УДК 517.954.988.8

СРЕДНЕКВАДРАТИЧНЫЕ ОЦЕНКИ ПОГРЕШНОСТИ ПРОЕКЦИОННО-РАЗНОСТНОГО МЕТОДА СО СХЕМОЙ КРАНКА-НИКОЛСОН ПО ВРЕМЕНИ ДЛЯ ПАРАБОЛИЧЕСКОГО УРАВНЕНИЯ С ПЕРИОДИЧЕСКИМ УСЛОВИЕМ НА РЕШЕНИЕ

ROOT-MEAN-SQUARE ESTIMATES OF ERRORS OF THE PROJECTION-DIFFERENCE METHOD WITH THE CRANK-NICOLSON SCHEME IN TIME FOR PARABOLIC EQUATION WITH A PERIODIC CONDITION ON THE SOLUTION

A.C.Бондарев A.S.Bondarev

Воронежский государственный университет, Россия, 394018, г. Воронеж, Университетская пл., 1

Voronezh State University, 1 Universitetskaya Sq, Voronezh, 394018, Russia

E-mail: bondarev@math.vsu.ru

Аннотация. В сепарабельном гильбертовом пространстве рассматривается абстрактная параболическая задача с периодическим условием на решение. Эта задача решается приближенно проекционно-разностным методом. Дискретизация задачи по пространству проводится методом Галёркина, а по времени — с использованием схемы Кранка-Николсон. В работе получены эффективные по времени и по пространству среднеквадратичные оценки погрешности приближенных решений. Приведены условия гладкости точного решения, обеспечивающие второй порядок сходимости погрешностей к нулю по времени.

Resume. An abstract parabolic equation with a periodic condition on the solution is treated in a separable Hilbert space. This equation is solved approximately by the projection-difference method using the Galerkin method in space and the Crank-Nicolson scheme in time. Effective both in time and in space root-mean-square estimates of approximate solutions' errors are obtained in this paper. Conditions of exact solution's smoothness, which provide the second order of errors' vanishing in time, are also obtained.

Ключевые слова: гильбертово пространство, параболическое уравнение, периодическое условие, проекционно-разностный метод, схема Кранка-Николсон.

Keywords: Hilbert space, parabolic equation, periodic condition, projection-difference method, Crank-Nicolson scheme.

Точная и приближенная задачи

Предполагается, что задана тройка сепарабельных гильбертовых пространств $V \subset H \subset V'$, где пространство V' – двойственное к V, а пространство H отождествляется со своим двойственным. Оба вложения плотны и непрерывны. Рассмотрим полуторалинейную по $u,v \in V$ форму a(u,v).

Пусть для $u, v \in V$

$$|a(u,v)| \le \mu \|u\|_{L^{r}} \|v\|_{L^{r}}, \quad Rea(u,u) \ge \alpha \|u\|_{L^{r}}^{2},$$

где $\alpha > 0$. Форма a(u,v) порождает линейный ограниченный оператор $A: V \to V'$, такой, что (Au,v)=a(u,v), где выражение типа (z,v) есть значение функционала $z \in V'$ на элементе $v \in V$. Если $z \in H$, то (z,v) – скалярное произведение в H [Aubin, 1977, ch. 2].

Рассмотрим в V' на $\left[0,T\right]$ параболическую задачу:

$$u'(t) + Au(t) = f(t), \quad u(0) = u(T).$$
 (2)

Здесь и далее производные функций понимаются в обобщенном смысле.

В [Lions, Magenes, 1971, ch. 3, theorem 6.1] указано существование слабого решения задачи (2). Теорема 1 [Lions, Magenes, 1971]. Предположим, что в задаче (2) функция $f \in L_2(0,T;V')$. Тогда существует единственная функция u(t) такая, что $u \in L_2(0,T;V) \cap C([0,T],H)$, $u' \in L_2(0,T;V')$. Функция u(t) удовлетворяет почти всюду на [0,T] уравнению (2) и для нее выполняется периодическое условие.

В работе [Бондарев, Смагин, 2014] задача (2) решалась приближенно полностью дискретным проекционно-разностным методом с использованием по времени неявной схемы Эйлера, которая, как известно, является разностной схемой первого порядка аппроксимации.

Схема Кранка-Николсон в настоящей работе позволила получить оценки скорости сходимости погрешности к нулю по времени с порядком вплоть для второго. Заметим, что схема Кранка-Николсон дает второй порядок убывания по времени погрешностей только при условии достаточной гладкости точного решения. Поэтому потребуем от исходных данных задачи (2) большую гладкость, чем в теореме 1.

В [Бондарев, 2015] с помощью аппроксимации задачи (2) методом Галеркина получена теорема о гладкой разрешимости задачи (2). Будем считать, что в пространстве V существует полная система элементов $\{\omega_m\}_{m=1}^\infty$. Рассмотрим линейную оболочку $L(\omega_1,\omega_2,\dots,\omega_m)=V_m\subset V$. Обозначим P_m — ортогональный проектор пространства H на V_m . В [Бондарев, 2015] предполагается выполненной равномерная по m оценка

$$||P_m||_{V \to V} \le C. \tag{3}$$

Заметим, что такая система $\{\omega_m\}_{m=1}^\infty$ существует, например, если вложение $V\subset H$ компактно [Смагин, Тужикова, 2004].

Теорема 2 [Бондарев, 2015]. Предположим, что выполнено (3). Пусть для всех $u,v\in V$ форма a(u,v) удовлетворяет условиям (1). Пусть функция $t\to f(t)\in V'$ дифференцируема, $f'\in L_2(0,T;V')$ и выполняется равенство f(0)=f(T). Тогда слабое решение задачи (2) будет таким, что $u'\in L_2(0,T;V)\cap C(\left[0,T\right],H)$, $u''\in L_2(0,T;V')$, причем справедлива оценка

$$\max_{0 \le t \le T} \|u'(t)\|_{H}^{2} + \int_{0}^{T} \|u'(t)\|_{V}^{2} dt + \int_{0}^{T} \|u''(t)\|_{V'}^{2} dt \le C \int_{0}^{T} (\|f(t)\|_{V'}^{2} + \|f'(t)\|_{V'}^{2}) dt.$$

Перейдем к построению приближенной задачи. Пусть V_h , где h — положительный параметр, есть произвольное конечномерное подпространство пространства V. Определим пространство V_h' , задав на $u_h \in V_h$ двойственную норму $\|u_h\|_{V_h'} = \sup |(u_h, v_h)|$, где точная верхняя граница берется по всем $v_h \in V_h$ с $\|v_h\|_{V} = 1$. Очевидно, что $\|u_h\|_{V_h'} \leq \|u_h\|_{V'}$. Пусть P_h — ортопроектор в пространстве H на V_h . Как замечено в [Вайникко, Оя, 1975], оператор P_h допускает расширение по непрерывности до $\overline{P_h}: V' \to V_h'$, причем для $u \in V'$ справедливо $\|\overline{P_h}u\|_{V_h'} \leq \|u\|_{V'}$. Отметим для $u \in V'$ и $v \in V$ важное соотношение $(\overline{P_h}u, v) = (u, P_h v)$, полученное в [Смагин, 1997].

Для построения приближенных решений возьмем равномерное разбиение $0=t_0 \le t_1 \le t_2 \le \ldots \le t_N = T$ отрезка $\left[0,T\right]$, где $N \in \mathbb{N}$. В подпространстве $V_h \subset V$ рассмотрим разностную задачу

$$(u_k^h - u_{k-1}^h)\tau^{-1} + A_h(u_k^h + u_{k-1}^h)2^{-1} = f_k^h \quad (k = \overline{1, N}), \quad u_0^h = u_N^h,$$
 (4)

где $au=t_k-t_{k-1}$, оператор $A_h=\overline{P_h}A$, элемент $f_k^{\ h}\in V_h$ определим позже.

Решение задачи (4) будем называть приближенным решением задачи (2).

В случае, когда уравнение (2) рассматривается с начальным условием (задача Коши), имеется достаточно много результатов по применению проекцион- но-разностного метода со схемой Кранка-Николсон по времени. В частности, среднеквадратичные оценки погрешности установлены в [Смагин, 2000]. Отметим также работы [Смагин, 2001б; Смагин, 2005] и близкую

по тематике работу [Смагин, 2015], где исследуется проекционно-разностный метод со схемой Кранка-Николсон для вариационного параболического уравнения с нелокальным интегральным условием на решение.

Лемма 1. Задача (4) имеет единственное решение.

Доказательство. Учитывая конечномерность задачи (4), достаточно доказать, что однородная задача имеет только нулевое решение. Итак, рассмотрим задачу

$$(v_k^h - v_{k-1}^h)\tau^{-1} + A_k^h(v_k^h + v_{k-1}^h)2^{-1} = 0, \quad (k = \overline{1,N}), \quad v_0^h = v_N^h.$$
 (5)

Умножим уравнение (5) на ($v_k^h + v_{k-1}^h$)au скалярно в H . Заметим, что

$$(v_k^h - v_{k-1}^h, v_k^h + v_{k-1}^h) = \|v_k^h\|_H^2 - \|v_{k-1}^h\|_H^2 + i \cdot 2Im(v_k^h, v_{k-1}^h),$$

где $i = \sqrt{-1}$. Тогда из (5) получим

$$\left\| v_k^h \right\|_H^2 - \left\| v_{k-1}^h \right\|_H^2 + i \cdot 2 \operatorname{Im}(v_k^h, v_{k-1}^h) + \left(A_k^h (v_k^h + v_{k-1}^h) 2^{-1}, v_k^h + v_{k-1}^h \right) \tau = 0.$$

Перейдем к вещественной части последнего равенства.

$$\left\|v_{k}^{h}\right\|_{H}^{2}-\left\|v_{k-1}^{h}\right\|_{H}^{2}+\frac{\tau}{4}Re\left[a(t_{k},v_{k}^{h}+v_{k-1}^{h},v_{k}^{h}+v_{k-1}^{h})+a(t_{k-1},v_{k}^{h}+v_{k-1}^{h},v_{k}^{h}+v_{k-1}^{h})\right]=0.$$

Отсюда и условия (1) следует оценка

$$\left\| v_k^h \right\|_H^2 - \left\| v_{k-1}^h \right\|_H^2 + 2^{-1} \alpha \left\| v_k^h + v_{k-1}^h \right\|_{L^r}^2 \tau \le 0.$$

Суммируем последние неравенства по всем $k=\overline{1,N}$. Учитывая, что $v_0^h=v_N^h$, получим $\sum_{k=1}^N \left\|v_k^h+v_{k-1}^h\right\|_{\mathcal{V}}^2 \tau=0$. Следовательно, $v_k^h+v_{k-1}^h=0$ для всех $k=\overline{1,N}$. Подставив последнее равенство в (5), получим $v_k^h-v_{k-1}^h=0$. Из периодического условия тогда следует, что $v_k^h=0$ для всех $k=\overline{0,N}$.

Итак, задача (4) имеет единственное решение ($u_0^h, u_1^h, \dots, u_N^h$). +

Оценки погрешностей

Далее будем предполагать, что форма a(u,v) является симметричной, то есть $a(u,v) = \overline{a(v,u)}$, где черта над комплексным числом означает переход к сопряженному числу.

Из предположения симметричности формы и условия (1) следует положительная определенность и самосопряженность оператора $A_h:V_h\to V_h$, причем под скалярным произведением в V_h понимается сужение скалярного произведения в H .

Значит, существует самосопряженный положительно определенный оператор $A_h^{1/2}:V_h\to V_h$, а также операторы $A_h^{-1},A_h^{-1/2}:V_h\to V_h$.

Будем теперь считать, что
$$f_k^h = \frac{1}{\tau} \int_{t_{k-1}}^{t_k} \overline{P_h} f(t) dt$$
.

Далее будут установлены в соответствующих нормах оценки погрешностей приближенных решений, что позволит доказать сходимость приближенных решений к точному, а также получить и порядки скорости сходимости, точные по порядку аппроксимации.

Теорема 3. Пусть u(t) – слабое решение задачи (2), для которой выполнены все указанные выше условия, а $(u_0^h, u_1^h, \dots, u_N^h)$ – решение задачи (4). Тогда справедлива оценка

$$\sum_{k=1}^{N} \left\| \frac{u(t_{k}) + u(t_{k-1})}{2} - \frac{u_{k}^{h} + u_{k-1}^{h}}{2} \right\|_{H}^{2} \tau \leq M \left\{ \frac{1}{\tau} \sum_{k=1}^{N} \left\| \int_{t_{k-1}}^{t_{k}} \left[\frac{u(t_{k}) + u(t_{k-1})}{2} - u(t) \right] dt \right\|_{H}^{2} + \int_{0}^{T} \left\| (I - P_{h}) u(t) \right\|_{H}^{2} dt \right\}.$$

$$(6)$$

Доказательство. Применим к равенству (2) оператор $\overline{P_h}$, проинтегрируем полученное тождество по t от t_{k-1} до t_k , разделим на au . Вычтем из (4) полученное соотношение и для $z_{k}^{h} = u_{k}^{h} - P_{h}u(t_{k})$ получим:

$$\frac{z_k^h - z_{k-1}^h}{\tau} + A_h \frac{z_k^h + z_{k-1}^h}{2} = A_h P_h \frac{u(t_k) + u(t_{k-1})}{2} - \frac{1}{\tau} \int_{t_k}^{t_k} A_h u(t) dt.$$
 (7)

Преобразуем правую часть (7)

$$A_{h}P_{h}\frac{u(t_{k})+u(t_{k-1})}{2}-\frac{1}{\tau}\int_{t_{k-1}}^{t_{k}}A_{h}u(t)dt = \frac{1}{\tau}A_{h}P_{h}\int_{0}^{t_{k}}\left[\frac{u(t_{k})+u(t_{k-1})}{2}-u(t)\right]dt + \frac{1}{\tau}A_{h}\int_{0}^{t_{k}}(P_{h}-I)u(t)dt = I_{1}+I_{2}.$$

Учитывая последнее равенство, умножим (7) на $A_h^{-1}(\,z_k^h+z_{k-1}^h\,)2^{-1}\,$ скалярно в H .

$$\left(\frac{z_{k}^{h}-z_{k-1}^{h}}{\tau}, A_{h}^{-1}\frac{z_{k}^{h}+z_{k-1}^{h}}{2}\right) + \left\|\frac{z_{k}^{h}+z_{k-1}^{h}}{2}\right\|_{H}^{2} = \left(I_{1}+I_{2}, A_{h}^{-1}\frac{z_{k}^{h}+z_{k-1}^{h}}{2}\right).$$
(8)

$$\left(\frac{z_{k}^{h}-z_{k-1}^{h}}{\tau},A_{h}^{-1}\frac{z_{k}^{h}+z_{k-1}^{h}}{2}\right)=\frac{1}{2\tau}\left[\left\|A_{h}^{-1/2}z_{k}^{h}\right\|_{H}^{2}-\left\|A_{h}^{-1/2}z_{k-1}^{h}\right\|_{H}^{2}+2i\left(A_{h}^{-1/2}z_{k}^{h},A_{h}^{-1/2}z_{k-1}^{h}\right)\right].$$

Возьмем две вещественные части (8), умноженные на au . Получим

$$\left\|A_{h}^{-1/2}z_{k}^{h}\right\|_{H}^{2} - \left\|A_{h}^{-1/2}z_{k-1}^{h}\right\|_{H}^{2} + 2\left\|\frac{z_{k}^{h} + z_{k-1}^{h}}{2}\right\|_{H}^{2} \tau = 2Re\left(I_{1} + I_{2}, A_{h}^{-1}\frac{z_{k}^{h} + z_{k-1}^{h}}{2}\right)\tau. \tag{9}$$

$$2Re\left(A_{h}P_{h}\int_{t_{k-1}}^{t_{k}}\left[\frac{u(t_{k})+u(t_{k-1})}{2}-u(t)\right]dt, A_{h}^{-1}\frac{z_{k}^{h}+z_{k-1}^{h}}{2}\right) \leq \frac{1}{\varepsilon_{1}\tau}\left\|\int_{t_{k-1}}^{t_{k}}\left[\frac{u(t_{k})+u(t_{k-1})}{2}-u(t)\right]dt\right\|_{H}^{2}+\varepsilon_{1}\left\|\frac{z_{k}^{h}+z_{k-1}^{h}}{2}\right\|_{H}^{2}\tau.$$

$$(10)$$

Аналогично

$$2Re\left(A_{h}\int_{t_{k-1}}^{t_{k}}(P_{h}-I)u(t)dt,A_{h}^{-1}\frac{z_{k}^{h}+z_{k-1}^{h}}{2}\right)\leq \frac{1}{\varepsilon_{2}}\int_{t_{k-1}}^{t_{k}}\left\|(I-P_{h})u(t)\right\|_{H}^{2}dt+\varepsilon_{2}\left\|\frac{z_{k}^{h}+z_{k-1}^{h}}{2}\right\|_{H}^{2}\tau. \tag{11}$$

Положим в оценках (10) и (11) $\varepsilon_1 = \varepsilon_2 = \frac{1}{2}$. Тогда из равенства (9) и оценок (10) и (11) получим

$$\left\| A_{h}^{-1/2} z_{k}^{h} \right\|_{H}^{2} - \left\| A_{h}^{-1/2} z_{k-1}^{h} \right\|_{H}^{2} + \left\| \frac{z_{k}^{h} + z_{k-1}^{h}}{2} \right\|_{H}^{2} \tau \leq$$

$$\frac{2}{\tau} \left\| \int_{t_{k-1}}^{t_{k}} \left[\frac{u(t_{k}) + u(t_{k-1})}{2} - u(t) \right] dt \right\|_{H}^{2} + 2 \int_{t_{k-1}}^{t_{k}} \left\| (I - P_{h}) u(t) \right\|_{H}^{2} dt.$$

Просуммировав последние оценки по k=1,N , получим

$$\sum_{k=1}^{N} \left\| \frac{z_{k}^{h} + z_{k-1}^{h}}{2} \right\|_{H}^{2} \tau \leq \frac{2}{\tau} \sum_{k=1}^{N} \left\| \int_{t_{k-1}}^{t_{k}} \left[\frac{u(t_{k}) + u(t_{k-1})}{2} - u(t) \right] dt \right\|_{H}^{2} + 2 \int_{0}^{T} \left\| (I - P_{h})u(t) \right\|_{H}^{2} dt.$$
 (12)

Для завершения доказательства теоремы рассмотрим оценку

$$\sum_{k=1}^{N} \left\| \frac{u(t_{k}) + u(t_{k-1})}{2} - \frac{u_{k}^{h} + u_{k-1}^{h}}{2} \right\|_{H}^{2} \tau \leq 3 \sum_{k=1}^{N} \left\| \frac{z_{k}^{h} + z_{k-1}^{h}}{2} \right\|_{H}^{2} \tau + 3 \sum_{k=1}^{N} \left\| (I - P_{h}) \left[\frac{u(t_{k}) + u(t_{k-1})}{2} - \frac{1}{\tau} \int_{t_{k-1}}^{t_{k}} u(t) dt \right] \right\|_{H}^{2} \tau + 3 \sum_{k=1}^{N} \left\| (I - P_{h}) \frac{1}{\tau} \int_{t_{k-1}}^{t_{k}} u(t) dt \right\|_{H}^{2} \tau = 3 \sum_{k=1}^{N} \left\| \frac{z_{k}^{h} + z_{k-1}^{h}}{2} \right\|_{H}^{2} \tau + \frac{3}{\tau} \sum_{k=1}^{N} \left\| \int_{t_{k-1}}^{t_{k}} \left[\frac{u(t_{k}) + u(t_{k-1})}{2} - u(t) \right] dt \right\|_{H}^{2} + 3 \int_{0}^{T} \left\| (I - P_{h}) u(t) \right\|_{H}^{2} dt. \tag{13}$$

Теперь оценка (6) следует из (12) и (13). +

Из оценки (6) получим оценки погрешности с порядком скорости сходимости по времени.

Теорема 4. Пусть выполнены условия теоремы 3. Пусть u(t) — слабое решение задачи (2), такое, что $u' \in L_p(0,T;H)$ для некоторого p, что $1 \le p \le 2$. Пусть $(u_0^h,u_1^h,\dots,u_N^h)$ — решение задачи (4). Тогда справедлива оценка

$$\sum_{k=1}^{N} \left\| \frac{u(t_{k}) + u(t_{k-1})}{2} - \frac{u_{k}^{h} + u_{k-1}^{h}}{2} \right\|_{H}^{2} \tau \leq M \left\{ \tau^{3-2/p} \left(\int_{0}^{T} \left\| u'(t) \right\|_{H}^{p} dt \right)^{2/p} + \int_{0}^{T} \left\| (I - P_{h}) u(t) \right\|_{H}^{2} dt \right\}.$$
 (14)

Доказательство. Оценим первое слагаемое в правой части (6). Заметим, что

$$\frac{1}{\tau} \sum_{k=1}^{N} \left\| \int_{t_{k-1}}^{t_k} \left[\frac{u(t_k) + u(t_{k-1})}{2} - u(t) \right] dt \right\|_{H}^{2} \leq \sum_{k=1}^{N} \int_{t_{k-1}}^{t_k} \left\| \frac{u(t_k) + u(t_{k-1})}{2} - u(t) \right\|_{H}^{2} dt.$$

Проведем оценку подынтегрального выражения

$$\left\|\frac{u(t_{k})+u(t_{k-1})}{2}-u(t)\right\|_{H}^{2} = \left\|\frac{1}{2}\int_{t}^{t_{k}}u'(s)ds - \frac{1}{2}\int_{t_{k-1}}^{t}u'(s)ds\right\|_{H}^{2} \leq \left(\int_{t_{k-1}}^{t_{k}}\left\|u'(s)\right\|_{H}ds\right)^{2} \leq \tau^{2-2/p}\left(\int_{t_{k-1}}^{t_{k}}\left\|u'(s)\right\|_{H}^{p}ds\right)^{2/p}.$$

Таким образом,

$$\frac{1}{\tau} \sum_{k=1}^{N} \left\| \int_{t_{k-1}}^{t_{k}} \left[\frac{u(t_{k}) + u(t_{k-1})}{2} - u(t) \right] dt \right\|_{H}^{2} \leq \tau^{3-2/p} \sum_{k=1}^{N} \left(\int_{t_{k-1}}^{t_{k}} \left\| u'(t) \right\|_{H}^{p} dt \right)^{2/p} \leq \tau^{3-2/p} \left(\int_{0}^{T} \left\| u'(t) \right\|_{H}^{p} dt \right)^{2/p}. \tag{15}$$

Теперь оценка (14) следует из оценок (6) и (15). +

Обратим внимание, что оценка (14) дает лишь порядок сходимости соответствующих норм погрешностей к нулю не выше первого. Однако если от решения u(t) потребовать большую гладкость, то можно получить порядок сходимости вплоть до второго.

Теорема 5. Пусть выполнены условия теоремы 3. Пусть u(t) — слабое решение задачи (2), такое, что $u'' \in L_p(0,T;H)$ для некоторого p, что $1 \le p \le 2$. Пусть $(u_0^h,u_1^h,\dots,u_N^h)$ — решение задачи (4). Тогда справедлива оценка

$$\sum_{k=1}^{N} \left\| \frac{u(t_{k}) + u(t_{k-1})}{2} - \frac{u_{k}^{h} + u_{k-1}^{h}}{2} \right\|_{H}^{2} \tau \leq M \left\{ \tau^{5-2/p} \left(\int_{0}^{T} \left\| u''(t) \right\|_{H}^{p} dt \right)^{2/p} + \int_{0}^{T} \left\| (I - P_{h}) u(t) \right\|_{H}^{2} dt \right\}.$$
 (16)

Доказательство. Оценим первое слагаемое в правой части (6). Заметим, что в результате замены порядка интегрирования и преобразования интегрированием по частям

$$\int_{t_{k-1}}^{t_k} \left(\frac{u(t_k) - u(t_{k-1})}{2} - u(t) \right) dt = \frac{1}{2} \int_{t_{k-1}}^{t_k} \left(\int_{t}^{t_k} u'(s) ds - \int_{t_{k-1}}^{t} u'(s) ds \right) dt = \frac{1}{2} \int_{t_{k-1}}^{t_k} \left[2s - t_{k-1} - t_k \right] u'(s) ds = \frac{1}{8} \int_{t_{k-1}}^{t_k} \left(\tau^2 - \left[2t - t_{k-1} - t_k \right]^2 \right) u''(t) dt.$$

В таком случае

$$\frac{1}{\tau} \sum_{k=1}^{N} \left\| \int_{t_{k-1}}^{t_k} \left[\frac{u(t_k) + u(t_{k-1})}{2} - u(t) \right] dt \right\|_{H}^{2} \leq \frac{1}{64\tau} \sum_{k=1}^{N} \left\| \int_{t_{k-1}}^{t_k} \left(\tau^2 - \left[2t - t_{k-1} - t_k \right]^2 \right) u''(t) dt \right\|_{H}^{2}.$$

Поскольку | $au^2 - \left[2t - t_{k-1} - t_k\right]^2 | \le au^2$ для $t \in (t_{k-1}, t_k)$, то получим оценку

$$\frac{1}{\tau} \sum_{k=1}^{N} \left\| \int_{t_{k-1}}^{t_{k}} \left[\frac{u(t_{k}) + u(t_{k-1})}{2} - u(t) \right] dt \right\|_{H}^{2} \leq \frac{\tau^{3}}{64} \sum_{k=1}^{N} \left(\int_{t_{k-1}}^{t_{k}} \left\| u''(t) \right\|_{H} dt \right)^{2} \leq \frac{\tau^{5-2/p}}{64} \sum_{k=1}^{N} \left(\int_{t_{k-1}}^{t_{k}} \left\| u''(t) \right\|_{H}^{p} dt \right)^{2/p} \leq \frac{\tau^{5-2/p}}{64} \left(\int_{0}^{T} \left\| u''(t) \right\|_{H}^{p} dt \right)^{2/p}. \tag{17}$$

Теперь оценка (16) следует из (6) и (17). +

Заметим, что в случае $u'' \in L_2(0,T;H)$ нормы погрешностей сходятся, как следует из (16), к нулю по времени со вторым порядком.

Оценки (14) и (16) позволяют получить оценки погрешности с порядком скорости сходимости и по пространственным переменным. Для этого в (14) и (16) необходимо оценить слагаемое $\int_{0}^{T} \left\| (I - P_h) u(t) \right\|_{H}^{2} dt$.

Пусть существует гильбертово пространство E такое, что $E \subset V$, и пространство Vсовпадает с интерполяционным пространством $[E,H]_{1/2}$ [Lions, Magenes, 1971, p.23]. Например, если параболическое уравнение в области Ω определено равномерно эллиптическим дифференциальным оператором второго порядка и краевым условием Дирихле, то рассматриваем

пространства: $H = L_2(\Omega), V = W_2^1(\Omega), E = W_2^2(\Omega) \cap W_2^1(\Omega)$. Если же на границе области Ω задается условие Неймана, то пространства следующие: $H=L_2(\,\Omega\,), V=W_2^1(\,\Omega\,), E=W_2^2(\,\Omega\,)$.

Пусть подпространства $V_{\scriptscriptstyle h}$ обладают следующим аппроксимационным свойством

$$\|(I - Q_h)v\|_{U} \le r_1 h \|v\|_{E} \quad (v \in E, h > 0),$$
 (18)

типичным для подпространств типа конечных элементов [Марчук, Агошков, 1981, гл.2]. Здесь оператор $Q_{\scriptscriptstyle h}$: $V \to V_{\scriptscriptstyle h}$ является ортопроектором в пространстве V .

В работе [Смагин, 2001а] показано, что из (18) для $v \in V$ следует оценка (аналог леммы Обэна-Нитше)

$$\|(I - Q_h)v\|_{H} \le r_1 h \|(I - Q_h)v\|_{V}. \tag{19}$$

Следствие 1. Пусть подпространства V_h обладают свойством (18).

Тогда в случае выполнения условий теоремы 4 справедлива оценка

$$\sum_{k=1}^{N} \left\| \frac{u(t_{k}) + u(t_{k-1})}{2} - \frac{u_{k}^{h} + u_{k-1}^{h}}{2} \right\|_{H}^{2} \tau \leq M \left\{ \tau^{3-2/p} \left(\int_{0}^{T} \left\| u'(t) \right\|_{H}^{p} dt \right)^{2/p} + h^{2} \int_{0}^{T} \left\| u(t) \right\|_{V}^{2} dt \right\}.$$
 (20)

Если же выполнены условия теоремы 5 и решение u(t) задачи (2) дополнительно такое, что $u \in L_2(0,T;E)$, то справедлива оценка

$$\sum_{k=1}^{N} \left\| \frac{u(t_{k}) + u(t_{k-1})}{2} - \frac{u_{k}^{h} + u_{k-1}^{h}}{2} \right\|_{H}^{2} \tau \leq M \left\{ \tau^{5-2/p} \left(\int_{0}^{T} \left\| u''(t) \right\|_{H}^{p} dt \right)^{2/p} + h^{4} \int_{0}^{T} \left\| u(t) \right\|_{E}^{2} dt \right\}. \tag{21}$$

Доказательство. Заметим, что для всех $v \in V$

$$\|(I - P_h)v\|_H = \|(I - P_h)(I - Q_h)v\|_H \le \|(I - Q_h)v\|_H.$$
 (22) Доказательство оценок (20) и (21) следует из оценок (14) и (16), а также оценок

$$\int_{0}^{T} \|(I - P_h)u(t)\|_{H}^{2} dt \le r_1^{2} h^{2} \int_{0}^{T} \|(I - Q_h)u(t)\|_{V}^{2} dt \le r_1^{2} h^{2} \int_{0}^{T} \|u(t)\|_{V}^{2} dt$$

и, соответственно,

$$\int_{0}^{T} \| (I - P_h) u(t) \|_{H}^{2} dt \le r_1^{2} h^{2} \int_{0}^{T} \| (I - Q_h) u(t) \|_{V}^{2} dt \le r_1^{4} h^{4} \int_{0}^{T} \| u(t) \|_{E}^{2} dt$$

которые следуют из оценок (19), (18) и (22). +

Замечание. В условиях теорем 4 и 5 можно рассмотреть и оценку погрешности

$$\sum_{k=1}^{N} \left\| u(t_{k-1/2}) - \frac{u_{k}^{h} + u_{k-1}^{h}}{2} \right\|_{H}^{2} \tau \leq 2$$

$$2 \sum_{k=1}^{N} \left\| u(t_{k-1/2}) - \frac{u(t_{k}) + u(t_{k-1})}{2} \right\|_{H}^{2} \tau + 2 \sum_{k=1}^{N} \left\| \frac{u(t_{k}) + u(t_{k-1})}{2} - \frac{u_{k}^{h} + u_{k-1}^{h}}{2} \right\|_{H}^{2} \tau, \tag{23}$$

где $t_{k-1/2} = (t_k + t_{k-1})2^{-1}$.

Оценки второго слагаемого в правой части (23) установлены в (14) и (16). Поэтому достаточно проследить, что первое слагаемое можно оценить в аналогичных условиях с тем же порядком по τ . Например, в условиях теоремы 5 из представления

$$u(t_{k-1/2}) - \frac{u(t_k) + u(t_{k-1})}{2} = \frac{1}{2} \left(\int_{t_{k-1}}^{t_{k-1/2}} (t_{k-1} - t) u''(t) dt + \int_{t_{k-1/2}}^{t_k} (t - t_k) u''(t) dt \right)$$

следует оценка

$$\sum_{k=1}^{N} \left\| u(t_{k-1/2}) - \frac{u(t_k) + u(t_{k-1})}{2} \right\|_{H}^{2} \tau \leq \tau^{5-2/p} \left(\int_{0}^{T} \left\| u''(t) \right\|_{H}^{p} dt \right)^{2/p}.$$

Список литературы References

1. Бондарев А. С. 2015. Разрешимость вариационного параболического уравнения с периодическим условием на решение. Вестник Воронежского государственного университета. Серия: физика, математика, Nº 4: 78-88.

Bondarev A.S. 2015. The solvability of the variational parabolic equation with a periodic condition on the solution. Vestnik Voronezhskogo gosudarstvennogo universiteta. Serija: Fizika. Matematika. [Proceedings of Voronezh State University. Series: Physics. Mathematics]. 4: 78–88. (in Russian)

2. Бондарев А. С., Смагин В. В. 2014. Сходимость проекционно-разностного метода приближённого решения параболического уравнения с периодическим условием на решение. Вестник Воронежского государственного университета. Серия: физика, математика, № 2: 81-94.

Bondarev A.S., Smagin V.V. 2014. The convergence of the projection-difference method of approximate solution of parabolic equation with a periodic condition on the solution. Vestnik Voronezhskogo gosudarstvennogo universiteta. Serija: Fizika. Matematika. [Proceedings of Voronezh State University. Series: Physics. Mathematics]. 2: 81–94. (in Russian)

3. Вайникко Г. М., Оя П. Э. 1975. О сходимости и быстроте сходимости метода Галёркина для абстрактных эволюционных уравнений. Дифференциальные уравнения, 11(7): 1269-1277.

Vaynikko G.M., Oya P.E. 1975. O shodimosti i bystrote shodimosti metoda Galjorkina dlja abstraktnyh jevoljucionnyh uravnenij [About the convergence and the velocity of convergence of the Galerkin's method for abstract evolutionary equations]. Differencial'nye uravneniya. [Differential Equations]. 11(7): 1269–1277. (in Russian)

4. Лионс Ж. -Л., Мадженес Э. 1971. Неоднородные граничные задачи и их приложения. Пер. с фр. М., Мир, 372. (Lions J.-L., Magenes E. 1968. Problemes aux limites non homogenes et applications. Vol. 1. Dunod, Paris).

Lions J.-L., Magenes E. 1971. Neodnorodnye granichnye zadachi i ih prilozhenija [Nonhomogeneous boundary problems and applications]. Moscow, Mir, 372. (Lions J.-L., Magenes E. 1968. Problemes aux limites non homogenes et applications. Vol. 1. Dunod, Paris).

5. Марчук Г. И., Агошков В. И. 1981. Введение в проекционно-сеточные методы. М., Наука, 416.

Marchuk G.I., Agoshkov V.I. 1981. Vvedenie v proekcionno-setochnye metody [Introduction to projective-difference methods]. Moscow, Nauka, 416. (in Russian).

6. Обэн Ж. -П. 1977. Приближенное решение эллиптических краевых задач. Пер. с англ. М., Мир, 384. (Aubin J.-P. 1972. Approximation of elliptic boundary-value problems. Pure and applied mathematics. Vol. XXVI. Wiley-Interscience. New York – London – Sydney).

Aubin J.-P. 1977. Priblizhennoe reshenie jellipticheskih kraevyh zadach [Approximation of elliptic boundary-value problems]. Moscow, Mir, 384. (Aubin J.-P. 1972. Approximation of elliptic boundary-value problems. Pure and applied mathematics. Vol. XXVI. Wiley-Interscience. New York – London – Sydney).

7. Смагин В. В. 1997. Оценки скорости сходимости проекционного и проекционно-разностного методов для слабо разрешимых параболических уравнений. Математический сборник, 188 (3): 143–160.

Smagin V.V. 1997. Ocenki skorosti shodimosti proekcionnogo i proekcionno-raznostnogo metodov dlja slabo razreshimyh parabolicheskih uravnenij [Estimates of the velocity of convergence of projective and projection-difference methods for the weakly solvable parabolic equations]. Matematicheskij sbornik [Sbornik: Mathematics]. 188(3): 143–160. (in Russian)

8. Смагин В. В. 2000. Среднеквадратичные оценки погрешности проекционно-разностного метода для параболических уравнений. Журнал вычислительной математики и математической физики, 40(6): 908–919.

Smagin V.V. 2000. Mean-square estimates of the error of a projection-difference method for parabolic equations. Computational Mathematics and Mathematical Physics. 40(6): 868–879.

9. Смагин В. В. 2001. Проекционно-разностные методы приближенного решения параболических уравнений с несимметричными операторами. Дифференциальные уравнения, 37(1): 115–123.

Smagin V.V. 2001. Projection-difference methods for the approximate solution of parabolic equations with nonsymmetric operators. Differential Equations. 37(1): 128–137.

10. Смагин В. В. 2001. Энергетические оценки погрешности проекционно-разностного метода со схемой Кранка-Николсон для параболических уравнений. Сибирский математический журнал, 42 (3): 670–682.

Smagin V.V. Energy error estimates for the projection-difference method with the Crank-Nicolson scheme for parabolic equations. Siberian Mathematical Journal. 42(3): 568-578.

11. Смагин В. В., Тужикова М. В. 2004. О слабой разрешимости нелинейной вариационной задачи параболического типа. Вестник Воронежского государственного университета. Серия: физика, математика, N° 1: 153–156.

Smagin V.V., Tuzhikova M.V. 2004. O slaboj razreshimosti nelinejnoj variacionnoj zadachi parabolicheskogo tipa [About the weal solvability of the non-linear variational problem of the parabolic type.] Vestnik Voronezhskogo gosudarstvennogo universiteta. Serija: Fizika. Matematika. [Proceedings of Voronezh State University. Series: Physics. Mathematics]. 1: 153–156. (in Russian)

12. Смагин В. В. 2005. О скорости сходимости проекционно-разностных методов для гладко разрешимых параболических уравнений . Математические заметки, 78(6): 907–918.

Smagin V.V. 2005. On the rate of convergence of projection-difference method for smoothly solvable parabolic equations. Mathematical Notes. 78(6): 841–852.

13. Смагин В. В. 2015. Проекционно-разностный метод со схемой Кранка-Николсон по времени приближенного решения параболического уравнения с интегральным условием на решение. Дифференциальные уравнения, 51(1): 116–126.

Smagin V.V. 2015. Projection-difference method with the Crank-Nicolson scheme in time for the approximate solution of a parabolic equation with an integral condition on the solution. Differential Equations. 51(1): 116–126.