НАУЧНЫЕ ВЕДОМОСТИ

УДК 537.9

РАСЧЕТ ВЛИЯНИЯ МАТЕРИАЛА АНОДА НА ВОЛЬТ-АМПЕРНЫЕ ХАРАКТЕРИСТИКИ ДИОДА ШОТТКИ НА ОСНОВЕ КАРБИДА КРЕМНИЯ 4H-SiC

CALCULATION OF ANODE MATERIAL EFFECT ON CURRENT-VOLTAGE CHARACTERISTICS OF THE SCHOTTKY DIODE ON THE BASE OF 4H-SiC SILICON CARBIDE

С.Б. Рыбалка, Е.Ю. Краюшкина, А.А. Демидов, А.Ю. Дракин, В.Ф. Зотин S.B. Rybalka, E.Yu. Krayushkina, А.А. Demidov, A.Yu. Drakin, V.F. Zotin

Брянский государственный технический университет, Россия, 241035, г. Брянск, бул. 50 лет Октября, 7

Bryansk State Technical University, 7 50 let Oktyabrya Boulevard, Bryansk, 241035, Russia

E-mail: sbrybalka@yandex.ru

Аннотация

Рассчитана и смоделирована вольт-амперная характеристика диода Шоттки 4H-SiC в прямом и обратном направлении на основе теории термоэлектронной эмиссии и физической аналитической модели, основанной на уравнении Пуассона, уравнений диффузии и непрерывности для различных материалов анода (Ti, W, Mo и Ni).

Abstract

The current-voltage characteristic of the 4H-SiC Schottky diode for forward and reverse current direction has been calculated and simulated on the base of the theory of thermionic emission and a physical analytical model based on the Poisson equation, the diffusive and continuity equations for various anode materials (Ti, W, Mo and Ni).

Ключевые слова: карбид кремния, диод Шоттки, термоэлектронная эмиссия, моделирование. Keywords: silicon carbide, Schottky diode, thermionic emission, simulation.

Введение

Полупроводниковый материал карбид кремния (SiC) является перспективным для создания приборов силовой электроники, микроэлектроники и оптоэлектроники. Данное обстоятельство связано с большой шириной запрещенной зоны SiC полупроводника (>3 эВ), высокой теплопроводностью, высокими пробивными полями и скоростью насыщения электронов, а также значительной радиационной и термической стабильностью [1]. Одним из наиболее простых приборов на основе SiC, но в то же время важным для микро-электроники, является диод Шоттки. Например, диоды Шоттки для силовой электроники на основе 4H-SiC уже изготавливаются отечественной промышленностью, в частности, на предприятии ЗАО «ГРУППА КРЕМНИЙ ЭЛ» (г. Брянск). Очевидно, что для дальнейшего развития отечественной компонентной базы на основе SiC необходимо детальное изучение влияния параметров структуры диода на его вольт-амперные характеристики для оп-

тимизации работы диода Шоттки в силовых приборах электроники, что возможно произвести с использованием физического моделирования [2]. Ранее в работах [3-5] было проведено моделирование прямых и обратных вольт-амперных характеристик карбидокремниевого диода Шоттки на основе политипа 4H с контактом Шоттки из Ті и Ni при различных температурах, были определены высота барьера и коэффициенты идеальности. Целью настоящей работы является исследование влияния материала анода (Ti, W, Mo и Ni) карбидокремниевого диода Шоттки на основе политипа 4Н на прямую и обратную вольтамперные характеристики, при помощи ранее разработанной компьютерной модели.

Материалы и методы исследования

В данной работе была использована физическая модель диода Шоттки [2] в которой решалось уравнение Пуассона с учетом концентрации свободных носителей заряда, уравнения непрерывности для электронов и дырок с учетом зависимости подвижности носителей заряда от концентрации примеси и от напряженности электрического поля, а также учитывалось лавинное умножение носителей заряда [2]. Итоговая система уравнений в сферических координатах для компьютерной модели диода Шоттки имела следующий вид:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(\varepsilon_{r}r\frac{\partial\varphi}{\partial r}\right) + \frac{\partial}{\partial z}\left(\varepsilon\frac{\partial\varphi}{\partial z}\right) = -q\left(p - n + N_{D}^{+} - N_{A}^{-}\right)$$
(1)

 $q^{-1}
abla \cdot \boldsymbol{j}_n = -\boldsymbol{U}_n$ $q^{-1}
abla \cdot \boldsymbol{j}_p = -\boldsymbol{U}_p$ (2)

$$\boldsymbol{j}^{-1}\nabla \cdot \boldsymbol{j}_p = -\boldsymbol{U}_p \tag{3}$$

$$\boldsymbol{j}_n = n\boldsymbol{\mu}_n \nabla \boldsymbol{E}_c + \boldsymbol{\mu}_n \boldsymbol{k}_B \boldsymbol{T}_l \nabla \boldsymbol{n} \tag{4}$$

$$\boldsymbol{j}_p = p\boldsymbol{\mu}_p \nabla E_V + \boldsymbol{\mu}_p \boldsymbol{k}_B T_I \nabla p \tag{5}$$

$$E_c = -q(\varphi + \chi) \tag{6}$$

$$E_{\nu} = -q(\varphi + \chi + E_g) \tag{7}$$

где r – радиус диода, $\varepsilon_r = 9.7$ – относительная диэлектрическая проницаемость, ϕ – электростатический потенциал, q – элементарный электрический заряд n и p – концентрация электронов и дырок, N_D^+ – концентрация донорной примеси, N_A^- – концентрация ионизированных акцепторов, j_n и j_p – плотность потока носителей n и p-типа, T_l – термодинамическая температура кристаллической решетки, U_n и U_p – напряжение приложенное к аноду и катоду диода, $\mu_n = 950 \text{ см}^2/(\text{B} \cdot \text{c})$ – подвижность электронов, $\mu_p = 125 \text{ см}^2/(\text{B} \cdot \text{c})$ – подвижность дырок, k_B – постоянная Больцмана, E_c и E_v – энергия зоны проводимости и валентной зоне полупроводника, E_g = 3.23 В – ширина запрещенной зоны карбида кремния 4H-SiC, $\chi = 3.7 B$ – сродство электронов, и в дополнение было учтено, что $N_c = 1.8 \cdot 10^{19} \text{ см}^{-3}$ – плотность состояний в зоне проводимости, $N_V = 2.1 \cdot 10^{19} \text{ см}^{-3}$ – плотность состояний в валентной зоне в соответствии с данными работ [1,6-7].

Параметры структуры диода Шоттки при моделировании были следующие: концентрация доноров (азот) N_D^+ в подложке составляла $5 \times 10^{18} cm^{-3}$, в эпитаксиальном слое $5 \times 10^{15} cm^{-3}$, толщина эпитаксиального слоя z=15 мкм, радиус структуры был равен r=200мкм (Рис. 1).

Anode

Cathode

Рис. 1 Схематичная структура диода Шоттки Fig. 1 Schematic structure of Schottky diode

Результаты и их обсуждение

Полученные при моделировании в рамках физической модели вольт-амперные характеристики (BAX) диода Шоттки 4H-SiC с материалами анода из Ti, W, Mo и Ni представлены на Рис. 2. Результаты для прямой BAX 4H-SiC диодов Шоттки (рис. 2а) были проанализированы в соответствии с классической теорией термоэлектронной эмиссии [7], где зависимость силы прямого тока I от приложенного напряжения V для полупроводников описывается следующей формулой:

$$I = I_{o} e^{\frac{qV}{nk_{B}T}} (1 - e^{\frac{qV}{k_{B}T}})$$
(8)

где I_o – ток насыщения (А); T – температура (К); V – приложенное напряжение (В); q – элементарный электрический заряд (Кл); V – прямое напряжение (В); k_B – постоянная Больцмана, (Дж/К); n – коэффициент идеальности диода Шоттки. Ток насыщения I_o может быть рассчитан по формуле:

$$I_o = SA^*T^2 e^{\frac{\Phi_B}{k_B T}}$$
⁽⁹⁾

где *S* – площадь контакта Шоттки, [см²]; $A^*=146$ А/($K^2 \cdot cm^2$) – эффективная константа Ричардсона [1,8]; *T* – температура (K); φ_B – эффективная высота барьера Шоттки (эВ); k_B – постоянная Больцмана (Дж/К). С другой стороны, в упрощенном виде, прямую ВАХ диодов зачастую описывают следующей эмпирической формулой [1,7],

$$I = I_o \left(e^{-\frac{qV}{k_B T}} - 1 \right) I_f = I_0 \left[\exp \frac{qV_f}{nkT} - 1 \right]$$
(10)

в которой фигурируют следующие эмпирические величины – ток «насыщения» I_o и коэффициент идеальности *n* диода. Из уравнения (10), построив для каждой из температур зависимости $\ln(I_o)$ от приложенного напряжения *V*, нами были рассчитаны показатели идеальности диодов *n* и токи насыщения I_o для каждого из диодов Шоттки, показанные в Таблице 1. Далее, согласно распространенной методике [1,6,7], по извлеченным из ВАХ данным была построена зависимость $\ln(I_o/T^2)$ от 1/nkT для определения эффективной высоты барьера Шоттки φ_B .

Fig. 2. Current-voltage characteristics for 4H-SiC Shottky diode for forward current at 300K (a) and reverse current at 350K (b) for various Schottky contact metals

Полученные данные расчетов для коэффициента идеальности *n* высоты барьера Шоттки *φ*_B для диодов Шоттки с различными металлами были сведены в табл. 1.

Таблица 1 Table 1

Материал анода	Коэффициент идеальности	Высота барьера Шоттки, эВ
Ti	1.099	0.8
W	1.095	0.97
Мо	1.056	1.17
Ni	1.038	1.37

Коэффициент идеальности и высота барьера Шоттки диода Шоттки 4H-SiC The ideality coefficient and the Schottky barrier height of the 4H-SiC Schottky diode

Как видно из табл. 1, значения коэффициентов идеальности диода Шоттки 4H-SiC для различных материалов анода (Ti, W, Mo, Ni) близки к значениям n для «идеальноого диода» где n равна единице, что весьма важно с практической точки зрения при изготовлении подобных диодов и соответствует тому показателю, который демонстрируют качественные диоды Шоттки на карбиде кремния [1,6]. Помимо этого, полученные из расчетной модели значения высот барьера Шоттки весьма хорошо коррелируют с высотами барьеров приведенными в литературе для диодов Шоттки на основе 4H-SiC [1,9].

По графикам обратных ВАХ (рис. 2b) видно, что лавинный пробой диодов начинается примерно на 2 кВ. Напряжение пробоя несимметричного резкого перехода можно рассчитать [7,8,10] по формуле:

$$V\max = \frac{EW}{2}V_{max} = \frac{EW}{2}$$
(11)

где E – максимальная напряженность электрического поля для карбида кремния (~2,5 MB/см для 4H-SiC [5]), W – толщина области пространственного заряда. Если считать, что пробой наступает в момент, когда толщина области пространственного заряда примерно равна толщине эпитаксиального слоя (W=15 мкм), то расчет по формуле (11) дает

НАУЧНЫЕ ВЕДОМОСТИ

 $V \max = 1875B$. Таким образом, рассчитанное теоретическое значение напряжения пробоя довольно точно соответствует результатам, полученным нами на основе физической компьютерной модели.

Заключение

В данной работе методами моделирования было проведено исследование различных материалов анода (Ti, W, Mo, Ni) на вольт-амперные характеристики диода Шоттки на основе политипа 4H-SiC. Установлено, что полученные в модели расчетные высоты барьера Шоттки φ_B и коэффициенты идеальности диода *n* соответствуют практически «идеальному» диоду в рамках теории термоэлектронной эмиссии. Определенные из модели напряжения лавинного пробоя диодов демонстрируют хорошее согласие с рассчитанными теоретически напряжениями пробоя для несимметричного резкого перехода. Таким образом, предложенная модель может быть использована при расчетах вольт-амперных характеристик диодов Шоттки аналогичного типа с контактами Шоттки из различных металлов.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ договор № 02.G25.31.020 (участники С.Б. Рыбалка, Е.Ю. Краюшкина, А.А. Демидов) и государственного задания Министерства образования и науки РФ №8.1729.2017/ПЧ (участники: А.Ю. Дракин и В.Ф. Зотин).

Список литературы References

1. Kimoto T., Cooper J. A. 2014. Growth, Characteriztion, Devices, and Applications. Fundamentals of Silicon Carbide Technology. New York: Wiley–IEEE Press: 539.

2. Bakowski M., Gustafsson U. 1997. Lindefelt U Simulation of SiC High Power Devices Phys. Stat. Sol. (a) 162: 421-440.

3. Рыбалка С.Б., Краюшкина Е.Ю., Хвостов В.А., Демидов А.А. 2016. Моделирование вольт-амперной характеристики диода Шоттки на основе карбида кремния 4H-SiC. Научные ведомости Белгородского государственного университета. Серия: Математика. Физика, 43, № 13(234): 140-43.

Rybalka S.B., Krayushkina E.Yu., Hvostov V.A., Demidov A.A. 2016. Modeling of the currentvoltage characteristic of a Schottky diode on the basis of silicon carbide 4H-SiC. Scientific bulletins of the Belgorod State University. Series: Mathematics. Physics, 43, No. 13 (234):140-43

4. Panchenko P.V., Rybalka S.B., Malakhanov A.A., Krayushkina E.Yu., Rad'kov A.V. 2016. I-V characteristics simulation of silicon carbide Ti/4H-SiC Schottky diode. Proc. SPIE "International Conference on Micro- and Nano-Electronics". Vol. 10224:102240Y-1—102240Y-5

5. Rybalka S.B., Krayushkina E.Yu., Demidov A.A., Shishkina O.A., Surin B.P. 2017. Forward current-voltage characteristics simulation of 4H-SiC silicon carbide Schottky diode for power electronics. Int. J. Physical Research: 5-11

6. Ayalew T. 2004 SiC semiconductor devices technology modeling and simulation. PhD Dissertation TU Wien

7. Shur M. 1990. Physics of Semiconductor Devises. New Jersey, Prentice-Hall Int.: 704.

8. Zhao J. H., Sheng K. and Lebron-Velilla R. C. 2006. Silicon Carbide Schottky Barrier Diode. SiC materials and devises, ed. by Shur M., Rumyantsev S. and Levinshtein M. World Scientific. Singapore, 1.: 117-162.

9. Itoh A. and Matsunami H. 1997. Schottky Barrier Heights of Metal/SiC Contacts. Phys. stat. sol. (a) 162. (389): 389-408.

10. Sze S.M., Ng Kwok K. 2007. Physics of Semiconductor Devices. New Jersey, John Wiley & Sons Int.: 764.