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Abstract. We consider a model elliptic pseudo-differential equation in a 4-wedge conical canonical 3D singular domain with two

parameters. It is shown that the solution of a special boundary value problem for this equation can have a limit with respect to

endpoint values of the parameters in appropriate Sobolev – Slobodetskii space if the boundary function is a solution of a special

functional singular integral equation.

INTRODUCTION

A lot of papers (see, for example, [1, 2, 3]) are devoted to constructing and developing the theory of elliptic pseudo-

differential operators and equations on non-smooth manifolds or manifolds with non-smooth boundaries. The term

"theory" means an existence in these stidies Fredholmness and index theorems.

Using the local principle and studying invertibility properties for model operators in so called canonical domains

we at the same time investigate Fredholm properties for general elliptic pseudo-differential operators [4, 5, 6, 7]. Let

us note that distinct model operators and canonical domains generate distinct Fredholm theories.

By canonical domain as usual we mean a certain cone in m-dimensional space. It may be a whole space Rm, a

half-space Rm
+ = {x ∈ Rm : x = (x′,xm),xm > 0} or a certain typical cone in Rm.

Let C be a convex cone in Rm non including a straight line. Let us consider a pseudo-differential operator of the

following type

(Au)(x) =

∫

C

∫

Rm

A(ξ )ei(x−y)·ξ u(y)dξ dy, x ∈C,

and a model equation

(Au)(x) = v(x), x ∈C, (1)

assuming that the symbol A(ξ ) of the operator A satisfies the condition

c1(1+ |ξ |)α ≤ |A(ξ )| ≤ c2(1+ |ξ |)α ,α ∈ R. (2)

We would like to remind that new approach to studying pseudo-differential equations on manifolds with a non-

smooth boundary was developed in [8]. It is based on studying invertibility conditions for a model pseudo-differential

operator A or conditions of unique solvability for the model equation (1) in appropriate functional spaces. To describe

these conditions the concept of wave factorization for an elliptic symbol was used [8].

ELLIPTIC EQUATION IN A MULTIDIMENSIONAL CONE

We will start from three-dimensional case. Let Cab
+ be a conical canonical domain of the following type

Cab
+ = {x ∈R

3 : x = (x1,x2,x3),x3 > a|x1|+ b|x2|,a,b > 0}.

As usual Ã(ξ ) denotes symbol of the pseudo-differential operator A, it does not depend on a spatial variable x and

satisfies the condition (2). Here we remind some definitions from [9].

A radial tube domain over the cone Cab
+ is called a domain in 3-dimensional complex space C3 of the following

type

T (Cab
+ )≡ {z ∈ C

3 : z = x+ iy,x ∈ R
3,y ∈Cab

+ }.
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A conjugate cone
∗

Cab
+ is called such a cone in which for all points the condition

x · y > 0, ∀y ∈Cab
+ ,

holds; x · y means inner product for x and y.

According to [10] we introduce the wave factorization for a symbol.

Definition 1. Wave factorization of elliptic symbol Ã(ξ ) with respect to the cone Cab
+ is called its representation in

the form

Ã(ξ ) = Ã 6=(ξ )Ã=(ξ ),

where the factors Ã 6=(ξ ), Ã=(ξ ) satisfy the following conditions:

1) Ã 6=(ξ ), Ã=(ξ ) are defined everywhere excluding may be the points {ξ ∈ R
3 : ξ3 =

1
2a
|ξ1|+

1
2b
|ξ2|};

2) Ã 6=(ξ ), Ã=(ξ ) admit analytic continuation into radial tube domains T (
∗

Cab
+ ),T (−

∗

Cab
+ ) respectively with estimates

|A±1
6= (ξ + iτ)| ≤ c1(1+ |ξ |+ |τ|)±,

|A±1
= (ξ − iτ)| ≤ c2(1+ |ξ |+ |τ|)±(α−), ∀τ ∈

∗

Cab
+ .

The real number is called an index of the wave factorization.

Remark 1. Everywhere below we assume that such a factorization exists.

We consider multidimensional equation (1) in analogous Sobolev–Slobodetskii space Hs(Cab
+ ) [10]. For simplicity

we study the homogeneous equation

(Au)(x) = 0,x ∈Cab
+ . (3)

To describe a general solution of the equation (1) for the case − s = 1+δ , |δ |< 1/2 we use some results from [11].

Further, we introduce the following singular integral operators [12, 13]

(S1u)(ξ1,ξ2,ξ3) = v.p
i

2π

+∞
∫

−∞

u(τ,ξ2,ξ3)dτ

ξ1 − τ
,

(S2u)(ξ1,ξ2,ξ3) = v.p
i

2π

+∞
∫

−∞

u(ξ1,η ,ξ3)dη

ξ2 −η

and write

A 6=(ξ )ũ(ξ ) = C̃1(ξ1 − aξ3,ξ2 − bξ3)+ C̃2(ξ1 − aξ3,ξ2 + bξ3)

+C̃3(ξ1 + aξ3,ξ2 − bξ3)+ C̃4(ξ1 + aξ3,ξ2 + bξ3), (4)

where

C̃1(ξ1 − aξ3,ξ2 − bξ3) =
1

4
c̃0(ξ1 − aξ3,ξ2 − bξ3)−

1

2
(S1c̃0)(ξ1 − aξ3,ξ2 − bξ3)

−
1

2
(S2c̃0)(ξ1 − aξ3,ξ2 − bξ3)+ (S1S2c̃0)(ξ1 − aξ3,ξ2 − bξ3);
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C̃2(ξ1 − aξ3,ξ2 + bξ3) =
1

4
c̃0(ξ1 − aξ3,ξ2 + bξ3)−

1

2
(S1c̃0)(ξ1 − aξ3,ξ2 + bξ3)

+
1

2
(S2c̃0)(ξ1 − aξ3,ξ2 + bξ3)− (S1S2c̃0)(ξ1 − aξ3,ξ2 + bξ3);

C̃3(ξ1 + aξ3,ξ2 − bξ3) =
1

4
c̃0(ξ1 + aξ3,ξ2 − bξ3)+

1

2
(S1c̃0)(ξ1 + aξ3,ξ2 − bξ3)

−
1

2
(S2c̃0)(ξ1 + aξ3,ξ2 − bξ3)− (S1S2c̃0)(ξ1 + aξ3,ξ2 − bξ3);

C̃4(ξ1 + aξ3,ξ2 + bξ3) =
1

4
c̃0(ξ1 + aξ3,ξ2 + bξ3)+

1

2
(S1c̃0)(ξ1 + aξ3,ξ2 + bξ3)

+
1

2
(S2c̃0)(ξ1 + aξ3,ξ2 + bξ3)+ (S1S2c̃0)(ξ1 + aξ3,ξ2 + bξ3).

To determine uniquely the arbitrary function c0(ξ1,ξ2) we require certain additional condition. for example, we

assume that the restriction ũ(ξ1,ξ2,0) is given, i.e. the following integral

+∞
∫

−∞

u(x1,x2,x3)dx3 ≡ g(x1,x2), (5)

it gives the equality

ũ(ξ1,ξ2,0) = g̃(ξ1,ξ2). (6)

Substituting (6) into (4) we obtain all summands. Indeed,

Ã 6=(ξ )ũ(ξ ) =
4

∑
k=1

C̃k(ξ1,ξ2)

=
1

4
c̃0(ξ1,ξ2)−

1

2
(S1c̃0)(ξ1,ξ2)−

1

2
(S2c̃0)(ξ1,ξ2)+ (S1S2c̃0)(ξ1,ξ2)

+
1

4
c̃0(ξ1,ξ2)−

1

2
(S1c̃0)(ξ1,ξ2)+

1

2
(S2c̃0)(ξ1,ξ2)− (S1S2c̃0)(ξ1,ξ2)

+
1

4
c̃0(ξ1,ξ2)+

1

2
(S1c̃0)(ξ1,ξ2)−

1

2
(S2c̃0)(ξ1,ξ2)− (S1S2c̃0)(ξ1,ξ2)

+
1

4
c̃0(ξ1,ξ2)+

1

2
(S1c̃0)(ξ1,ξ2)+

1

2
(S2c̃0)(ξ1,ξ2)+ (S1S2c̃0)(ξ1,ξ2) = c̃0(ξ1,ξ2).

Taking into account the condition (6) we find

c̃0(ξ
′) = Ã 6=(ξ

′,0)g̃(ξ ′). (7)

Theorem 1. Let − s = 1+ δ , |δ |< 1/2,g ∈ Hs+1/2(R2). Then the unique solution of the problem (3),(5) is given by

the formula (4), and c0(x1,x2) is determined by the formula (7).
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DEGENERATED CASE

In the above section we have two parameters of the cone a and b. Degenerated case corresponds to that case when

one of the parameters (or both) tends to 0 or +∞. Let us note that case a,b → 0 was studied in [4], the cases

a → 0,b = const and a = const,b → 0 were studied in [10].Here we consider limit case a →+∞,b = const, the case

a = const,b →+∞ looks almost the same..

Starting point for this consideration will be the equality (4). We use the change of variables ξ1−aξ3 = t1,ξ1+aξ3 =
t3 from which we have ξ1 =

t3+t1
2

,ξ3 =
t3−t1

2a
. So, we have new variables t1,ξ2, t3. If we use the condition (5) we can

find the unknown function c̃0 by the formula (7). Now let us write the formula (4) for the new variables t1,ξ2, t3. Then

we obtain

A 6=

(

t2 + t1

2
,ξ2,

t3 − t1

2a

)

ũ

(

t2 + t1

2
,ξ2,

t3 − t1

2a

)

= C̃1

(

t1,ξ2 − b
t3− t1

2a

)

+ C̃2

(

t1,ξ2 + b
t3 − t1

2a

)

+C̃3

(

t3,ξ2 − b
t3 − t1

2a

)

+ C̃4

(

t3,ξ2 + b
t3 − t1

2a

)

. (8)

Tending a to +∞ we obtain the following relation

A 6=

(

t2 + t1

2
,ξ2,0

)

ũ

(

t2 + t1

2
,ξ2,0

)

= C̃1 (t1,ξ2)+ C̃2 (t1,ξ2)+ C̃3 (t3,ξ2)+ C̃4 (t3,ξ2) .

After accurate calculations we find

C̃1 (t1,ξ2)+ C̃2 (t1,ξ2)+ C̃3 (t3,ξ2)+ C̃4 (t3,ξ2) =
c̃0(t1,ξ2)+ c̃0(t3,ξ2)

2
− (S1c̃0)(t1,ξ2)+ (S1c̃0)(t3,ξ2).

Taking into account the condition (6), the formula (7) and new notation

Ã 6=(ξ1,ξ2,0)g̃(ξ1,ξ2)≡ h(ξ1,ξ2),

we obtain the following equation with parameter ξ2

h

(

t2 + t1

2
,ξ2

)

=
h(t1,ξ2)+ h(t3,ξ2)

2
− (S1h)(t1,ξ2)+ (S1h)(t3,ξ2). (9)

Thus, we have the following property.

Theorem 2. If the symbol A(ξ ) admits the wave factorization with respect to Cab
+ with the index such that − s =

1+ δ , |δ |< 1/2 for enough large a then the unique solution of the boundary value problem (3),(5) has a limit under

a →+∞ if and only if the boundary function g ∈ Hs+1/2(R2) satisfies the equation (9).

CONCLUSION

We have considered here a homogeneous equation only, it was done for simplicity. More general and more interesting

situation is considering non-homogeneous equations. Some steps in this direction were suggested, but this approach

should be verified.
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