УДК 621.396.01

О СОСРЕДОТОЧЕННОСТИ ЭНЕРГИИ КОСИНУСНОГО ПРЕОБРАЗОВАНИЯ

ABOUT COSINE TRANSFORM ENERGY CONCENTRATION

E.B. Болгова E.V. Bolgova

Белгородский государственный национальный исследовательский университет, Россия, 308015, Белгород, ул. Победы, 85

Belgorod State National Research University, 85 Pobeda St, Belgorod, 308015, Russia

e-mail: bolgova_e@bsu.edu.ru

Аннотация

В работе проведено исследование по сравнению значений сосредоточенности энергии изображений в различных частотных областях для некоторых ортогональных преобразований различных изображений. Приведены результаты вычисления сосредоточенности энергии результатов указанных ортогональных преобразований в частотных областях различных размеров, вычисления выполнены с удалением и без удаления среднего значения яркости пикселей изображений. Сравнение значений сосредоточенности энергии на заданном расстоянии результатов различных ортогональных преобразований показывают, что наибольшей сосредоточенностью энергии, в большинстве случаев, обладают результаты дискретного косинусного преобразования. Вычислительные эксперименты также показали, что следующим по величине сосредоточенности энергии результатов преобразования во многих случаях является непрерывное косинусное преобразование и что большей сосредоточенностью энергии на заданном расстоянии обладают результаты ортогональных преобразования во многих случаях является непрерывное косинусное преобразование и что большей сосредоточенностью энергии на заданном расстоянии обладают результаты ортогональных преобразования во многих случаях является непрерывное косинусное преобразование и что большей сосредоточенностью энергии на заданном расстоянии обладают результаты ортогональных преобразования во многих случаях является непрерывное косинусное преобразование и что большей сосредоточенностью энергии на заданном расстоянии обладают результаты ортогональных преобразования, содержащего меньшее количество деталей.

Abstract

In the work, we made the comparing of the images energy concentration in different frequency regions for some orthogonal transformations of various images. The results of calculating the energy concentration of the results of these orthogonal transformations in frequency domains of different sizes are presented, the calculations are performed with removal and without removing the average brightness value of the image pixels. Comparison of the energy concentration values at a given distance of the various orthogonal transformations results shows that the discrete cosine transformation has the most concentrated energy in most cases. Also computational experiments have shown that the continuous cosine transformation is the next one which have the largest energy concentration of the transformation results in many case, and that the results of orthogonal transformations of an image containing a smaller number of details possess greater energy concentration at a given distance than other ones.

Ключевые слова: косинусное преобразование, подобласть пространственных частот, сосредоточенность энергии, ортогональные преобразования.

Keywords: cosine transform, subdomain spatial frequencies, energy concentration, orthogonal transformations.

При решении многих задач обработки изображений применяют различные ортогональные и унитарные преобразования, такие как: дискретное преобразование Фурье, дискретное косинусное преобразование, непрерывное преобразование Фурье, непрерывное косинусное преобразование, преобразование Хаара и др. [Ахмед Н., Рао К., 1980; Ярославский Л.П., 1979; Прэтт У., 1982; Черноморец А.А., Болгова Е.В., 2015; Болгова Е.В., 2017; Черноморец А.А., Волчков В.П., 2012].

112 НАУЧНЫЕ ВЕДОМОСТИ 🦾 Серия Экономика. Информатика. 2017. № 9(258). Выпуск 42⁻

Пусть изображение Φ , размерности $N_1 \times N_2$, представлено в виде матрицы $\Phi = (f_{ik})$, *i* = 1,2,..., N_1 , *k* = 1,2,..., N_2 , значений яркости его пикселей.

Тогда следующие соотношения определяют указанные преобразования (где *u*, *v* – пространственные частоты):

- дискретное преобразование Фурье,

$$F_{n_1n_2}^{DFT}(u,v) = \sum_{i=1}^{N_1} \sum_{k=1}^{N_2} f_{ik} e^{\frac{j2\pi}{N} (i-1)(n_1-1)} e^{\frac{j2\pi}{N} (k-1)(n_2-1)},$$

$$n_1 = 0, 1, \dots, N_1 - 1, \ n_2 = 0, 1, \dots, N_2 - 1, \ j = (-1)^{1/2},$$
(1)

- дискретное косинусное преобразование,

$$F_{n_{i}n_{2}}^{DCT} = \alpha_{n_{i}} \alpha_{n_{2}} \sum_{i=1}^{N_{i}} \sum_{k=1}^{N_{i}} f_{ik} \cos(\frac{\pi n_{1}}{N_{2}}(i-\frac{1}{2})) \cos(\frac{\pi n_{2}}{N_{2}}(k-\frac{1}{2})), \qquad (2)$$

$$n_{1} = 0, 1, \dots, N_{1} - 1, \ n_{2} = 0, 1, \dots, N_{2} - 1,$$

$$\alpha_{n_1} = \begin{cases} 1/\sqrt{N_1}, n_1 = 0, \\ \sqrt{2/N_1}, n_1 = 1, 2, \dots, N_1 - 1, \end{cases} \qquad \alpha_{n_2} = \begin{cases} 1/\sqrt{N_2}, n_2 = 0, \\ \sqrt{2/N_2}, n_2 = 1, 2, \dots, N_2 - 1. \end{cases}$$

- непрерывное преобразование Фурье,

$$F^{FT}(u,v) = \sum_{i=1}^{N_1} \sum_{k=1}^{N_2} f_{ik} \exp(-ju(i-1)) \exp(-jv(k-1)), \qquad (3)$$

$$-\pi \le u, v < \pi; \quad j = (-1)^{1/2},$$

- непрерывное косинусное преобразование,

$$F^{CT}(u,v) = \sum_{i=1}^{N_1} \sum_{k=1}^{N_2} f_{ik} \cos(u(i-\frac{1}{2})) \cos(v(k-\frac{1}{2})), \qquad (4)$$
$$u \in [0,\pi), \quad v \in [0,\pi),$$

Преобразование Хаара основано на базисных функциях Хаара $har_i(x)$, определенных на интервале $x \in [0,1)$ и i = 0,1,...,N-1, где $N = 2^n$.

Базисные функции Хаара задаются на основании следующих соотношений:

$$har_{0}(x) = \frac{1}{\sqrt{N}}, \ x \in [0,1),$$

$$har_{i}(x) = h_{pq}(x) = \frac{1}{\sqrt{N}} \begin{cases} 2^{p/2}, x \in [(q-1)/2^{p}, (q-1/2)/2^{p}], \\ -2^{p/2}, x \in [(q-1/2)/2^{p}, q/2^{p}], \\ 0, \partial \pi g \text{ GCEX OCMAЛЬНЫХ } x \in [0,1], \end{cases}$$
(5)

где *p*,*q* – целые положительные числа,

$$i = 2^{p} + q - 1$$
, $1 \le q < 2^{p}$.

Преобразование Хаара задается следующим соотношением:

$$F^{DHT} = H_{DHT} \Phi H_{DHT}^{T}, \qquad (6)$$

где *H*_{DHT} – матрица преобразования Хаара, строки которой составлены из базисных функций Хаара.

В представленных преобразованиях пространственные частоты u, v принадлежат подобласти пространственных частот V_0 , на которой задано то или иное преобразование с учетом его периодичности,

$$(u,v) \in V_0 . \tag{7}$$

Например, для следующих преобразований область V₀ имеет вид:

- преобразование Фурье,

$$V_0 = \{(u, v) \mid -\pi \le u < \pi, -\pi \le v < \pi\},\$$

- косинусное преобразование,

$$V_0 = \{(u, v) \mid 0 \le u < \pi, 0 \le v < \pi\}$$

- преобразование Хаара,

$$V_0 = \{(u, v) \mid 0 \le u < 1, 0 \le v < 1\}.$$

Одним из критериев выбора конкретного преобразования при решении многих задач обработки изображений является его способность сосредотачивать энергию результата преобразования в области низких пространственных частот.

Под энергией $E_{\nu}(\Phi)$ результата преобразования изображения Φ , соответствующей заданной подобласти пространственных частот V, обычно понимают следующую величину [Жиляков Е.Г., Черноморец А.А., 2010; Жиляков Е.Г., Черноморец А.А., 2013]:

- в случае непрерывного преобразования F:

$$E_{\nu}(\Phi) = \frac{1}{a} \iint_{(u,v)\in V} |F(u,v)|^2 du dv,$$

- в случае дискретного преобразования F :

$$E_{\nu}(\Phi) = \frac{1}{b} \sum_{i=i_{1}}^{k_{1}} \sum_{k=k_{1}}^{k_{1}} |F_{ik}|^{2} du d\nu,$$

где a, b – некоторые константы, соответствующие отдельному преобразованию, индексы i_1, i_2 и k_1, k_2 определяются границами области V.

Под сосредоточенностью C_0^d энергии на расстоянии *d* результата преобразования вблизи нулевых частот в области V_0^d предлагается понимать следующее отношение:

$$C_0^d = E_{\nu^d}(\Phi) / E(\Phi),$$

где $E(\Phi)$ – энергия изображения Φ в области V_0 (7),

 $E_{\mu^d}(\Phi)$ – энергия изображения Φ в области V_0^d ,

$$V_0^d = \{(u,v) \mid |(u,v)| < d_0 d, (u,v) \in V_0\},\$$

|(*u*,*v*)| – длина вектора (*u*,*v*) в метрике Чебышева,

$$|(u,v)| = \max(u,v),$$

 d_{0} – размер частотной области V_{0} (7),

 $d_0 = \max(u, v)$, при $(u, v) \in V_0$,

d – нормированный коэффициент (нормированное расстояние),

$$0 \le d \le 1.$$

На рисунке 1 приведены примеры областей V_0^d при d = 0,5 (в метрике Чебышева) для некоторых преобразований.

Рис. 1. Примеры областей V_0^d вычисления сосредоточенности C_0^d при d = 0,5: а – дискретное преобразование Фурье (логарифмированный спектр), б – дискретное косинусное преобразование (логарифмированный спектр), в – преобразование Хаара (логарифмированный спектр) Fig. 1. Examples of areas V_0^d for concentration calculations C_0^d for d = 0,5: a – discrete Fourier transform (logarithmic spectrum), b – discrete cosine transformation (logarithmic

spectrum), c – Haar transformation (logarithmic spectrum)

Автором проведено исследование по сравнению значений сосредоточенности энергии C_0^d в различных частотных областях для некоторых ортогональных преобразований различных изображений.

Расчеты сосредоточенности энергии выполнены для изображений (рисунок 2), характеризующихся различным количеством деталей [Гонсалес Р., Вудс Р. 2006].

Рис. 2. Изображения И1, И2 и И3, используемые для расчета сосредоточенности Fig. 2. Images I1, I2 and I3 used for concentration calculation

При вычислении сосредоточенности энергии были выбраны различные размерности для анализируемых изображений: 128×128, 256×256 и 512×512 пикселей.

Также в отдельных вычислительных экспериментах перед вычислением сосредоточенности энергии из анализируемого изображения вычиталось его среднее значение.

Значения нормированного расстояния *d* были выбраны равными:

 $d = \{0.02; 0.05; 0.1; 0.125; 0.25; 0.5\}.$

В ходе вычислительных экспериментов были проанализированы значения сосредоточенности энергии на расстоянии *d* для непрерывного преобразования Фурье (FT), непрерывного косинусного преобразования (CT), дискретного преобразования Фурье (DFT), дискретного косинусного преобразования (DCT) и преобразования Хаара (DHT).

Для изображения И1 (рис. 2a) при его различной размерности в таблице 1, приведены результаты вычисления сосредоточенности энергии результатов указанных ортогональных преобразований в частотных областях различных размеров, а также с удалением и без удаления среднего значения яркости пикселей.

Таблица 1 Table 1

Параметры расчетов		d							
		0,02	0,05	0,1	0,125	0,25	0,5		
без удаления среднего		·	·		·				
128×128	СТ	0,647333	0,850449	0,93104	0,950409	0,979099	0,99414		
	FT	0,590553	0,83595	0,920436	0,94269	0,975077	0,992494		
	DCT	0,769576	0,89011	0,950379	0,965417	0,987009	0,997449		
	DFT	0,778773	0,873973	0,941816	0,958216	0,982758	0,995612		
	DHT	0,770447	0,862255	0,912163	0,939544	0,974613	0,991863		
256×256	CT	0,794232	0,930548	0,96756	0,97787	0,992219	0,997829		
	FT	0,766652	0,919914	0,962414	0,973718	0,990257	0,997016		
	DCT	0,874693	0,950049	0,979397	0,986127	0,996235	0,999529		
	DFT	0,829075	0,941434	0,972409	0,981722	0,994043	0,998619		
	DHT	0,848195	0,911774	0,956629	0,973201	0,989481	0,997027		

Сосредоточенность энергии изображения И1 на расстоянии d Image I1 energy concentration at a distance d

						Оконча	ние табл. 1
512×512	CT	0,89288	0,967187	0,987525	0,991992	0,997526	0,999115
	FT	0,878122	0,962013	0,98483	0,989948	0,996548	0,998711
	DCT	0,936634	0,979084	0,993929	0,996172	0,999577	0,999967
	DFT	0,925845	0,972058	0,990753	0,993887	0,998473	0,999507
	DHT	0,897721	0,956122	0,983281	0,988841	0,996228	0,999006
с удалением ср	еднего						
128×128	CT	0,066517	0,541043	0,786013	0,84723	0,939012	0,986518
	FT	0,057963	0,519486	0,766865	0,832634	0,930037	0,982818
	DCT	0,043228	0,543713	0,793961	0,856406	0,94606	0,98941
	DFT	0,081416	0,476707	0,758408	0,826504	0,928408	0,98178
	DHT	0,046845	0,428054	0,635282	0,748976	0,894587	0,966215
256×256	CT	0,41496	0,784529	0,901546	0,93506	0,980834	0,996463
	FT	0,356128	0,765357	0,890134	0,925883	0,976521	0,994758
	DCT	0,47985	0,792652	0,914478	0,942414	0,98437	0,998044
	DFT	0,29049	0,756895	0,885469	0,924129	0,975274	0,994269
	DHT	0,369858	0,633776	0,819969	0,888756	0,956337	0,987658
512×512	CT	0,659688	0,90033	0,96627	0,980452	0,996336	0,999061
	FT	0,61893	0,888882	0,960546	0,975975	0,994286	0,998214
	DCT	0,737375	0,91331	0,974839	0,984133	0,998248	0,999865
	DFT	0,692659	0,884191	0,961675	0,974665	0,993672	0,997957
	DHT	0,576094	0,818143	0,930708	0,953753	0,984367	0,995881

Для визуального анализа данных, приведенных в таблице 1, построены соответствующие графики (рис. 3).

На графиках для различных ортогональных преобразований использованы следующие обозначения:

- непрерывное косинусное преобразование,
- • • непрерывное преобразование Фурье,
 - — дискретное косинусное преобразование,
 - 🔭 дискретное преобразование Фурье,
 - преобразование Хаара.

Рис. 3. Зависимость сосредоточенности от расстояния d для изображения И1: a, б-128×128 пикселей; в, г – 256×256 пикселей; д, е – 512×512 пикселей; a, в, д – без удаления среднего; б, г, е – с удалением среднего Fig. 3. Dependence of Image I1 energy concentration at a distance d: a, b – 128 × 128 pixels; c, d – 256 × 256 pixels; e, f – 512 × 512 pixels; a, c, e – without removing the mean; b, d, f – with the removal of the mean

Для изображения И2 (рис. 2б) при его различной размерности в таблице 2 приведены результаты вычисления сосредоточенности энергии результатов ортогональных преобразований FT, CT, DFT, DCT и DHT в частотных областях различных размеров *d*, а также с удалением и без удаления среднего значения яркости пикселей.

Таблица 2 Table 2

Параметры расчетов		d							
		0,02	0,05	0,1	0,125	0,25	0,5		
без удаления с	реднего								
128×128	СТ	0,736254	0,904028	0,934659	0,946443	0,973588	0,990484		
	FT	0,612244	0,852721	0,912764	0,928319	0,96504	0,986942		
	DCT	0,835585	0,929867	0,947003	0,956514	0,97835	0,992677		
	DFT	0,838155	0,925183	0,946331	0,955318	0,97782	0,992379		
	DHT	0,833345	0,919518	0,942912	0,948188	0,969285	0,987881		
256×256	СТ	0,863732	0,93003	0,959075	0,968145	0,984358	0,996095		
	FT	0,781175	0,90811	0,947736	0,959299	0,980116	0,994351		
	DCT	0,91785	0,9424	0,966708	0,973108	0,986979	0,997144		
	DFT	0,900913	0,941711	0,96486	0,972536	0,986605	0,996969		
	DHT	0,896998	0,938148	0,957491	0,963721	0,98089	0,992857		

Сосредоточенность энергии изображения И2 на расстоянии *d* Image I2 energy concentration at a distance *d*

						Оконч	нание табл. 2
512×512	СТ	0,908645	0,955124	0,974179	0,981241	0,994933	0,999226
	FT	0,874476	0,943785	0,968345	0,976847	0,99284	0,99836
	DCT	0,934145	0,962771	0,978928	0,983953	0,996195	0,999777
	DFT	0,932862	0,960923	0,97812	0,983572	0,995989	0,999671
	DHT	0,927914	0,953445	0,971858	0,977039	0,989498	0,997092
с удалением ср	реднего						
128×128	CT	0,270711	0,669428	0,751877	0,795419	0,897911	0,964989
	FT	0,237946	0,643674	0,744898	0,787755	0,894373	0,963629
	DCT	0,220227	0,667379	0,748651	0,793757	0,897321	0,965268
	DFT	0,232419	0,645163	0,745466	0,788085	0,894808	0,963857
	DHT	0,209605	0,6183	0,729247	0,754271	0,854326	0,942523
256×256	СТ	0,583667	0,734756	0,839685	0,875188	0,93894	0,986475
	FT	0,543331	0,727889	0,836654	0,87162	0,937351	0,985848
	DCT	0,617285	0,731658	0,844903	0,874716	0,939339	0,986697
	DFT	0,53838	0,728448	0,836293	0,872052	0,937596	0,985881
	DHT	0,520139	0,711846	0,801959	0,830984	0,910973	0,966724
512×512	CT	0,671279	0,823774	0,896991	0,92589	0,982265	0,998766
	FT	0,662984	0,820809	0,895008	0,924269	0,981528	0,998455
	DCT	0,697422	0,828948	0,903183	0,92627	0,982517	0,998976
	DFT	0,691524	0,820454	0,899469	0,924521	0,981569	0,998488
	DHT	0,668791	0,786099	0,870697	0,894503	0,951747	0,986639

Для визуального анализа данных, соответствующие графики (рис. 4).

приведенных в таблице

2,

построены

a, б –128×128 пикселей; в, г – 256×256 пикселей; д, е – 512×512 пикселей;
а, в, д – без удаления среднего; б, г, е – с удалением среднего
Fig. 4. Dependence of Image I1 energy concentration at a distance d:
a, b – 128×128 pixels; c, d – 256×256 pixels; e, f – 512×512 pixels;
a, c, e – without removing the mean; b, d, f – with the removal of the mean

Для изображения ИЗ (рис. 2в) при его различной размерности в таблице 3 приведены результаты вычисления сосредоточенности энергии результатов указанных ортогональных преобразований в частотных областях различных размеров, а также с удалением и без удаления среднего значения яркости пикселей.

Таблица 3 Table 3

Параметры расчетов		d						
		0,02	0,05	0,1	0,125	0,25	0,5	
без удаления с	реднего							
128×128	СТ	0,708187	0,774206	0,835515	0,858066	0,924524	0,978019	
	FT	0,651837	0,749164	0,823368	0,84933	0,92053	0,97621	
	DCT	0,767365	0,798135	0,841964	0,864804	0,926502	0,979428	
	DFT	0,76893	0,800268	0,842394	0,864639	0,926169	0,978869	
	DHT	0,768331	0,788888	0,819379	0,848527	0,901982	0,961573	
256×256	СТ	0,748541	0,826532	0,886303	0,912908	0,964101	0,992771	
	FT	0,719677	0,814441	0,881498	0,90879	0,961954	0,991809	
	DCT	0,781722	0,83301	0,892718	0,915097	0,965836	0,993571	
	DFT	0,77559	0,833408	0,889301	0,914711	0,965183	0,99323	
	DHT	0,77848	0,810532	0,863236	0,889912	0,944134	0,979711	
512×512	СТ	0,779155	0,875483	0,934976	0,956125	0,990277	0,999032	
	FT	0,761058	0,870721	0,932139	0,95391	0,989134	0,998568	
	DCT	0,810737	0,88188	0,941735	0,95789	0,991218	0,999469	
	DFT	0,810926	0,87846	0,939682	0,957224	0,99082	0,999262	
	DHT	0,791499	0,852395	0,910205	0,933351	0,97012	0,991577	
с удалением ср	еднего							
128×128	СТ	0,007426	0,148186	0,329085	0,417271	0,686987	0,911011	
	FT	0,010588	0,138753	0,321405	0,411746	0,683341	0,908986	
	DCT	0,00315	0,134999	0,322808	0,42068	0,685059	0,911846	
	DFT	0,009855	0,144139	0,324652	0,419973	0,683632	0,909452	
	DHT	0,007287	0,095377	0,226031	0,35093	0,579989	0,835337	

Сосредоточенность энергии изображения ИЗ на расстоянии *d* Image I3 energy concentration at a distance *d*

НАУЧНЫЕ ВЕДОМОСТИ

Серия Экономика. Информатика. 2017. № 9(258). Выпуск 42 119

		Окончание табл					ание табл. 3
256×256	СТ	0,076288	0,313992	0,540904	0,649684	0,857251	0,97261
	FT	0,067447	0,306676	0,538815	0,646231	0,855156	0,971712
	DCT	0,095564	0,308079	0,555475	0,648206	0,858443	0,973363
	DFT	0,070156	0,309725	0,541319	0,646604	0,855735	0,97195
	DHT	0,082132	0,214937	0,43332	0,543852	0,768518	0,915932
512×512	СТ	0,190534	0,51507	0,747813	0,831032	0,964161	0,997296
	FT	0,185825	0,513083	0,744956	0,828925	0,963116	0,996866
	DCT	0,245482	0,529102	0,767722	0,832124	0,964988	0,997884
	DFT	0,246238	0,515468	0,759537	0,829467	0,963405	0,99706
	DHT	0,168788	0,411559	0,642022	0,734299	0,880881	0,966419

Для визуального анализа дан соответствующие графики (рис. 5).

0.15

0.1

0.2

в

0.25

0.3

0.15

0.2

0.25

Г

0.3

0.35

данных, приведенных в таблице 3, построены

0.85 0.95 0.8 0.9 0.75 0.85 0.7 0.8 0.65 0.75 0.6 0.7 0.55 0,05 0,1 0.15 0.2 0.25 0.3 0.35 0,4 0.45 0.5 0.3 0.35 0.4 0.45 0.25 б а 0.95 0.98 0.97 0,9 0.96 0.85 0.95 0.94 0.8 0.93 0.75 0.92 0.91 0.7 0.9 0.65 0.89

120 НАУЧНЫЕ ВЕДОМОСТИ 🎆 Серия Экономика. Информатика. 2017. № 9(258). Выпуск 42

Рис. 5. Зависимость сосредоточенности от расстояния d для изображения ИЗ: a, б –128×128 пикселей; в, г – 256×256 пикселей; д, е – 512×512 пикселей; a, в, д – без удаления среднего; б, г, е – с удалением среднего

Fig. 5. Dependence of Image I1 energy concentration at a distance d:

a, b – 128×128 pixels; c, d – 256×256 pixels; e, f – 512×512 pixels;

a, c, e – without removing the mean; b, d, f – with the removal of the mean

Таким образом, результаты вычислительных экспериментов показали:

- сосредоточенность энергии на заданном расстоянии возрастает при увеличении размерности изображения;

- при удалении среднего значения яркости пикселей из изображения сосредоточенность энергии на заданном расстоянии результатов его ортогонального преобразования снижается;

- при удалении среднего значения яркости пикселей из изображения снижаются различия в значениях сосредоточенности энергии результатов преобразования одного и того же изображения, полученных с помощью различных ортогональных преобразований.

Сравнение значений сосредоточенности энергии на заданном расстоянии результатов различных ортогональных преобразований показывают, что наибольшей сосредоточенностью энергии, в большинстве случаев, обладают результаты дискретного косинусного преобразования. Вычислительные эксперименты показали, что следующим по величине сосредоточенности энергии результатов преобразования во многих случаях является непрерывное косинусное преобразование.

Также вычислительные эксперименты показали, что большей сосредоточенностью энергии на заданном расстоянии обладают результаты ортогональных преобразований изображения, содержащего меньшее количество деталей.

Полученные результаты позволяют создать эффективные алгоритмы обработки изображений, в том числе скрытного внедрения контрольной информации.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 17-29-03324.

Список литературы References

1. Ахмед Н., Рао К., 1980. Ортогональные преобразования при обработке цифровых сигналов. М., Связь, 248.

Ahmed N., Rao K., 1980. The orthogonal transform in digital signal processing. Moscow, Svyaz', 248. (in Russian)

2. Болгова Е.В., 2017. О собственных числах субинтервальных матриц косинусного преобразования. Научные ведомости БелГУ. Сер. Экономика. Информатика. 2(251): 92-101.

Bolgova E.V., 2017. About the eigenvalues of cosine transform subinterval matrices. Nauchnye vedomosti BelGU. Ekonomika. Informatika. [Belgorod State University Scientific Bulletin. Economics Information technologies]. 2(251): 92-101. (in Russian)

3. Гонсалес Р., Вудс Р. 2006. Цифровая обработка изображений. М., Техносфера, 1072.

Gonzalez R, Woods R. 2006. Cifrovaja obrabotka izobrazhenij [Digital image processing] Moscow, Tehnosfera, 1072. (in Russian)

4. Жиляков Е.Г., Черноморец А.А., 2010. О частотном анализе изображений. Вопросы радиоэлектроники. Сер. ЭВТ. 1: 94-103.

Zhilyakov E.G., Chernomorets A.A., 2010. About the frequency image analysis. Voprosy radiojelektroniki [Problems of Radio Electronics] 1: 94-103. (in Russian)

5. Жиляков Е.Г., Черноморец А.А., 2013. Об оптимальном выделении субполосных компонент изображений. Информационные системы и технологии. 1(75): 5-11.

Zhilyakov E.G., Chernomorets A.A., 2013. Optimal separation of image subband components. Informacionnye sistemy i tehnologii [Information systems and technologies] 1(75): 5-11. (in Russian)

6. Прэтт У., 1982. Цифровая обработка изображений. М., Мир, 312.

Pratt W., 1982. Digital image processing. Moscow, Mir, 312. (in Russian)

7. Черноморец А.А., Болгова Е.В., 2015. Об анализе данных на основе косинусного преобразования. Научные ведомости БелГУ. Сер. Экономика. Информатика. 1(198): 68-73.

Chernomorets A.A., Bolgova E.V., 2015. On the analysis of data based on the cosine transformation. Nauchnye vedomosti BelGU. Ekonomika. Informatika. [Belgorod State University Scientific Bulletin. Economics Information technologies]. 1(198): 68-73. (in Russian)

8. Черноморец А.А., Волчков В.П., 2012. О свойствах квазисубполосных и G-субполосных матриц. Научные ведомости БелГУ. Сер. История. Политология. Экономика. Информатика. 1(120): 126-134.

Chernomorets A.A., Volchkov V.P., 2012. About properties of quasisubband and G-subband matrices. Nauchnye vedomosti BelGU. Istoriya. Politologiya. Ekonomika. Informatika. [Belgorod State University Scientific Bulletin. History Political science Economics Information technologies]. 1(120): 126-134. (in Russian)

9. Ярославский Л.П., 1979. Введение в цифровую обработку изображений. М., Сов. Радио, 312.

Jaroslavskij L.P., 1979. Introduction to digital image processing. Moscow, Sov. Radio, 312. (in Russian)