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Abstract
Westudy a general discrete boundary value problem in Sobolev–Slobodetskii spaces in
a plane quadrant and reduce it to a system of integral equations. We show a solvability
of the system for a small size of discreteness starting froma solvability of its continuous
analogue.
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1 Introduction

The theory of pseudo-differential operators [1, 2] and related equations and boundary
value problems [3] exists more than a half-century, and up to now it takes attention of
scholars. Also there are some discrete theories of boundary value problems for partial
differential equations [6, 7], but these studies are not applicable for pseudo-differential
equations. According to this fact the first author has initiated a studying discrete theory
of pseudo-differential equations [4, 12–14] having in mind forthcoming studies their
approximation properties and applications to computational algorithms [8, 11].

Since model equations in [3] were studied in a half-space, it is a canonical domain
for manifold with smooth boundary, next step was done with a cone, it is a canonical
domain for manifold with conical points at boundary [10]. At this step one needs a
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special factorization for an elliptic symbol, it was transferred to the discrete case [15]
using analogies with Fourier series [5].

This paper is devoted to a model discrete pseudo-differential equation and discrete
boundary value problem in a quadrant in the plane and its solvability starting from
solvability their continuous analogues under small parameter of discreteness.

2 Digital pseudo-differential operators and discrete equations

Here we introduce some starting concepts and results which will help us moving to
statement of a general boundary value problem.

Let Z
2 be the integer lattice in a plane, K = {x ∈ R

2 : x = (x1, x2), x1 > 0, x2 >

0} be the first quadrant, Kd = hZ
2∩K , h > 0,T2 = [−π, π ]2, � = h−1.We consider

functions of a discrete variable ud(x̃), x̃ = (x̃1, x̃2) ∈ hZ
2.

We use also notations ζ 2 = h−2((eih·ξ1 − 1)2 + (eih·ξ2 − 1)2) and S(hZ
2) for the

discrete analogue of the Schwartz space of infinitely differentiable rapidly decreasing
at infinity functions.

Definition 1 The space Hs(hZ
2) consists of discrete functions and it is a closure of

the space S(hZ
2) with respect to the norm

||ud ||s =
⎛
⎜⎝

∫

�T2

(1 + |ζ 2|)s |ũd(ξ)|2dξ

⎞
⎟⎠

1/2

, (1)

where ũd(ξ) denotes the discrete Fourier transform

(Fdud)(ξ) ≡ ũd(ξ) =
∑

x̃∈hZ2

ei x̃ ·ξud(x̃)h2, ξ ∈ �T
2.

Let Ad(ξ) be a measurable periodic function defined in R
2 with the basic cube of

periods �T
2.

Definition 2 A digital pseudo-differential operator Ad with the symbol Ad(ξ) in dis-
crete quadrant Kd is called the following operator

(Adud)(x̃) =
∑

ỹ∈hZ2

h2
∫

�T2

Ad(ξ)ei(ỹ−x̃)·ξ ũd(ξ)dξ, x̃ ∈ Kd ,

Here we will consider symbols satisfying the condition

c1(1 + |ζ 2|)α/2 ≤ |Ad(ξ)| ≤ c2(1 + |ζ 2|)α/2

with positive constants c1, c2 non-depending on h. The class of symbols satisfying
this condition will be denoted by Eα . The number α ∈ R is called an order of the
digital pseudo-differential operator Ad .
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We study solvability of the discrete equation

(Adud)(x̃) = 0, x̃ ∈ Kd , (2)

in the space Hs(Kd), and for this purpose we need certain specific domains of two-
dimensional complex space C

2. A domain of the type Th(K ) = �T
2 + i K is called a

tube domain over the quadrant K .Wewill work with holomorphic functions f (x+iτ)

in such domains Th(K ).

Definition 3 Periodic wave factorization of the symbol Ad(ξ) ∈ Eα is called its rep-
resentation in the form

Ad(ξ) = Ad,�=(ξ)Ad,=(ξ),

where the factors Ad,�=(ξ), Ad,=(ξ) admit holomorphic continuation into tube
domains Th(K ), Th(−K ) respectively satisfying the estimates

c1(1 + |ζ̂ 2|) æ
2 ≤ |Ad,�=(ξ + iτ)| ≤ c′

1(1 + |ζ̂ 2|) æ
2 ,

c2(1 + |ζ̂ 2|) α−æ
2 ≤ |Ad,=(ξ − iτ)| ≤ c′

2(1 + |ζ̂ 2|) α−æ
2 ,

with positive constants c1, c′
1, c2, c

′
2 non-depending on h;

ζ̂ 2 ≡ �
2
(
(eih(ξ1+iτ1) − 1)2 + (eih(ξ2+iτ2) − 1)2

)
, ξ = (ξ1, ξ2) ∈ �T

2,

τ = (τ1, τ2) ∈ K .

The number æ ∈ R is called an index of periodic wave factorization.
Everywhere below we assume that we have this periodic wave factorization of the

symbol Ad(ξ) with the index æ.
Using methods developed in [12] we can prove the following result.

Theorem 1 Let æ − s = n + δ, n ∈ N, |δ| < 1/2. Then a general solution of the
equation (2) has the following form

ũd(ξ) = A−1
d,�=(ξ)

(
n−1∑
k=0

(
c̃k(ξ1)ζ

k
2 + d̃k(ξ2)ζ

k
1

))
, (3)

where c̃k(ξ1), d̃k(ξ2), k = 0, 1, · · · , n−1,arearbitrary functions from– H̃sk (hT), sk =
s − æ + k − 1/2.

The a priori estimate

||ud ||s ≤ const
n−1∑
k=0

([ck]sk + [dk]sk ),

holds, where [·]sk denotes a norm in the space Hsk (hT), and const doesn’t depend on
h.
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3 Discrete boundary value problem

3.1 Statement and solvability

Starting from Theorem 1 we introduce the following boundary conditions:

(Bd, j ud)(x̃1, 0) = bd, j (x̃1),

begineqnarray∗3pt](Gd, j ud)(0, x̃2) = gd, j (x̃2), j = 0, 1. · · · , n − 1,
(4)

where Bd, j ,Gd, j are digital pseudo-differential operators of order β j , γ j ∈ R with
symbols B̃d, j (ξ) ∈ Eβ j , G̃d, j (ξ) ∈ Eγ j

(Bd, j ud)(x̃) = 1

(2π)2

∫

�T2

∑

ỹ∈hZ2

eiξ ·(x̃−ỹ) B̃d, j (ξ)ũd(ξ)dξ,

(Gd, j ud)(x̃) = 1

(2π)2

∫

�T2

∑

ỹ∈hZ2

eiξ ·(x̃−ỹ)G̃d, j (ξ)ũd(ξ)dξ.

One can rewrite boundary conditions (4) in Fourier images

�π∫

−�π

B̃d, j (ξ1, ξ2)ũd(ξ1, ξ2)dξ2 = b̃d, j (ξ1),

�π∫

−�π

G̃d, j (ξ1, ξ2)ũd(ξ1, ξ2)dξ1 = g̃d, j (ξ2), j = 0, 1. · · · , n − 1,

(5)

so that according to properties of digital pseudo-differential operators and trace prop-
erties we need to require bd, j (x̃1) ∈ Hs−β j−1/2(hZ), gd, j (x̃2) ∈ Hs−γ j−1/2(hZ).

Multiplying the equality (3) by B̃d, j (ξ1, ξ2) and G̃d, j (ξ1, ξ2), integrating over
[−�π, �π ] on ξ2 and ξ1, taking into account the conditions (5) we obtain the fol-
lowing (2n × 2n)-system of linear integral equations

n−1∑
k=0

⎛
⎝r jk(ξ1)c̃k(ξ1) +

�π∫

−�π

l jk(ξ1, ξ2)d̃k(ξ2)dξ2

⎞
⎠ = b̃d, j (ξ1)

n−1∑
k=0

⎛
⎝

�π∫

−�π

m jk(ξ1, ξ2)c̃k(ξ1)dξ1 + p jk(ξ2)d̃k(ξ2)

⎞
⎠ = g̃d, j (ξ2),

j = 0, 1, . . . , n − 1,

(6)
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with unknown functions c̃k, d̃k, k = 0, 1, . . . , n − 1. We have used the following
notations:

r jk(ξ1) =
�π∫

−�π

B̃d, j (ξ)A−1
d,�=(ξ)ζ k

2 dξ2, p jk(ξ2) =
�π∫

−�π

G̃d, j (ξ)A−1
d,�=(ξ)ζ k

1 dξ1,

l jk(ξ1, ξ2) = B̃d, j (ξ)A−1
d,�=(ξ)ζ k

1 , m jk(ξ1, ξ2) = G̃d, j (ξ)A−1
d,�=(ξ)ζ k

2 ,

j, k = 0, 1, . . . , n − 1.
Thus, we can formulate the following assertion:

Theorem 2 The boundary value problem (2),(4) is uniquely solvable in the space
Hs(Kd) with data bd, j ∈ Hs−β j−1/2(hZ+), gd, j ∈ Hs−γ j−1/2(hZ+) if and only if
the system (6) has the unique solution c̃k, d̃k ∈ H̃ sk (�T), j, k = 0, 1, . . . , n − 1.

3.2 Continuous case

Here we will describe continuous boundary value problem which is related to consid-
ered discrete boundary value problem (2),(4).

Let A be a pseudo-differential operator

(Au)(x) =
∫

R2

∫

R2

Ã(ξ)eiξ(y−x)u(y)dydξ

with symbol Ã(ξ) satisfying the condition

| Ã(ξ)| ∼ (1 + |ξ |)α (7)

and admitting the wave factorization with respect to K

Ã(ξ) = A �=(ξ) · A=(ξ).

with index æ such that æ − s = n + δ, n ∈ N, |δ| < 1/2.
Further, let Bj ,G j , j = 0, 1, . . . , n − 1 be pseudo-differential operators with

symbols B̃ j (ξ), G̃ j (ξ) satisfying the condition (7) with β j , γ j instead of α.
The following boundary value problem:

(Au)(x) = 0, x ∈ K ,

begineqnarray∗3pt](Bju)(x1, 0) = b j (x1),

begineqnarray∗3pt](G ju)(0, x2) = g j (x2), j = 0, 1, . . . , n − 1

(8)
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is a continuous analogue of the discrete boundary value problem (2),(4). It was shown
in [10] the problem (8) is equivalent to the following system of integral equations

n−1∑
k=0

⎛
⎝R jk(ξ1)C̃k(ξ1) +

+∞∫

−∞
L jk(ξ1, ξ2)D̃k(ξ2)dξ2

⎞
⎠ = b̃ j (ξ1)

n−1∑
k=0

⎛
⎝

+∞∫

−∞
Mjk(ξ1, ξ2)C̃k(ξ1)dξ1 + Pjk(ξ2)D̃k(ξ2)

⎞
⎠ = g̃ j (ξ2)

j = 0, 1, . . . , n − 1

(9)

with unknown functions C̃k, D̃k, k = 0, 1, . . . , n − 1. The following notations are
used:

R jk(ξ1) =
+∞∫

−∞
B̃ j (ξ)A−1

�= (ξ)(iξ2)
kdξ2, Pjk(ξ2) =

+∞∫

−∞
G̃ j (ξ)A−1

�= (ξ)(iξ1)
kdξ1,

L jk(ξ1, ξ2) = B̃ j (ξ)A−1
�= (ξ)(iξ1)

k, Mjk(ξ1, ξ2) = G̃ j (ξ)A−1
�= (ξ)(iξ2)

k,

j, k = 0, 1, . . . , n − 1. If we can solve the system (9) and find C̃k, D̃k, k =
0, 1, . . . , n − 1 the solution of the boundary value problem (9) can be constructed
by the formula [10]

ũ(ξ) = A−1
�= (ξ)

(
n−1∑
k=0

(
C̃k(ξ1)(iξ2)

k + D̃k(ξ2)(iξ1)
k
))

, (10)

where C̃k(ξ1), D̃k(ξ2), k = 0, 1, · · · , n−1, are arbitrary functions from H̃ sk (R), sk =
s − æ + k − 1/2.

Our next problems are the following. Given operator A and boundary operators
Bj ,G j how to choose the digital operators Ad and Bd, j ,Gd, j to obtain the implication:
the unique solvability of the system (9) gives the unique solvability of the system (6)
for enough small h. This question will be discussed in the next section.

4 Comparison theorems

4.1 Projectionmethod

Let us introduce the following space of vector-functions:

H̃
(R) = H̃S(R) ⊕ H̃S(R), H̃S(R) = ⊕
n−1∑
k=0

H̃ sk (R),
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Norms in these spaces will be defined in the following way. For f ∈ H̃S(R), f =
( f0, . . . , fn−1), fk ∈ H̃ sk (R), g ∈ H̃S(R), g = (g0, . . . , gn−1), gk ∈ H̃ sk (R)we put

|| f ||S =
n−1∑
k=0

|| fk ||sk . ||g||S =
n−1∑
k=0

||gk ||sk ,

and if F ∈ H̃
(R), F = ( f , g), f ∈ H̃S(R), g ∈ H̃S(R) we put

||F ||
 = || f ||S + ||g||S.

Let us introduce the following notations. We denote the system (9) in the following
way:

(
R L
M P

) (
C
D

)
=

(
B
G

)
,

where C = (c̃0, . . . , c̃n−1)
T , D = (d̃0, . . . , d̃n−1)

T , B = (b̃0, . . . , b̃n−1)
T ,G =

(g̃0, . . . , g̃n−1)
T ; operators R, L, M, P acting in the space H̃S(R) are the following:

R ismultiplier by thematrix-function (r jk)
n−1
j,k=0, P ismultiplier by thematrix-function

(p jk)
n−1
j,k=0, L , M are matrix integral operators with kernels L jk, Mjk , respectively.

Further, we will denote �h the restriction operator on the segment �T so that for
f ∈ H̃S(R), f = ( f0, . . . , fn−1) the notation �h f means the following:

�h f = (χh f0, . . . , χh fn−1),

where χh is an indicator of �T.
We denote by Q the operator

Q =
(
R L
M P

)

Theorem 3 Let s − β j > 1, s − γ j > 2, j = 0, 1, . . . , n − 1. We have the following
estimate:

||�hQ − Q�h ||H̃
(R)→H̃
(R)
≤ const hε,

where

ε = min
0≤ j≤n−1

{s − β j − 1, s − γ j − 1},

const does not depend on h, sk = s − æ + k − 1/2, k = 0, 1, . . . , n − 1.
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Proof 1 Obviously, the matrices R, P give vanishing result in the norm, and we need
to work with integral operators only. Let us consider the operator L , and extract one
its component L jk ,

+∞∫

−∞
L jk(ξ1, ξ2)D̃k(ξ2)dξ2, L jk(ξ1, ξ2) = B̃ j (ξ)A−1

�= (ξ)ξ k1 .

We have

χh(ξ1)

+∞∫

−∞
L jk(ξ1, ξ2)D̃k(ξ2)dξ2 −

+�π∫

−π̄

L jk(ξ1, ξ2)D̃k(ξ2)dξ2

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−�π∫
−∞

+
+∞∫
�π

)
L jk(ξ1, ξ2)D̃k(ξ2)dξ2, ξ1 ∈ �T,

−
�π∫

−�π

L jk(ξ1, ξ2)D̃k(ξ2)dξ2, ξ1 /∈ �T.

Let us consider the first case and estimate as follows:

∣∣∣∣∣∣

+∞∫

�π

L jk(ξ1, ξ2)D̃k(ξ2)dξ2

∣∣∣∣∣∣
≤ const

+∞∫

�π

(1 + |ξ |)β j−æ|ξ1|k |D̃k(ξ2)|dξ2

≤ const

+∞∫

�π

(1 + |ξ |)β j−s+1/2|D̃k(ξ2)|(1 + |ξ2|)sk dξ2

(we have taken into account sk = s − æ + k − 1/2 and now we apply the Cauchy–
Schwartz inequality)

≤ const(1 + |ξ1| + �)β j−s+1||D̃k ||sk ≤ const hs−β j−1||Dk ||sk .

Squaring the latter inequality, multiplying by (1 + |ξ|)2sk and integrating over �T

we obtain

�π∫

−�π

(1 + |ξ|)2sk
∣∣∣∣∣∣

+∞∫

�π

L jk(ξ1, ξ2)D̃k(ξ2)dξ2

∣∣∣∣∣∣

2

dξ1

≤ const h2(s−β j−1)||Dk ||2sk
+∞∫

0

(1 + |ξ|)2sk dξ1 ≤ const h2(s−β j−1)||Dk ||2sk
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For the second case (|ξ1| > �π ) we obtain

∣∣∣∣∣∣

+�π∫

−�π

L jk(ξ1, ξ2)D̃k(ξ2)dξ2

∣∣∣∣∣∣
≤ const

+�π∫

−�π

(1 + |ξ |)β j−æ|ξ1|k |D̃k(ξ2)|dξ2

≤ const

+�π∫

−�π

(1 + |ξ |)β j−æ|ξ1|n−1(1 + |ξ2|)−sk |D̃k(ξ2)|(1 + |ξ2|)sk dξ2

≤ const |ξ1|n−1(1 + |ξ1|)−sk

+�π∫

−�π

(1 + |ξ |)β j−æ|D̃k(ξ2)|(1 + |ξ2|)sk dξ2

(we apply the Cauchy–Schwartz inequality in the integral)

≤ const (1 + |ξ1|)n−sk−1(1 + |ξ1|)β j−æ+1/2k ||Dk ||sk
Squaring the latter inequality, multiplying by (1+|ξ|)2sk and integrating overR\�T

we obtain

⎛
⎝

−�π∫

−∞
+

+∞∫

�π

⎞
⎠ (1 + |ξ|)2sk

∣∣∣∣∣∣

+∞∫

�π

L jk(ξ1, ξ2)D̃k(ξ2)dξ2

∣∣∣∣∣∣

2

dξ1

≤ const ||Dk ||2sk
+∞∫

�π

(1 + ξ1)
2n−2+2β j+1−2ædξ1 ≤ const ||Dk ||2sk h2s−2β j+2δ,

since 2n + 2β j − 2æ = 2n + 2β j − 2(s + n + δ) = 2β j − 2s − 2δ < 0.
Thus, we have proved that

||χh L jk − L jkχh ||Hsk (R)→Hsk (R) ≤ const hs−β j−1,

since s − β j − 1 < s − β j + δ.
Almost the same inequality can be obtained for Mjk

||χhM jk − Mjkχh ||Hsk (R)→Hsk (R) ≤ const hs−γ j−1,

These estimates complete the proof. �
Corollary 1 Under conditions of Theorem 3 the invertibility of the operator Q in the
space H̃
(R) implies the invertibility of the operator �hQ�h in the space H̃
(�T)

for enough small h.

Proof 2 We apply the results of the paper [9] which imply the following: If

||�hQ − Q�h ||H̃
(R)→H̃
(R)
→ 0, h → 0
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then the equation in the space H̃
(R)

Qu = v (11)

admits applying so called projection method. In other words it means that unique
solvability of the equation (11) in the space H̃
(R) implies unique solvability of the
equation

�hQ�hu = �hv (12)

in the space H̃
(�T) for enough small h. Moreover, if there is bounded operator Q−1

in the space H̃
(R) then there is bounded operator (�hQ�h)
−1 for enough small h

and

||(�hQ�h)
−1||H̃
(�T)→H̃
(�T)

≤ const,

where const does not depend on h.
Indeed, a reader can easily verify that

||(�hQ�h)
−1 − �hQ

−1�h ||H̃
(�T)→H̃
(�T)
→ 0, h → 0.

�

4.2 Discrete and continuous

To compare discrete and continuous operators we need a special choice of discrete
operators. We will do it in the following way:

The symbol Ad(ξ) of the discrete operator Ad will be constructed as follows. Given
wave factorization for Ã(ξ)

Ã(ξ) = A �=(ξ) · A=(ξ)

we take restrictions of factors A �=(ξ), A=(ξ) on �T
2 and periodically continue them

into R
2. We denote these elements by Ad,�=(ξ), Ad,=(ξ) and construct the periodic

symbol Ad(ξ) which admits periodic wave factorization with respect to K

Ad(ξ) = Ad,�=(ξ) · Ad,=(ξ)

with the same index æ.We construct discrete pseudo-differential operators Bd, j ,Gd, j

taking their symbol as restrictions of symbols B̃ j (ξ), G̃ j (ξ) on �T
2 with periodical

continuations intoR
2, , j = 0, 1, . . . , n−1. The discrete boundary functions bd, j , gd, j

are constructed in the same way. Thus, we have the corresponding discrete boundary
value problem (2),(4).
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Lemma 1 The estimate

|(iξm)k − ζ k
m | ≤ const h|ξm |k+1

holds for ξm ∈ �T,m = 1, 2, const does not depend on h.

Proof 3 First, we estimate

|ζ1| =
∣∣∣∣∣

∞∑
ν=1

(iξ1)ν+1hν

(ν + 1)!

∣∣∣∣∣ = |ξ1|
∣∣∣∣∣

∞∑
ν=0

(iξ1)νhm

(ν + 1)!

∣∣∣∣∣ ≤ |ξ1|
∞∑

ν=0

(|ξ1|h)ν

ν!
= |ξ1|e|ξ1|h ≤ |ξ1|eπ .

Second,

|ζ1 − iξ1| = |�(eiξ1h − 1) − iξ1| =
∣∣∣∣∣

∞∑
ν=1

(iξ1)ν+1hν

(ν + 1)!

∣∣∣∣∣

≤ |ξ1|2h
∞∑

ν=0

|ξ1|νhν

ν! = |ξ1|2he|ξ1|h ≤ |ξ1|2heπ .

We have

ζ k
1 − (iξ1)

k = (ζ1 − iξ1)

(
k−1∑
ν=0

ζ ν
1 (iξ1)

k−1−ν

)
,

and thus

|ζ k
1 − (iξ1)

k | ≤ |ζ1 − iξ1|
k−1∑
ν=0

|ζ1|ν |ξ1|k−1−ν

Applying above estimates we obtain required inequality.
�

Lemma 2 Let s − β j > 2, s − γ j > 2, j = 0, 1, . . . , n − 1.The following estimates

|L jk(ξ1, ξ2) − l jk(ξ1, ξ2)| ≤ const h(1 + |ξ |)β j−æ+k+1,

|Mjk(ξ1, ξ2) − m jk(ξ1, ξ2)| ≤ const h(1 + |ξ |)γ j−æ+k+1,

|R jk(ξ1) − r jk(ξ1)| ≤ const h(1 + |ξ1|)β j−æ+k+2,

|Pjk(ξ2) − p jk(ξ2)| ≤ const h(1 + |ξ1|)γ j−æ+k+2

hold for ξ1, ξ2 ∈ �T.
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Proof 4 According to above conventions for ξ ∈ �T
2 and using Lemma 1 we have

|L jk(ξ1, ξ2) − l jk(ξ1, ξ2)| = |B̃ j (ξ)A−1
�= (ξ) − B̃d, jξ)A−1

d,�=(ξ)||Bj (ξ)||ξ k1 − ζ k
1 |

≤ const (1 + |ξ |)β j−æh|ξ1|k+1 ≤ const h(1 + |ξ |)β j−æ+k+1.

Further,

|R jk(ξ1) − r jk(ξ1)| =
∣∣∣∣∣∣

+∞∫

−∞
B̃ j (ξ)A−1

�= (ξ)ξ k2 dξ2 −
+�π∫

−�π

B̃d, j (ξ)A−1
d,�=(ξ)ζ k

2 dξ2

∣∣∣∣∣∣

≤
+�π∫

−�π

|B̃d, j (ξ)A−1
d,�=(ξ)||ξ k2 − ζ k

2 |dξ2 +
⎛
⎝

−�π∫

−∞
+

+∞∫

�π

⎞
⎠ |B̃ j (ξ)A−1

�= (ξ)ξ k2 |dξ2.

For the first integral we have

+�π∫

−�π

|B̃d, j (ξ)A−1
d,�=(ξ)||ξ k2 − ζ k

2 |dξ2 ≤ const h

+�π∫

−�π

(1 + |ξ |)β j−æ+k+1dξ2

≤ const h(1 + |ξ1|)β j−æ+k+2,

since β j − æ + k + 2 < 0, s − β j > 2.
The second summand

∣∣∣∣∣∣

⎛
⎝

−�π∫

−∞
+

+∞∫

�π

⎞
⎠ |B̃ j (ξ)A−1

�= (ξ)ξ k2 |dξ2

∣∣∣∣∣∣
≤ const

+∞∫

�π

(1 + |ξ1| + |ξ2|)β j−æ+kdξ2

≤ const(1 + |ξ1| + �)β j−æ+k+1 ≤ const h(1 + |ξ1|)β j−æ+k+2.

The same estimates are valid for Mjk − m jk and Pjk with γ j instead of β j . �
We introduce similar notations for the system (6) so that this system takes the

following form:

(
r l
m p

)(
c
d

)
=

(
Bd

Gd

)
,

where

q =
(
r l
m p

)

is linear bounded operator acting in the space H̃
(�T).
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Theorem 4 Let s − β j > 3, s − γ j > 3, j = 0, 1, . . . , n − 1. A comparison between
operators Q and q is given by the estimate

||�hQ�h − q||H̃
(�T)→H̃
(�T)
≤ const h,

where const does not depend on h.

Proof 5 We need to estimate Hsk (�T)-norms of the following elements

(R jk(ξ1) − r jk(ξ1)) f (ξ1), (R jk(ξ2) − p jk(ξ2)) f (ξ2),
�π∫

−�π

(L jk(ξ1, ξ2) − l jk(ξ1, ξ2)) f (ξ2)dξ2,

�π∫

−�π

(Mjk(ξ1, ξ2) − m jk(ξ1, ξ2)) f (ξ1dξ1.

We have according to Lemma 2

|(R jk(ξ1) − r jk(ξ1)) f (ξ1)| ≤ const h(1 + |ξ1|)β j−æ+k+2| f (ξ1)|.

Multiplying the latter inequality by (1 + |ξ1|)sk , squaring, integrating over �T and
applying the Cauchy–Schwartz inequality we obtain

+�π∫

−�π

(1 + |ξ1|)2sk |R jk(ξ1) − r jk(ξ1)|2| f (ξ1)|2dξ1 ≤ const h2|| f ||2sk

since β j − æ + k + 2 < 0.
Let us consider

�π∫

−�π

(L jk(ξ1, ξ2) − l jk(ξ1, ξ2)) f (ξ2)dξ2.
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Using Lemma 2 we have

∣∣∣∣∣∣

�π∫

−�π

(L jk(ξ1, ξ2) − l jk(ξ1, ξ2)) f (ξ2)dξ2

∣∣∣∣∣∣

≤ const h

�π∫

−�π

(1 + |ξ |)β j−æ+k+1| f (ξ2)|dξ2

≤ const h

�π∫

−�π

(1 + |ξ |)β j−s+5/2| f (ξ2)|(1 + |ξ2|)sk dξ2

since β j −æ+k+2−sk = −β j −s+5/2. Now applying Cauchy–Schwartz inequality
we find

∣∣∣∣∣∣

�π∫

−�π

(L jk(ξ1, ξ2) − l jk(ξ1, ξ2)) f (ξ2)dξ2

∣∣∣∣∣∣

≤ const h|| f ||sk
⎛
⎝

�π∫

−�π

(1 + |ξ1| + |ξ2|)2β j−2s+5dξ2

⎞
⎠

1/2

≤ const h|| f ||sk (1 + |ξ1|)β j−s+3

according to the condition s − β j > 3. Squaring, multiplying by (1 + |ξ1|)2sk and
integrating over �T we conclude

�π∫

−�π

(1 + |ξ1|)2sk
∣∣∣∣∣∣

�π∫

−�π

(L jk(ξ1, ξ2) − l jk(ξ1, ξ2)) f (ξ2)dξ2

∣∣∣∣∣∣

2

dξ1

≤ const h2|| f ||2sk
�π∫

−�π

(1 + |ξ1|)2(β j−s+3+sk )dξ1 ≤ const h2|| f ||2sk

since 2(β j − s + 3+ sk) < −1. Indeed, 2(β j − s + 3+ sk) = 2(β j − s + 3+ s −æ+
k−1/2) = 2(β j − s− δ). Obviously, the inequality 2(β j − s− δ) < −1 is equivalent
to s − β j > −1 − δ.

�

Corollary 2 Under conditions of Theorem 4 the invertibility of the operator Q in the
space H̃
(R) implies the invertibility of the operator q in the space H̃
(�T) for
enough small h.
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Proof 6 Indeed,we have the invertibility of�h Q�h byCorollary 1 and the invertibility
of q is obtained by Theorem 4.

�

Conclusion

Main goal of the paper was to prove unique solvability of discrete boundary value
problem for small h having in mind unique solvability of its continuous analogue. It
was done by a special choice of a discrete operator and discrete boundary conditions.
We hope that estimates of Theorem 3 and 4 will help us to obtain some estimates for
discrete and continuous solutions.
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