УДК 517.9

О СУЩЕСТВОВАНИИ И ЕДИНСТВЕННОСТИ НЕПРЕРЫВНЫХ РЕШЕНИЙ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ ВОЛЬТЕРРА С ЧАСТНЫМИ ИНТЕГРАЛАМИ

ON THE EXISTENCE AND UNIQUENESS CONTUNUITY SOLUTIONS SYSTEMS OF LINEAR VOLTERRA EQUATIONS WITH PARTIAL INTEGRALS

A.C. Калитвин, В.А. Калитвин, Н.И. Трусова A.S. Kalitvin, V.A. Kalitvin, N.I. Trusova

Липецкий государственный педагогический университет, Россия, 398020, г. Липецк, ул. Ленина, д. 42 Lipetsk State Pedagogical University, 42, Lenina St, Lipetsk, 398020, Russia E-mail: kalitvinas@mail.ru; kalitvin@mail.ru; trusova.nat@gmail.com

Ключевые слова: системы интегральных уравнений, уравнения Вольтерра, частные интегралы, существование и единственность решений

Key words: systems of integral equations, Volterra equations, partial integ- rals, existence and uniqueness solutions

Аннотация. Доказывается существование и единственность непрерывного решения системы линейных интегральных уравнений с частными интегралами, с частными интегралами и ядрами типа потенциала, с частными дробными интегралами.

Resume. The existence and uniquenesse continuity solution of system of linear integral equations with partial integrals, with partial integrals and potential type kernels, with partial fractional integrals is proved.

Введение

В работе доказывается существование и единственность непрерывного решения системы линейных уравнений с частными интегралами следующего вида:

$$x_{i}(t,s) = \sum_{j=1}^{n} \int_{a}^{t} l_{ij}(t,s,\tau) x_{j}(\tau,s) d\tau + \int_{c}^{s} m_{ij}(t,s,\sigma) x_{j}(t,\sigma) d\sigma +$$

$$+ \int_{ac}^{t} l_{ij}(t,s,\tau,\sigma) x_{j}(\tau,\sigma) d\tau d\sigma] + f_{i}(t,s), i = 1,\dots, n.$$

$$(1)$$

Предполагается, что $t \in [a,b]$, $s \in [c,d]$, $l_{ij}(t,s,\tau)$, $m_{ij}(t,s,\sigma)$, $n_{ij}(t,s,\tau,\sigma)$ и $f_i(t,s)$ — заданные на $D \times [a,t]$, $D \times [c,s]$, $D \times [a,t] \times [c,d]$ и D соответственно функции, где $D = [a,b] \times [c,d]$, а интегралы здесь и далее понимаются в смысле Лебега.

Аналогичные вопросы рассматриваются для системы уравнений (1) с ядрами типа потенциала и с дробными частными интегралами.

Отметим, что к системам вида (1) с $m_{ij}(t,s,\sigma) \equiv 0$ (i,j=1,...,n) приводятся системы линейных интегро-дифференциальных уравнений Барбашина, частным случаем которых является система линейных интегро — дифференциальных уравнений теории систем с существенно рапределенными параметрами [1,2].

Существование и единственность решения системы (1)

Рассмотрим систему (1) линейных интегральных уравнений Вольтерра с частными интегралами.

Пусть C(D) — пространство непрерывных на $D = [a,b] \times [c,d]$ функций с супремум нормой, $A = C(L^1(\Omega))$ — пространство непрерывных на D функций $a(t,s,\omega)$ со значениями в $L^1(\Omega)$, где $\Omega \in \{[a,b],[c,d],D\}$, и нормой

$$||a||_A = \sup_{(t,s)\in D} \int_{\Omega} |a(t,s,\omega)| d\omega,$$

 $C^1_t(D)$ — пространство функций $y \in C(D)$, для которых $y'_t \in C(D)$, с нормой

$$||y||_{C_t^1(D)} = \max_{(t,s) \in D} (|y(t,s)| + |\dot{y}_t'(t,s)|).$$

Хорошо известно, что пространства C(D), $_A$ и $C_t^1(D)$ с заданными нормами являются банаховыми пространствами.

Через $C_n(D)$, $C_{nt}^1(D)$ обозначим пространство вектор – функций

$$x(t,s) = (x_1(t,s),...,x_n(t,s)),$$

где $x_i \in C(D), x_i \in C^1_t(D)$, соответственно. $C_n(D)$ и $C^1_m(D)$ — банаховы пространства с нормами

$$||\,x\,||_{C_n(D)} = \sum_{i=1}^n ||\,x_i\,\,||_{C(D)} \ \ \text{if} \ ||\,x\,||_{C^1_{nt}(D)} = \sum_{i=1}^n ||\,x_i\,\,||_{C^1_t(D)} \ .$$

Банаховы пространства $C_s^1(D)$, $C_{ns}^1(D)$ определяются аналогично. Через $C^1(D)$ обозначим пространство непрерывно дифференцируемых на D функций, а через $C_n^1(D)$ — пространство вектор-функций

$$x(t,s) = (x_1(t,s),...,x_n(t,s)),$$

где $x_i \in C^1(D)$. $C^1(D)$ и $C^1_n(D)$ — банаховы пространства.

Система уравнений (1) допускает представление в виде системы

$$x(t,s) = (L+M+N)x(t,s) + f(t,s),$$
 (2)

где $x(t,s) = (x_1(t,s),...,x_n(t,s)), f(t,s) = (f_1(t,s),...,f_n(t,s)),$

$$L = (L_{ii})_{i,i=1}^n, M = (M_{ii})_{i,i=1}^n, N = (N_{ii})_{i,i=1}^n,$$

а операторы L_{ij} , M_{ij} , N_{ij} (i,j = 1,...,n) определяются равенствами

$$(L_{ij}x_j)(t,s) = \int_{\tau}^{t} \int_{t_j} (t,s,\tau)x_j(\tau,s)d\tau,$$
(3)

$$(M_{ij}x_j)(t,s) = \int m_{ij}(t,s,\sigma)x_j(t,\sigma)d\sigma,$$
(4)

$$(N_{ij}x_j)(t,s) = \int_0^t \int_0^d n_{ij}(t,s,\tau,\sigma)x_j(\tau,\sigma)d\tau d\sigma.$$
 (5)

Будем предполагать, что $l_y \in C(L^1([a,b])), \quad m_{ij} \in C(L^1([c,d])), \quad n_{ij} \in C(L^1(D), \quad i,j=1,\ldots,n)$

Система уравнений (2) эквивалентно системе уравнений

$$(I-L)(I-M)x(t,s) = (LM+N)x(t,s) + f(t,s).$$
(6)

Покажем, что спектральный радиус оператора L, действующего в $C_n(D)$, равен нулю.

Так как $l_{ij} \in C(L^1([a,b]))$ (i,j=1,...,n), то спектральный радиус оператора L_{ij} , непрерывного в C(D), равен нулю: $r(L_{ij})=0$ (i,j=1,...,n), а композиция операторов L_{ij} и L_{pq} является частично интегральным оператором с ядром из $C(L^1([a,b]))$ [3]. Следовательно, спектральный радиус этой композиции равен нулю.

Рассмотрим систему уравнений

$$\lambda x(t,s) = (Lx)(t,s) + f(t,s),\tag{7}$$

где комплексное число $\lambda \neq 0$. Для простоты считаем в (7) $\lambda = 1$.

В силу равенства $r(L_{11}) = 0$ из уравнения

$$x_{1}(t,s) = \sum_{j=1}^{n} \int_{a}^{t} l_{ij}(t,s,\tau)x_{j}(\tau,s)d\tau + f_{1}(t,s)$$

находим $x_1(t,s)$. Подставляя $x_1(t,s)$ в остальные уравнения системы (7), получим систему с неизвестными функциями $x_2(t,s),...,x_n(t,s)$. Учитывая равенство нулю спектрального радиуса оператора, действующего на $x_2(t,s)$ во втором уравнении, находим $x_2(t,s)$. Продолжая этот процесс, получим частично интегральное уравнение $x_n(t,s) = (Vx_n)(t,s) + h(t,s)$, где V непрерывный в C(D) частично интегральный оператор с r(V) = 0, а h — некоторая функция из C(D). Из этого уравнения находим $x_n(t,s)$. Подставляя $x_n(t,s)$ в предыдущее уравнение, получим $x_{n-1}(t,s)$. Продолжая эту процедуру, найдем $x_1(t,s),...,x_n(t,s)$. Таким образом, при любых $\lambda \neq 0$ и $f \in C_n(D)$ система уравнений (7) имеет единственное решение в $C_n(D)$. Следовательно, r(L) = 0.

Аналогично доказывается, что r(M) = 0.

Тогда в $C_n(D)$ существуют ограниченные обратные операторы $(I-L)^{-1}$ и $(I-M)^{-1}$. Аналогично [3,4] доказывается, что эти операторы могут быть записаны в виде

$$(I-L)^{-1} = I + (P_{ij})_{ij=1}^{n}, (I-M)^{-1} = I + (Q_{ij})_{ij=1}^{n},$$
(8)

где P_{ij} и Q_{ij} (i,j=1,...,n) — частично интегральные операторы, определяемые равенствами

$$(P_{ij}x_j)(t,s) = \int_{\sigma}^{t} p_{ij}(t,s,\tau)x_j(\tau,s)d\tau, (Q_{ij}x_j)(t,s) = \int_{\sigma}^{s} q_{ij}(t,s,\sigma)x_j(t,\sigma)d\sigma$$

С ядрами $p_{ij} \in C(L^1([a,b]))$ и $q_{ij} \in C(L^1([c,d]))$.

Применяя к обеим частям системы уравнений (6) оператор $(I-M)^{-1}(I-L)^{-1}$ и учитывая равенства (8), получим эквивалентную систему уравнений

$$x(t,s) = \iint_{ac}^{td} r(t,s,\tau,\sigma) x(\tau,\sigma) d\tau d\sigma + e(t,s) \equiv (Rx)(t,s) + e(t,s), \tag{9}$$

где $e = (I - M)^{-1}(I - L)^{-1} f \in C(D)$, а $r(t, s, \tau, \sigma) = (r_{ii}(t, s, \tau, \sigma))_{i,j=1}^{n}$ с некоторыми функциями $r_{ij}(t, s, \tau, \sigma) \in C(L^1(D).$

Аналогично доказательству равенства r(L) = 0, доказывается равенство r(R) = 0. Следовательно, система уравнений (9) имеет единственное решение в $C_n(D)$.

Таким образом, доказана

Теорема 1. Если функции $l_v \in C(L^1([a,b]))$, $m_v \in C(L^1([c,d]))$, $n_v \in C(L^1(D))$ (i, j = 1,...,n), то для любой вектор-функции $f \in C_n(D)$ система (1) линейных интегральных уравнений с частными интегралами имеет единственное решение в $C_n(D)$.

Однозначная разрешимость систем с ядрами типа потенциала и с дробными частными интегралами

Из приведенных рассуждений видно, что в условии теоремы 1 r(L) = r(M) = r(N) = r(L+M+N) = 0. Поэтому единственное решение системы (1) может быть найдено методом последовательных приближений при любом начальном приближении $x_0 \in C_n(D)$. С учетом (2) последовательные приближения определяем равенствами

$$x_{m+1} = (L+M+N)x_m + f, x_0 = f, m = 0,1,...$$
 (10)

Из (10) имеем

$$x = (R_L + R_M + R_N) f + f,$$

где

$$R_L = \sum_{m=1}^{\infty} L^m, R_M = \sum_{m=1}^{\infty} M^m, R_N = \sum_{m=1}^{\infty} (L + M + N)^m - R_L - R_M$$

Аналогично [3,4] доказывается, что операторы $R_{\scriptscriptstyle L}$, $R_{\scriptscriptstyle M}$ и $R_{\scriptscriptstyle N}$ допускают представления

$$R_L = (R_{ij}^{(L)})_{i,j=1}^n, R_M = (R_{ij}^{(M)})_{i,j=1}^n, R_N = (R_{ij}^{(N)})_{i,j=1}^n,$$

где $R_{ij}^{(L)}$ $R_{ij}^{(M)}$, $R_{ij}^{(N)}$) (i,j=1,...,n) — операторы, определяемые равенствами

$$(R_{ij}^{(L)}y)(t,s) = \int_{T_{ij}}^{t} r_{ij}^{(L)}(t,s,\tau)y(\tau,s)d\tau, (R_{ij}^{(M)}y)(t,s) = \int_{T_{ij}}^{s} r_{ij}^{(M)}(t,s,\sigma)y(t,\sigma)d\sigma,$$

$$(R_{ij}^{(N)}y)(t,s) = \iint_{t}^{t} \varphi(t,s,\tau,\sigma)y(\tau,\sigma)d\tau d\sigma + \iint_{t}^{t} \psi(t,s,\tau,\sigma)y(\tau,\sigma)d\tau d\sigma,$$

В КОТОРЫХ $y \in C(D)$, $r_{ij}^{(L)} \in C(L^1([a,b]))$, $r_{ij}^{(M)} \in C(L^1([c,d]))$, $\phi, \psi \in C(L^1(D))$.

Так как непрерывные функции $l_y \in C(L^1([a,b])), m_y \in C(L^1([c,d])), n_y \in C(L^1(D))$ (i,j=1,...,n,) то в силу теоремы 1 система уравнений (1) с непрерывными ядрами имеет единственное решение в $C_n(D)$ при любой вектор-функции $f \in C_n(D)$.

Функции

$$l_{ij}(t,s,\tau) = \frac{l_{ij}^{(0)}(t,s,\tau)}{|t-\tau|^{\alpha_{ij}}}, \quad m_{ij}(t,s,\sigma) = \frac{m_{ij}^{(0)}(t,s,\sigma)}{|s-\sigma|^{\beta_{ij}}},$$

$$n_{ij}(t, s, \tau, \sigma) = \frac{n_{ij}^{(0)}(t, s, \tau, \sigma)}{(|t - \tau|^2 + |s - \sigma|^2)^{\gamma_{ij}}}, (i, j = 1, ..., n),$$

где $t_{ij}^{(0)}, m_{ij}^{(0)}, n_{ij}^{(0)},$ — непрерывные функции, $0 < \alpha_{ij}, \beta_{ij} < 1,$ $0 < \gamma_{ij} < 2,$ назовем ядрами типа потенциала. Ядра типа потенциала $l_y \in C(L^1([a,b])), \quad m_y \in C(L^1([c,d])), \quad n_y \in C(L^1(D))$ ($i,j=1,\ldots,n$) [3,4].

Из теоремы 1 вытекает

Теорема 2. Система уравнений (1) с ядрами типа потенциала имеет единственное решение в $C_n(D)$ для любой вектор-функции $f \in C_n(D)$.

Частным случаем системы уравнений (1) является система линейных интегральных уравнений (1) с дробными частными интегралами, где

$$l_{ij}(t,s,\tau) = \frac{1}{\Gamma(\alpha_{ii})(t-\tau)^{\alpha_{ij}}}, \quad m_{ij}(t,s,\sigma) = \frac{1}{\Gamma(\alpha_{ii})(s-\sigma)^{\beta_{ij}}},$$

$$n_{ij}(t, s, \tau, \sigma) = \frac{1}{\Gamma(\alpha_{ii})((t-\tau)^2 + (s-\sigma)^2)^{\gamma_{ij}}}, (i, j = 1, \dots, n),$$

где $0 < \alpha_{ij}, \beta_{ij} < 1, \ 0 < \gamma_{ij} < 2, \ i,j = 1,...,n$, а через $\Gamma(z)$ обозначена гамма-функция.

Эти ядра удовлетворяют условию теоремы 2. Поэтому система уравнений (1) с дробными частными интегралами имеет при любой вектор-функции $f \in C_n(D)$ единственное решение в $C_n(D)$.

Благодарности. Работа поддержана Минобрнауки России (задание № 2015/351, НИР № 1815).

Список литературы

- 1. Appell J.M., Kalitvin A.S., Zabrejko P.P. Partial Integral Operators and Integro-Differential Equations. New York-Basel: Marcel Dekker, 2000. -560 p.
- 2. Brack G. Systems with substantially distributed parameters// Math. Res, 1985. V. 27. Pp. 421-424.
- 3. Калитвин А.С., Калитвин В.А. Интегральные уравнения Вольтерра и Вольтерра Фредгольма с частными интегралами. Липецк: ЛГПУ, 2006. — 177 с.
- 4. Калитвин А.С., Фролова Е.В. Линейные уравнения с частными интегралами. С-теория. Липецк: ЛГПУ, 2004. — 195 с.

References

- 1. Appell J.M., Kalitvin A.S., Zabrejko P.P. Partial Integral Operators and Integro-Differential Equations. New York-Basel: Marcel Dekker, 2000. 560 pp.
- 2. Brack G. Systems with substantially distributed parameters// Math. Res, 1985. V. 27. Pp. 421-424.
- 3. Kalitvin A.S., Kalitvin V.A. Integral equations of Volterra and Volterra-Fredholm with partial integrals. Lipetsk: LGPU, 2006. 177 pp.
- 4. Kalitvin A.S., Frolova E.V. Linear equations with partial integrals. C-theory. Lipetsk: LGPU, 2004. 195 pp.