Серия: Математика. Физика. 2014. №5(176). Вып. 34 161

ФИЗИКА

УДК 621.7:621.217

НАУЧНЫЕ ВЕДОМОСТИ

ЭНЕРГЕТИЧЕСКИЙ КРИТЕРИЙ ОЦЕНКИ НАНОРАЗМЕРНОСТИ ЧАСТИЦ

В.А. Лиопо, В.А. Струк, Е.В. Овчинников, С.В. Авдейчик, Н.В. Малай

Гродненский государственный университет, Гродно, Белоруссия

Аннотация. Проведена оценка границ применимости дифракционных методов для определения геометрических параметров (крупности) частиц. Показана возможность применения метода рентгеновской дифрактометрии для прямого и относительного расчета параметров наночастиц.

Ключевые слова: дифракционные методы, наночастицы, геометрические параметры.

Введение. Известно, что при анализе поликристаллов дифракционными методами существенное влияние на экспериментальные данные оказывают степень дисперсности частиц и температура [1,2]. Поэтому используя подходы, основанные на формуле Шерера и факторе Дебая-Валлера, можно для частиц одинаковых размеров установить связь температурного и геометрического параметров. Это открывает новые возможности в энергетической оценке наносостояния поликристаллических частиц на базе сравнительно простых экспериментальных данных. Цель настоящей работы состоит в установлении температурного эквивалента геометрических параметров наноразмерных квазикристаллов.

Результаты и обсуждение. При описании рассеяния рентгеновского излучения на объектах с произвольной структурой используют следующую расчетную формулу [1,2]

$$A(S) = \sum_{j=1}^{N} f_j(S) \exp(2\pi i \vec{S} \vec{r}_j) , \qquad (1)$$

где $\vec{r_j}$ – радиус-вектор *j*-того атома относительно выбранного начала координат, f(S) – атомная амплитуда рассеяния *j*-того атома; \vec{S} — вектор обратного пространства такой, что $|\vec{S}| = 2 \sin v/\lambda$, v – частота фонона, λ – длина волны рентгеновского излучения, ϑ – брэговский угол $\vartheta = 0, 5\varphi$, где φ – угол между падающим и рассеянным лучами (угол рассеяния или угол дифракции), A(S) – амплитуда рассеянного луча, N – число атомов в рассматриваемом объеме. Величина f(S) определяется как

$$f(S) = \int_{V_{am}} \rho\left(\vec{R}\right) dV, \qquad (2)$$

где $\rho\left(\vec{R}\right)$ – непрерывная функция электронной плотности, определяемая на основе квантовомеханических представлений о строении электронных атомных орбиталей. Интегрирование в (2) проводится но объему атома V_{am} . В общем случае, когда атом характеризуется произвольной симметрией, то f(S) будет зависеть от взаимоориентации падающего \vec{K}_0 и рассеянного \vec{K} лучей $\left(\left|\vec{K}^0\right| = \left|\vec{K}\right| = 1\right)$. Следовательно, в общем случае, f(S) — величина тензорная,

$$f_{\alpha\beta}\left(S\right) = fK_{\alpha}^{0}K_{\beta}\,,\tag{3}$$

162 НАУЧНЫЕ ВЕДОМОСТИ 🍂

где $K_{\alpha}^{0} = k_{x}^{0}, k_{y}^{0}, k_{z}^{0}, K_{\beta} = k_{x}, k_{y}, k_{z}$, то есть определяется проекциями падающего и рассеянного лучей на оси координат (x, y, z). Однако, отличие атомного распределения электронной плотности от сферы практически отсутствует, и, кроме того, картина рассеяния усредняется по множеству атомов. Поэтому в таблицах приведено лишь одно значение для модуля $|\vec{S}| = 2 \sin v / \lambda$.

Если рассматривается рассеяние рентгеновского излучения на кристалле, то рассеянные лучи имеют ненулевую интенсивность только при выполнении условия Вульфа-Брэгга. Для кристалла значения \vec{S} и \vec{r} в формуле (1) равны

$$\vec{S} \Rightarrow \vec{r}^* = \vec{a}^* \cdot h + \vec{b}^* \cdot k + \vec{c}^* \cdot l = \sum_{m=1}^3 \vec{a}_m^* h_m ,$$

$$\vec{r} = \vec{a}x + \vec{b}y + \vec{c}z = \sum_n \vec{a}_n x_n ,$$
(4)

где $\vec{a}_1^* = \vec{a}^*, \vec{a}_2^* = \vec{b}^*, \vec{a}_3^* = \vec{c}^*; \vec{a}^*, \vec{b}^*, \vec{c}^*$ – базис ячейки обратной решетки кристалла; $\vec{a}_1 = \vec{a}, \vec{a}_2 = \vec{b}, \vec{a}_3 = \vec{c}; \vec{a}, \vec{b}, \vec{c}$ – репер Бравэ; h, k, l – кристаллографические индексы плоскости (индексы Миллера), x, y, x – кристаллографические координаты; \vec{r}^* – вектор обратной решетки.

При расчете скалярного произведения $\vec{S}\vec{r}_{j}$ в формуле (1) необходимо учесть, что

$$\vec{a}_m^* \vec{a}_n = \delta_{mn} \,. \tag{5}$$

Следовательно, для кристаллов уравнение (1) с учетом условий (4) и (5) примет вид:

$$A(S) \Rightarrow F(h,k,l) = \sum_{j=1}^{N} f_j(x,y,z) \cdot \exp 2\pi i \left(hx_j + ky_j + lz_j\right), \qquad (6)$$

где F(h,k,l) – структурная амплитуда рефлекса от плоскости (hkl), определяемая как амплитуда рефлекса, рассеянного одной ячейки кристалла, выраженная в электронных единицах, N – число атомов в ячейке кристалла.

В реальных кристаллах атомы колеблются вокруг своих равновесных положений. Причем период этих колебаний несоизмеримо меньше времени эксперимента, то есть рассеяние наблюдается для объемов, в которых колеблется атом. Следовательно, объем атома, как бы, увеличивается, что уменьшает значение электронной плотности в отдельных точках и приводит к уменьшению величины структурной амплитуды. Очевидно, что это ослабление связано с повышением температуры кристалла.

Не нарушая общности подхода, рассмотрим вначале кристалл с P-ячейкой Бравэ. Каждый атом вследствие теплового движения смещается на величину $\Delta \vec{r}$ относительно идеального положения. Так как тепловые колебания не согласованы друг с другом, а рассматривается однородный кристалл с изодесмической межатомной связью, то среднее значение смещения атома, во-первых, не зависит от направления, т.е. $|\Delta \vec{r}|$ описывается сферической симметрией, а, во-вторых, среднее смещение всех атомов за время эксперимента одинаково. Так как в идеальном случае атом находится в начале координат, то в какой-то момент времени структурная амплитуда для P-той ячейки равна

$$F_{j}(h,k,l) = \sum_{j} f(S) \exp\left(2\pi i \vec{S} \Delta \vec{r}_{j}\right) \,. \tag{7}$$

НАУЧНЫЕ ВЕДОМОСТИ 🎆 Серия: Математика. Физ

Весь кристалл будет характеризоваться по всем ячейкам усредненной структурной амплитудой, то есть для кристалла

$$F(h,k,l) = \langle F_j(h,k,l) \rangle = \sum_j f(S) \left\langle \exp\left(2\pi i \vec{S} \Delta \vec{r}\right) \right\rangle, \tag{8}$$

индекс j отсутствует, так как $\Delta \vec{r}$ одинаково для всех атомов. Так как $\exp Q \quad \left(Q = 2\pi \vec{S} \Delta \vec{r}\right)$ при разложении в ряд имеет вид:

$$\exp Q = \sum_{n=0}^{\infty} \frac{Q^n}{n!} , \qquad (9)$$

а величина Δx и, следовательно, Q достаточно мала, то можно ограничиться двумя членами разложения в ряд. Тогда

$$\langle \exp(2\pi i S\Delta r) \rangle = 1 + 2\pi i \vec{S} \langle \Delta \vec{r} \rangle - 2\pi^2 S^2 \langle \Delta r \rangle^2 .$$
⁽¹⁰⁾

В рассматриваемой модели $\langle \Delta x \rangle = 0$. Это значит, что

$$\left\langle \exp\left(2\pi i \vec{S} \Delta \vec{r}\right) \right\rangle = 1 - 2\rho^2 S^2 \left\langle \Delta r \right\rangle^2 \,.$$
 (11)

Так как

$$\Delta r^2 = \Delta x^2 + \Delta y^2 + \Delta x z^2 = 3 \Delta x^2 \,,$$

то, как следует из [1]

$$F_c(h,k,l) = f\left(1 - \frac{2}{3}\pi^2 S^2 \delta_x^2\right),$$
(12)

где δ_x – среднее квадратичное смещение атома вдоль координатной оси (y или z).

Обычно структурную амплитуду F_c записывают в экспоненциальной форме. С учетом малости δ_x получим [3, 4]:

$$\langle F(h,k,l)\rangle = f \cdot \exp\left(-M\right),$$
(13)

где

$$M = \frac{2\pi^2 S^2}{3} \cdot \delta_x^2 = \frac{8\pi^2 \sin^2 \vartheta}{\lambda} \frac{\delta_x^2}{3} . \tag{14}$$

Следовательно, интенсивность рефлекса «нагретого» кристалла уменьшается по сравнению с интенсивностью идеального (холодного, с «неподвижными» атомами) кристалла в D раз, где величина

$$D = \exp\left(-2M\right) \tag{15}$$

называется фактором Дебая-Валлера (P.Debye, I.Waller).

Если анализируется многоэлементный кристалл с точечной группой, отличной от P, то есть (I, F, (BC)), то необходимо рассмотреть вклад от теплового движения каждого атома в уменьшение интенсивности рефлексов. В этом случае δ_x^2 , δ_y^2 , δ_z^2 будут определять среднее квадратичное отклонение каждого атома вдоль осей x, y, z, соответственно и, если используется усреднение но всем атомам, то и δ_i у них также будут одинаковыми. В этом случае фактор Дебая-Вэллера описывается выражением (14) с учетом (15).

164 НАУЧНЫЕ ВЕДОМОСТИ 🚿

Серия: Математика. Физика. 2014. №5(176). Вып. 34

Для расчета структурной амплитуды F в формулу (8) следует ввести значение фактора Дебая-Валлера, тогда среднее значение $\langle F \rangle$ примет вид:

$$\langle F \rangle = \sum f_j \exp\left(-2\pi^2 S^2 \frac{\delta_j^2}{3}\right) \cdot \exp\left(-2\pi i \vec{S} \vec{r}_j\right)$$
(16)

или

$$\langle F \rangle = \sum f_j \exp\left(-M\right) \cdot \exp\left(-2\pi i \vec{S} \vec{r}_j\right),$$
(17)

где \vec{S} – вектор обратной решетки, а $M = 2\pi^2 S^2 \delta^2/3$, δ^2 – усредненный квадрат отклонений атомов от положения равновесия, то есть от идеальной модели. Так как период тепловых колебаний много меньше любого дифракционного эксперимента, то становится понятным, почему необходимо говорить о среднем значении структурной амплитуды (см (16) и (17)).

Так как

$$S = \frac{2\sin\vartheta}{\lambda} = \frac{1}{d} , \qquad (18)$$

то

$$M = \frac{\pi^2 \cdot 8\sin^2 \vartheta}{\lambda^2} \,\delta^2 = \frac{2\pi^2}{3} \cdot \left(\frac{\delta}{d}\right)^2. \tag{19}$$

Следовательно, уменьшение интенсивности рефлекса в следствии тепловых колебаний атомов усиливается с увеличением угла рассеяния.

В соответствии с теорией теплоемкости, разработанной Дебаем [1, 5], тепловые колебания атомов рассматриваются как результат суперпозиции распространяющихся в кристалле волн механических возбуждений, кванты которых, называемые фононами, характеризуются распределением энергии

$$E(v) = hv\left(\frac{1}{2} + \frac{1}{\exp\left(\frac{hv}{kT}\right) - 1}\right),\tag{20}$$

где h, k – постоянные Планка и Больцмана соответственно, T – температура. При = 0К энергия остаточных колебаний равна hv/2.

При возрастании энергия растет. Но если $kT \gg hv$, то есть $hv/kT \ll 1$, то, разложив

$$\exp\frac{hv}{kT} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{hv}{kT}\right)^n,$$

и ограничившись слагаемыми вплоть до второго включительно с учетом, что энергия нулевых (остаточных) колебаний является точкой отсчета значений энергии, получим E = kT. Температура, выше которой энергия зависит от температуры линейно, то есть теплоемкость $C_v = \text{const.}$ называется характеристической или дебаевской температурой θ .

Среднее значение квадрата отклонения атома от положения равновесия в соответствии с температурой Дебая [1, 5] равно

$$\delta^2 = \frac{9h^2}{4\pi^2 m k \theta} \left[\frac{1}{4} + \frac{T}{\theta} f\left(\frac{\theta}{T}\right) \right] = \frac{9h^2 T}{4\pi^2 m k \theta^2} \Phi\left(\frac{\theta}{T}\right) \,, \tag{21}$$

где

$$\Phi\left(\frac{\theta}{T}\right) = \frac{T}{\theta} \int_0^{\theta/T} \frac{y dy}{\exp y - 1} .$$
(22)

НАУЧНЫЕ ВЕДОМОСТИ 🥢 Серия: Математика. Физика. 2014. №5(176). Вып. 34 165

График функции $\Phi(\theta/T)$ в (22) имеет вид, приведенный на рис. 1. Видно, что при $T/\theta > 0, 7$ эта функция становится практически линейной. Отклонение от нелинейности не превышает 3% [1, 3, 4]. Следовательно, учитывая условия (18), (21) и рис. 1, значения величины можно определить из следующего уравнения:

Рис. 1. График функции $\Phi(\theta/T)$ (21, 22).

Следовательно, открывается возможность связать термические эффекты в дифракции с величиной наноразмерности, определяемой условием [6],

$$L_0 = \frac{\sqrt{1,5}h}{\sqrt{km}} \left(\theta_D\right)^{-1/2}.$$
 (24)

$$M = L_o^2 \cdot \frac{T}{\theta} \cdot \left(\frac{2\pi \sin \theta}{\lambda}\right)^2 = L_0^2 \cdot \frac{T}{\theta} \cdot \left(\frac{\pi}{d}\right)^2.$$
(25)

Интенсивность дифракционного максимума в общем случае определяется выражением [1,2]

$$I(h,k,l) = |F(h,k,l)|^{2} \cdot e^{-2M} (PLG) \cdot A \cdot p \cdot K, \qquad (26)$$

где $|F(h,k,l)|^2$ – структурный фактор для плоскости (hkl); (PLG) – фактор пэ-эль-же, объединяющий факторы: поляризации – p, Лоренца – L, геометрический – G, A – фактор поглощения, p – фактор повторяемости, K – фактор, включающий ряд экспериментальных условий, зависящих от техники эксперимента и характеристик образца. Фактор K от угла дифракции зависит в малой степени, его вариации соизмеримы с погрешностью измерения интенсивности. Остальные факторы либо табулированы, либо могут рассчитываться аналитически [6]. Поэтому интенсивность рефлекса обычно выражают уравнением:

$$I\left(h,k,l\right) = C \cdot \left|F\left(h,k,l\right)\right|^{2}.$$
(27)

Коэффициент, включающий весь набор факторов, часто рассматривают как нормировочный коэффициент, определив который можно прийти к интенсивности рассеяния как квадрату

166 НАУЧНЫЕ ВЕДОМОСТИ 🌄

структурной амплитуды, то есть как структурный фактор, который определяется условием (8).

На интенсивность рентгеновского рефлекса влияет температура образца Т, причем

$$I_T = I_0 \cdot \exp\left(-2M\right),\tag{28}$$

где

$$I_0 = \sum f_j \exp\left(2\pi i \vec{S} \vec{r_j}\right). \tag{29}$$

Величину I_T определяют экспериментально с учетом всей процедуры нормировки [1, 2, 7]. Следовательно

$$\exp\left(-2M\right) = \frac{I_0}{I_T} \ . \tag{30}$$

«Потерянная» вследствие уменьшения интенсивности рефлекса энергия излучения распределяется в фоне [3].

Изменение высоты рефлекса, то есть изменение максимальной интенсивности, определяемой условием (30) может происходить вследствие диспергированности поликристаллического образца. Уменьшение высоты рефлекса приводит к увеличению его полуширины [1, 2]. При этом его интенсивность равна величине I_0 (см. (3)), но

$$I_0 = I_L \left(\Delta 2\vartheta \right), \tag{31}$$

здесь I_L – максимальная высота дифракционного максимума от поликристалла с крупностью частиц L; $(\Delta 2\vartheta)$ – разность полуширины рефлексов образца с «крупными», то есть с не влияющими на профиль рефлекса частицами – кристаллитами, и с кристаллитами с размером L.

Если $I_0/I_T = I_0/I_L$, то уменьшение интенсивности рефлекса при нагревании станет одинаковым с уменьшением высоты максимума рефлекса. Следовательно, с учетом (31) и (31)

$$(\Delta 2\vartheta) = \exp\left(-2M\right). \tag{32}$$

Величина ($\Delta 2\vartheta$) определяется формулой Шеррера

$$\Delta 2\vartheta = \frac{\lambda}{L \cdot \cos \vartheta}.\tag{33}$$

Значение определено условием (6), следовательно

$$L = \frac{C}{\Delta(2\vartheta)} \cdot \frac{2d}{\sqrt{4d^2 - \chi^2}}$$
(34)

$$\frac{\lambda}{L\cos\vartheta} = \exp\left[2L_0^2\frac{T}{\theta}\left(\frac{\pi}{d}\right)^2\right] = \exp AT,\tag{35}$$

где

$$A = 2L_0^2 \frac{\pi^2}{d^2\theta}.\tag{36}$$

Из (7-9) следует, что

$$L = \exp\left(A \cdot T\right) \cdot \frac{\lambda}{\cos\vartheta}.$$
(37)

НАУЧНЫЕ ВЕЛОМОСТИ

Параметры, входящие в формулу (9), определяют свойства вещества, но для приблизительной оценки связи между значениями $\Delta L/L$ и температурным (энергетическим) изменением состояния частицы можно принять следующее усредненные значения: $L \approx 15$ нм, $d(\vartheta = 30^\circ) =$ 0, 15 нм, $\theta \approx 500$ K, $\lambda = 0, 15$ нм, то есть из (8) следует $A \approx 400$.

$$\ln L = \ln \frac{\lambda}{\cos \vartheta} - AT.$$
(38)

Отсюда

$$\frac{\delta L}{L} = -A\delta T \approx -400\delta T \,. \tag{39}$$

Приведенный пример расчета показывает, что для наночастицы вследствие повышения роли поверхностной энергии по сравнению с массивным образцом и при учете влияния на динамических процессов размерного фактора установлена связь между ее изменениями размеров и энергией, которую можно оценить по температурной шкале. Следовательно, при уменьшении размера образца на 1% произойдет (при предельных значениях параметров), «увеличение температуры» на величину $\delta T = 2, 5 \cdot 10^{-5} \text{K}$, что эквивалентно уменьшению энергии на величину $\delta E = K (\delta T) \approx 3,5 \cdot 10^{-28}$ Дж. Изменение энергетических параметров наночастиц но сравнению с их общими аналогами физически обосновано тем, что для частиц спектр колебаний фононов «обрезан» со стороны низких частот, так как длина волны фононных колебаний λ ограничена размерами частицы L ($\lambda \leq 2L$).

Заключение. Выполненный теоретический анализ влияния на профиль и высоту рентгеновского рефлекса температурного и размерного факторов привел к гипотезе о возможности определения энергетического эквивалента изменения размеров наночастиц, который оценивается по температурной шкале. Связь между размерами частиц кристалла и их эффективной температурой отсутствует для массивных образцов и должна учитываться для наносостояния. В качестве основного параметра расчета взята характеристическая (дебаевская) температура.

Литература

- 1. Глинье А. Рентгенография кристаллов / М.: Гос. изд. физ-мат. лит., 1961. 604 с.
- 2. Лионо В.А., Война В.В. Рентгеновская дифрактометрия / Гродно: Изд. ГрГУ, 2003. -
- 172 с. 3. Кривоглаз М.А. Теория рассеяния рентгеновских лучей и тепловых нейронов реальными кристаллами / М.: Наука. 1967. – 336 с.
- 4. Жданова Г.С., Илюшин А.С., Никитина С.В. Дифракционный и резонансный анализ / М.: Наука, 1980. – 254 с.
- 5. Китель Ч. Введение в физику твердого тела / М.: Гос. изд. физ.-мат. лит., 1963. 696 с.
- 6. Лионо В.А. Геометрические параметры наночастиц // Низкоразмерные системы 2 / Гродно: Изд. ГрГУ, 2003. – Вып.3. – С.4-11.
- 7. Васильев Е.К. Рентгенофазовый анализ / Новосибирск.: Наука СОАН, 1986. 196 с.

ENERGY CRITERIUM OF THE ESTIMATE OF NANOPARTICLE SIZES V.A. Liopo, V.A. Struk, E.V. Ovchinnikov, S.V. Avdeychik, N.V. Malay

Grodno State University, Grodno, Belorus

Abstract. It is done the estimation of the domain where diffraction methods may be applied for the determination of nanoparticle geometric parameters (their sizes). The possibility of application of the X-ray diffraction method for the straight and relative calculation of nanoparticle parameters is shown.

Key words: diffraction methods, nanoparticles, geometric parameters.