

⎞

⎠ (−iξm)A−1
+ (ξ′, ξm)dξm −

�π∫

−�π

(
�
(
e−ihξm − 1

)
+ iξm

)
Ã−1

d,+(ξ
′, ξm)dξm.

We estimate the second integral by Lemma 2:
∣∣∣∣∣∣

�π∫

−�π

(
�
(
e−ihξm − 1

)
+ iξm

)
Ã−1

d,+(ξ
′, ξm)dξm

∣∣∣∣∣∣
≤ C1�

�π∫

−�π

|Ã−1
d,+(ξ

′, ξm)|dξm

≤ C2�

�π∫

0

(
1 + |ξ′|+ ξm

)−κ
dξm ≤ C3�

−κ+2.

If κ > 2, then the last expression tends to zero as h → 0. The first two terms are estimated similarly;
consider one of them:∣∣∣∣∣∣

+∞∫

�π

(−iξm)A−1
+ (ξ′, ξm)dξm

∣∣∣∣∣∣
≤ C1

+∞∫

�π

|ξm|(1 + |ξ′|+ |ξm|)−κ
dξm ≤ C2�

−κ+2. �

Remark 2. Lemma 3 implies, in particular, that for κ > 2 we can assume that inf
ξ′∈�Tm−1

|t̃d(ξ′)| is
independent of h.

Theorem 3. If g ∈ Hs−3/2(hZm−1), κ > 2, and β ≤ 5/2 + δ, then solutions of the problem (2),
(1), (7) satisfy the estimate

‖Qhu− ud‖β ≤ Chκ−2‖gd‖s,
where C is a constant independent of h.

Proof. Let g ∈ S(Rm). Owing to the above constructions, it remains to estimate the proximity of
t̃(ξ′) and t̃d(ξ

′). Recall that the symbols A+(ξ
′, ξm) and Ad,+(ξ

′, ξm) and the functions g̃(ξ′) andg̃d(ξ′)
coincide on �T

m.
We estimate the difference for ξ ∈ �T

m:

ũ(ξ)− ũd(ξ) =
g̃(ξ′)

A+(ξ′, ξm)t̃(ξ′)
− g̃d(ξ

′)
Ad,+(ξ′, ξm)t̃d(ξ′)

=
g̃(ξ′)

A+(ξ′, ξm)

(
1

t̃(ξ′)
− 1

t̃d(ξ′)

)

=
g̃(ξ′)

A+(ξ′, ξm)

t̃d(ξ
′)− t̃(ξ′)

t̃(ξ′)t̃d(ξ′)
.

Due to Lemma 3 and the ellipticity of the problem (2) (this means that inf
ξ′∈Rm−1

|t(ξ′)| > 0) we obtain

∣∣ũ(ξ)− ũd(ξ)
∣∣ ≤ C�

−κ+2

∣∣∣∣
g̃d(ξ

′)
Ad,+(ξ′, ξm)

∣∣∣∣ , ξ ∈ �T
m.

The last inequality implies
∣∣∣(̃Qhu)(ξ)− ũd(ξ)

∣∣∣ ≤ C�
−κ+2

∣∣∣∣
g̃d(ξ

′)
Ad,+(ξ′, ξm)

∣∣∣∣
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due to the choice of the projector Qh. Further, since gd ∈ Hs−3/2(hZm−1), we see that

g̃d(ξ
′)A−1

d,+(ξ
′, ξm) ∈ H̃β(Dd). It remains to verify the accuracy of the exponent β:

∫

�Tm

∣∣∣g̃d(ξ′)A−1
d,+(ξ

′, ξm)
∣∣∣
2(
1 + |ζ2|)βdξ ≤ C�

2(β−κ)

∫

�Tm

∣∣g̃d(ξ′)
∣∣2 dξ ≤ C�

2(β−κ)
�
2(s−3/2)‖gd‖2s

= C�
2(β−κ+s−3/2)‖gd‖2s = C�

2(β−5/2−δ)‖gd‖2s,
since κ − s = 1 + δ. The last value is finite as h → 0 if β ≤ 5/2 + δ. For this choice of β, we obtain
the required estimate:

‖Qhu− ud‖β ≤ Chκ−2‖gd‖s. �
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