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Abstract. The shift o f Energy levels o f a quantum dot in single electron transistor model is investigated. The 
self-energy function which related to shift o f Energy levels, describing this interaction is added to a bare energy of a 
dot state. In the standard w ay of determining the self-interaction corrections to bare energies o f quantum dots, the 
variations of the self-energy functions w ith energy are ignored, and these corrections are considered to be equal to the 
values of the self-energy functions for bare energies o f states. We show that actually in the case of quantum  dots the 
variations o f the self-energy functions in the energy interval between the bare and true energies can be strong, and 
this can have a significant effect on the values of the tunneling-induced shifts o f energy levels o f quantum  dots.

1. Introduction. In recent years interest arose into the study of transport through quantum 

dots. This interest is driven by two reasons. First, small devices like quantum dots open the possibility for 

future applications in electronics as transistors, memory cells, sensors etc. Small devices are especially 

interesting in high frequency applications due to their small capacitances. The second reason for the 

interest into these systems is a basic physics point of view. Quantum dots are similar to atoms or 

molecules since a certain number of electrons are confined in a potential. But, in contrast to real atoms, in 

these artificial systems the number of electrons, the size of the system and the strength of the confinement 

potential can easily be changed [1].

Single Electron Transistor (SET) has been made with critical dimensions of just a few nanometer using 

metal, semiconductor, carbon nanotubes or individual molecules [2-12]. A  SET consists of a small conducting 

island (Quantum Dot (Q.D)) coupled to source and drain leads by tunnel junctions and capactively coupled to 

one or more gate. Unlike Field Effect transistor, Single electron device based on an intrinsically quantum 

phenomenon, the tunnel effect. The electrical behaviour of the tunnel junction depends on how effectively 

barrier transmit the electron wave, which decrease exponentially with the thickness and on the number of 

electron waves modes that impinge on the barrier, which is given by the area of tunnel junction divided by the 

square of wave length. Figure (1) shows the schematic of SET [13,14].
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Fig. 1. M odel o f  a  q uantum  dot attached  to tw o leads. W e choose the left lead  to b e  the source and  the right

lea d  to b e  the drain. A ddition ally  a  gate voltage is app lied  to the dot. E lectrons tun nel from  the dot to the leads 

and  vice versa  w ith  the respective tunneling rate, Г .. to the left lea d  a n d  Г д  to the right lead.



In the case of quantum dots the role of the virtual photons in the self-interaction of ordinary 

atoms can be played, for example, by electrons that leave the quantum dot and then come back. Such a 

self-interaction can be much more significant than the interaction of an atom with its own radiation field.

In this paper by using generalized dynamical equation (GDE) we investigate the effect of such a self­

interaction on the tunneling-induced shift of energy levels of a quantum dot.

2. Theory. In our study we use non-perturbative methods of its description based on the GDE, 

which in [15] has been derived as a direct consequence of the first principles of quantum physics. Being 

equivalent to the Schrodinger equation in the case when the interaction in a quantum system is 

instantaneous, GDE allows one to extend dynamics to the case of nonlocal-in-time interactions. This

equation provides a new insight into many problems in atomic physics [16-19], nuclear physics [20-23] 

and quantum optics [24, 25]. The contribution to the Green operator G(z), which comes from the 

processes associated with the self-interaction of particles, has the same structure as the free Green 

operator G0(z). So it is natural to replace G0(z) by the operator G 0'‘ '(z) , which describes the evolution of

the system when particles propagate freely or interact with vacuum, and, hence, has the structure

м Н = . _ д  | C  M
“ m «;'■“ / (l)

With I being the eigenvectors of the free Hamiltonian ( H (j | = /*., |n ij). Other contributions

are described by the operator g  I ](z ) = G ; , ' l ( z ) M ( z ) G J , '  , ( z )  :

G ( z )  = G ^ " '( z )  +  G II , ( z )  = G ^ " '( z )  +  G ^ " '( z ) j W ( z ) G ^ " '( z ) , where the operator M(z) describes the

processes in which some particles interact each with other. The equations for C(z) and M(z) are derived 

from GDE. The equation for the function Cm(z) referred to as the self-energy function reads

dC"^z/ z = -{ m \ M ( z ) G (0v)(z) M(z)\m),(m\m} = \ (2)

The condition

z - E ^ - C „ , ( z )  =  0  (3)

determines the physical masses of particles. In the case when we deal with an atom and | ni) 

describes an atomic state, equation (3) determines the self-energy correction (the Lamb shift) to the 

energy Em of the state | /7?) . An approximated solution of this equation is

E „, = E T + C l ! ! \ E l!!>) = E l!!>+AEt  ~ 1Г"/2 ’ with A/-;,:, and r m being the Lamb shift and the

natural width of the energy level of the state |mi respectively. For this approximation to be valid the 

variation of Cm(z) in the energy interval between /r '1 and Em must be negligible. This is the case for

atoms in free space. In fact, at leading order in a  the equation for Cm(z) is reduced to the equation [26, 27]

dCL \ z ) /  - _ / m \ u  Г I2
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dz
( m IH j  [ G ^ v)( z ) J  H j Im ) , ( m \ m )  =  l  (4 )

W ith Hi being the interaction Hamiltonian. By solving this equation with an appropriate 

boundary condition we arrive at the ordinary expressions for the self-energy shifts and widths of energy 

levels. However, in the case of quantum dots the variation of the self-energy function in the relevant



vicinity of the point - = £ ,<0) can be very significant and, as a result, the above approximation is invalid. In

this case the self-interaction function cannot be parameterized by a shift and a width, and one has to 

derive the self-energy function from a non-perturbative solution of the equations for Cm(z) and M(z).

2. Results and Discussion. We study the self-interaction of a single-level quantum dot with 

arbitrary strong one-site Coulomb interaction tunnel coupled to two non-interacting leads. The 

Hamiltonian of system consisting of quantum dot and leads is described by [28]

H  — H aD  +  H „  +  H L (5)

Where H 0 D is the Hamiltonian of quantum dot, H T p is the Hamiltonian of tunneling process 

between leads and quantum dot and the Hamiltonian of leads is H L .

The quantum dot can be described by the single-level Anderson impurity model, and H 0 D equal

H Q.D = X  ( 6 )

Where the creation (annihilation) operator for an electron with spin 0- on the dot is given by d l

and d a> also na = d nd n is the number operator. The on-site repulsion U  describes the energy cost for 

double occupation (when we have two electrons in quantum dot) and stems from Coulomb interaction. 

The Hamiltonian H Tp is given by

= I  <' А Л  + H -C- (7)
a,k,<7

Where Va is the momentum and spin-independent tunnel matrix element, к ст (C a к CT) is

creation (annihilation) operators for electrons with spin о and momentum k in lead and a=l,r. The 

Hamiltonian Hi, is given by

H l = X  Е а,к^1,к,а^а,к,a (8)
a,k,cr

The chemical potentials of the two leads differ by the applied bias щ -ц г=-еУ. We assume that the 

density of states pa in the leads is constant for transport and defines the tunnel coupling strength R„ as 

R((=2.tp(l | V(( |2, where V a is the tunnel matrix element and R=Ri+Rr. We will denote the states of quantum 

dots as |4/(J> for a singly occupied dot with spin o = t,| and an empty dot |Ф0>. The corresponding 

energies are E„ and E0.

In this model we assume that reservoirs are in equilibrium and we average over the reservoir part 

of the initial states according to the Fermi distribution [28]
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(  _  V 1

1 + exp (^ — — ) 
K „ T

(9)
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By solving th is  equation w ith  an appropriate boundary condition we arrive at the ord inary 

expressions fo r the self-energy sh ifts and w idths o f energy levels. Solving the leading-order equation (4)

yields the fo llow ing expressions fo r the self-energy function o f the quantum -dot state |Ф „>

/ « И

J 2n i z - c o  z + a ) - 2s - U  

And the self-energy function  (  ,,(■?) o f the quantum -dot state |Ф 0>

) (10)

C 0(=) = 2 X ^ j d r o ( - О (И)
_ 1 2 я J z + co — e

In  our calculations we have used the fact tha t the part tha t is independent o f the Ferm i 

d is tribu tion  function  o f C„(z) can be included in to  the correction to  the energy o f em pty level. Taking in to  

account th is  fact and using equation (1), self-energy function  C„(z) w ill be

2 я  ■

1 1 12)
(1 + exp(f3(co -  //))) (со - z )  (1 + exp(f3(co -  //))) (со -  (2s  + U  - z ))

Let us assume tha t the variations o f these self-energy functions w ith  z are weak. In  th is  case the 

tr iv ia l sh ift o f energy level o f Q.D 8E{ap) can be considered as the approxim ated energy sh ifts o f the 

corresponding energy levels o f the quantum  dot

SEtap, = c  ̂iz  = E  ̂ = s ) _ Co iz  = E q =  о  (13)

And the non -triv ia l sh ift o f energy level o f Q.D w hich describe fu lly  sh ift o f energy level o f Q.D is

S E ^  = C a {z = E a = e ) ~  C 0 (z  = E 0 = 0) = £ К

2 n

(
In

s  + U
In

S + U  -  /LI

S — f.1

\
(14)

However, as i t  fo llow s from  the results o f our calculations the variations w ith  z o f the self-energy 

functions o f the quantum -dot states are strong, and one has to  solve equation (3) exactly. Figure (2) where 

the results o f calculations o f the self-energy correction Ss =  ( ' rT( z ) — (  'u( z )  are depicted shows tha t the

energy shifts obtained in  th is  way can d iffe r dram atica lly from  th e ir approxim ated values.
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Fig. 2. Calculation  results o f the trivial (solid  line) and  non -triv ial (dashed line) en ergy shifts o f  level 

o f  Q.D fo r the param eters £  =  5 R  , f i  =  300R  an d fo r differen t values o f  the U  at the zero tem perature 

and  in  the assu m ption  that the left lea d  is the sam e as the right lead.

Conclusion. In this paper by using equation (4) we have derived equations (10) and (11) for the 

self-energy functions of the quantum-dot states in SET. By putting z=E„ and z=E0 in equation (10) and 

equation (11) respectively we arrive at the expressions for the energy shifts in quantum dots derived in 

[28]. This is the manifestation of the fact that in the standard way of solving the problem the energy shift 

is assumed to be equal to the value of the corresponding self-energy function at the bare energy. The 

above approximated solution of equation (2) gives rise just to the same result. If the variations of the self­

energy functions C0(z) and C„(z) were weak enough, then in solving equation (2) one could restrict oneself 

to this approximated solution. However, as it follows from the results of calculation, this is not the case, 

and equation (3) must be solved exactly. Figure (2) shows that the self-interaction energy shifts obtained 

by solving equation (3) exactly differ dramatically from the approximated shifts.
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