ПЕРЕСТРОЙКА АКТИНОВОГО ЦИТОСКЕЛЕТА ЯДЕРНЫХ ЭРИТРОЦИТОВ И ЛЕЙКОЦИТОВ У РЫБ, ЛЯГУШЕК И ПТИЦ ПРИ МИГРАЦИИ

С.Д. Чернявских,¹ **М.З. Федорова, Во Ван Тхань, До Хыу Кует** Белгородский государственный национальный исследовательский университет; ¹электронный адрес: Chernvavskikh@bsu.edu.ru

Методом конфокальной лазерной сканирующей микроскопии изучены изменения пространственной организации актиновых филаментов ядерных эритроцитов и лейкоцитов у рыб, лягушек и птиц при миграции. Показано, что во время движения реорганизация микрофиламентов цитоскелета у эритроцитов происходит аналогично лейкоцитам. В процессе миграции у земноводных и птиц красные клетки крови образуют псевдоподии, заполненные пучками параллельно уложенных актиновых филаментов, у эритроцитов рыб псевдоподий не образуется. Изменение структуры актинового цитоскелета ядерных эритроцитов, аналогичное лейкоцитам, определяет способность красных клеток крови к реакциям миграции и фагоцитоза.

Ключевые слова: актиновый цитоскелет, конфокальная лазерная сканирующая микроскопия, ядерные эритроциты, лейкоциты, миграция клеток

Среди основных структур цитоскелета клетки большой интерес исследователей привлекает его актиновая составляющая как наиболее лабильная и быстро реагирующая на различные воздействия (Goldman, Knipe, 1972; Pollard, Weihing, 1974; Ткемаладзе, Чичинадзе, 2005; Пинаев, 2009). В научной литературе

имеется немало работ, посвященных изучению изменения пространственной организации актиновой части цитоскелета лейкоцитов млекопитающих при движении (Фултон, 1987; Bennett, Baines, 2001; Землянских, Денисова, 2009). Вопрос о структурных преобразованиях цитоскелета ядерных эритроцитов, а также лейкоцитов низших позвоночных животных в процессе миграции изучен недостаточно.

Целью работы было изучение перестройки актинового компонента цитоскелета ядерных эритроцитов и полиморфноядерных лейкоцитов у рыб, лягушек и птиц при миграции.

Материал и методика

В работе использовали периферическую кровь, взятую у наркотизированных эфиром животных: сазана (*Cyprinus carpio*), лягушки озёрной (*Rana ridibunda*) и курицы домашней (*Gallus domesticus*). Забор крови у лягушки осуществляли из сердца, у курицы – из крупных вен крыла, у сазана – из хвостовой вены. Объектами исследования служили эритроциты и лейкоциты. В качестве антикоагулянта использовали гепарин (10 ед/мл.). Полученную кровь центрифугировали 4 мин при 400 g. Собирали нижнюю часть плазмы, богатую лейкоцитами и лейкоцитарное кольцо.

Для флуоресцентного анализа актинового цитоскелета проводили пробоподготовку гемоцитов. Предварительно были апробированы 3 способа фиксации: 4%-ным формальдегидом, 4%-ным параформальдегидом и 10%-ным глутаровым альдегидом. При фиксации формальдегида клетки деформировались и меняли свою форму, а параформальдегид уже через 10 мин после начала фиксации вызывал гемолиз изучаемых клеток. Глутаровый альдегид, согласно нашимс результатам, а также данным многих авторов, лучше других фиксаторов сохраняет структуру клеток и прижизненные размеры (Sabatini et al., 1963; Фрайштат, 1980; Дуглас, Куи, 1983).

Клетки фиксировали в течение 60 мин 10%-ным раствором глутарового альдегида на изотоническом растворе NaCl (0.8 % для сазана, 0.6 % для лягушки, 0.9 % для курицы). После фиксации гемоциты отмывали от глутарового альдегида с помощью буфера (PBS, pH 6.8). Фиксированные клетки обрабатывали 0.1%-ным раствором Тритона X-100 на PBS в течение 20 мин, снова отмывали с помощью PBS и высушивали на воздухе. Полученные препараты окрашивали родамин-фаллоидином-R415 (Molecular Probes, США) в течение 15 мин в темноте.

Флуоресценцию актинового компонента цитоскелета клеток наблюдали на лазерном сканирующем конфокальном микроскопе Nikon D-Eclipse Ti-E (Япония). В работе использовали программное приложение C1. Для получения изображения актиновых микрофиламентов ядерных эритроцитов и лейкоцитов использовали объектив с увеличением 60×. В работе применяли лазеры с длинами волн 488 нм (для возбуждения) и 514 нм (для регистрации свечения).

Изучение реорганизации микрофиламентов цитоскелета проводили на клетках, мигрирующих под агарозой (Федорова, Левин, 2001). В лунки, вырезанные в агарозном геле, нанесенном на предметное стекло, помещали по 3 мкл суспензии гемоцитов, содержащей около 1 млн. клеток (в случае лягушки, имеющей большой размер клеток, около 300 тыс. клеток). Стекла с гемоцитами

3

рыб и лягушек при температуре 8 °C и с клетками крови птиц при комнатной температуре инкубировали 1 сут в среде с 5%-ным содержанием CO₂.

Полученные результаты обрабатывали методами вариационной статистики с использованием специальных программ на персональном компьютере. Достоверность различий определяли по t-критерию Стьюдента.

Результаты и обсуждение

Методом конфокальной лазерной сканирующей микроскопии определены изменения структуры актиновой части цитоскелета ядерных эритроцитов и лейкоцитов у рыб, лягушек и птиц при миграции. Полученные сканы эритроцитов, прикрепившихся к стеклянной подложке, представлены на рис. 1, *а—в.* В цитоплазме клеток хорошо видны актиновые стресс-фибриллы, радиально отходящие от плазмалеммы к ядру, в виде длинных пучков. На сканах эритроцитов четко выражена густая сеть актиновых микрофиламентов, находящаяся непосредственно под цитоплазматической мембраной клетки, и образующая «клеточный кортекс» (Broschat et.al., 1983; Дерябин, 2005). В красных клетках крови всех изученных видов животных выявлен ядерный актин. Актиновые филаменты располагаются непосредственно в ядре и вокруг ядра.

У лейкоцитов всех подопытных животных актин также выявлен в ядре и под наружной цитоплазматической мембраной (рис. 2, *а—в*). Ядерный актин представлен в виде крупных частиц.

Начало миграции эритроцитов лягушки по субстрату сопровождается перестройкой сформированной системы актиновых структур, в первую очередь

стресс-фибрилл (рис. 3). Основное влияние на динамику и архитектуру системы микрофиламентов оказывают лиганд-рецепторные комплексы, образующиеся при адгезионных контактах клетки с внеклеточным матриксом, устанавливающиеся с помощью специфических поверхностных рецепторов интегринов (Goldman et al., 1975; Yamada, Miyamoto, 1995; Пинаев, 2009).

На рис. 4 (a—e) видны изменения структуры актинового цитоскелета и формы клеток подопытных животных через 1 сут после начала миграции. Как в красных, так и в белых клетках крови, актин в цитоплазме выявляется в виде мелких частиц, что может свидетельствовать о том, что в данное время он находится в клетке в виде коротких олигомеров (Пинаев, 2009). Ядерный актин у мигрирующих эритроцитов и лейкоцитов не выявляется, возможно, он переходит в цитоплазму (Пинаев, 2009).

В процессе локомоций структура цитоскелета эритроцитов у рыб, лягушек и птиц становится аналогичной лейкоцитам.

В ряде случаев при движении эритроциты лягушек образуют на лидирующем крае длинные выросты – псевдоподии (ламелоподии) различной формы (рис. 5 *a*--*д*), характерные обычно для лейкоцитов. В псевдоподиях расположены пучки параллельно уложенных актиновых филаментов. У птиц при миграции красные клетки крови формируют небольшие выросты (рис. 6), у рыб выпячиваний мембраны не наблюдается. Согласно данным, полученным Головко (2010), у эритроцитов земноводных, по сравнению с клетками аналогичного пула рыб и птиц, более высокий показатель складчатости плазмалеммы и больший мембранный резерв, позволяющий образовывать длинные псевдоподии. В свою очередь, образование псевдоподий у ядерных эритроцитов лягушек и, в меньшей степени у кур, дает возможность этим клеткам участвовать в реакциях миграции (Чернявских и др., 2008), осуществляя амебоидные движения, а также в процессах фагоцитоза (Prunesco, 1971), подобно лейкоцитам.

Список литературы

Головко С.И. 2010. Сравнительная характеристика мембранного резерва ядерных клеток крови позвоночных животных. Автореф. канд дис. Ярославль, ЯГПУ. 20 с.

Дерябин Д.Г. 2005. Функциональная морфология клетки. М.: КДУ. 320 с.

Дуглас С.Д., Куи П.Г. 1983. Исследование фагоцитоза в клинической практике. М.: Медицина. 112 с.

Землянских Н.Г., Денисова О.Н. 2009. Изменения в мембранноцитоскелетном комплексе эритроцитов, индуцированные диметилсульфоксидом, полиэтиленгликолем и низкой температурой. Биофизика. 54 (4) : 693--703.

Пинаев Г.П. 2009. Сократительные системы клетки: от мышечного сокращения к регуляции клеточных функций. Цитология. 51 (3) : 172-181.

Ткемаладзе Дж. В., Чичинадзе К.Н. 2005. Центриолярные механизмы дифференцировки и репликативного старения клеток высших животных. Биохимия. 70 (11) : 1566--1584.

Федорова М.З., Левин В.Н. 2001. Спонтанная миграция нейтрофилов крови в смешанной популяции лейкоцитов и ее изменения под влиянием веществ аутоплазмы при различных функциональных состояниях организма. Клиническая лабораторная диагностика. 5 : 16--19. Фрайштат Д. М. 1980. Реактивы и препараты для микроскопии. М. : Химия. 480 с.

Фултон А. 1987. Цитоскелет: архитектура и хореография клетки. М.: Мир. 120 с.

Чернявских С.Д., Федорова М.З., Забиняков Н.А., Трапезникова К.О. 2008. Миграционная активность гемоцитов земноводных в различных условиях среды. Тезисы докладов VI Сибирского физиологического съезда. Барнаул. 2 : 52–53.

Bennett V., Baines A.J. 2001. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol. Rev. 81: 1353--1392.

Broschat K.O., Stidwell P.R., Burgess D.R. 1983. Phosphorylation controls brush border motility by regulating myosin structure and association with the cytoskeleton. Cell. 35 : 561--571.

Goldman R. D., Knipe D. 1972. Functions of cytoplasmic fibers in non-muscle cell motility. Cold Spring Harbor Symp. Quant. Biol. 37 : 523--534.

Goldman R.D., Pollak R., Chang C.M., Bushnell R. 1975. Properties of enucleated cells. Changes in cytoplasmic architecture of enucleated BHK cells following trypsinization and replating. Exp. Cell Res. 93 : 175--183.

Pollard T.D., Weihing R.R. 1974. Cytoplasmic actin and myosin and cell movement. CRC. Critical Rev. Biochem. 2 : 1--65.

Prunesco H. 1971. Natural and experimental phagocitosis by erythrocytes in Amfibians. Nature. New Biol. 231 : 143--144.

Sabatini D.D., Bensch K., Barrnett R. J. 1963. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. Cell Biol. 17 : 19--58.

Yamada K. M., Miyamoto S. 1995. Integrin transmembrane signaling and cytoskeletal control. Curr. Opin. Cell Biol. 7 : 681--689.

Поступила 11 VII 2011

- Рис. 1. Микрофотографии эритроцитов рыбы (*a*), лягушки (б) и птицы (в), распластанных на стеклянной подложке.
 - *1* актиновые стресс-фибриллы, 2 клеточный «кортекс», состоящий из актиновых филаментов, 3 ядерный актин.

Рис. 2. Микрофотографии лейкоцитов рыбы (*a*), лягушки (б) и птицы (в), распластанных на стеклянной подложке.

1 – ядерный актин, 2 – цитоплазматическая мембрана.

- Рис. 3. Микрофотография мигрирующего эритроцита лягушки (начало движения по стеклу под агарозой).
 - 1 лидирующий край клетки, 2 стресс-фибриллы.

Рис. 4. Микрофотографии мигрирующих клеток крови рыбы (*a*), лягушки (б) и птицы (в).

1 – эритроциты, 2 – лейкоциты, 3 – актин в виде мелких частиц.

Рис. 5. Микрофотографии мигрирующих эритроцитов лягушки (*a*—*d*). *1* – эритроциты, *2* – псевдоподии, *3* – пучки актиновых микрофиламентов.

Рис. 6. Микрофотография мигрирующих эритроцитов птиц. 1 – эритроциты, 2 – псевдоподии, 3 – пучки актиновых микрофиламентов.