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Abstract. A  cloud of aerosol particles sediments in air containing reactants. On the basis of 
a macroscopic chemical and mass transfer model founded on the kinetic theory of heterogeneous 
reactions we analyzed the spreading of chemical reaction through the cloud of aerosol particles. In 
this paper we considered a binary reaction with one volatile and one non-volatile product at the 
surface of aerosol particles. If the finite saturation capacity with respect to non-volatile reaction 
product accumulated in the droplet is taken into account, the eventual deceleration of the reaction 
results in the propagation of a saturation front. The spatial distributions of concentrations and their 
evolution in time are determined, as well as the velocity of saturation front.
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1. Introduction. Heterogeneous chemical reactions are known to play an important 
role in a wide class of geophysical phenomena, including atmospheric processes |1|, This was 
first recognized in the late 1970s for the production of H2S 0 4 and H X 03 in acid rain |2|, 
Their critical role for the depletion of stratospheric 0 3 was established in the late 1980s 
|3|, W hile the “homogeneous" chemistry of most of the processes is quite well understood, 
their «heterogeneous» counterparts still remain the subject of considerable debate (see, e.g., 
|3|, pp. 216-229). The term «heterogeneous» is used both for true heterogeneous reactions 
taking place at the surface of a particle or a liquid droplet and for the reactions that occur 
homogeneously in the dispersed condensed phase |1|, In the present work we consider the 
former type.

The theory of heterogeneous reactions of gas with individual liquid droplets is considered 
in many papers |4-6| and books |7| and |8|, This overall process includes several steps: mass 
transfer of reacting species in gaseous phase, adsorption or/and mass transport across the 
aerosol surface, chemical reaction at the surface, mass transport and the chemical reaction 
within the liquid droplets, possible evolution of volatile product species into the gas phase, 
and subsequent gas-phase mass transport of the evolved gaseous product. Some of the steps 
may become rate-lim iting. In order to evaluate the rate of the overall process one needs to 
identify such a step (or steps) and to evaluate the rate of such step(s). If the mass-transport 
processes are essentially faster than the chemical reactions, then the rate of the overall process 
is governed essentially by chemical kinetics. In the opposite lim it, for very fast reactions, the 
overall process is controlled by the rate of gas-phase mass transport |4|,
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Investigations in atmospheric physics and chemistry are often aimed at understanding 
and predicting space-time distributions of reactants and reaction products at macroscopic 
scales (at the scales much larger then the size of aerosol particles and their mutual distances) 
which is important for predicting air pollution at regional and global scales as well as 
for climatology. The importance of heterogeneous atmospheric reaction is now commonly 
recognized (see e.g. |9| and |8|), The first generation of global multiphase atmospheric 
models were termed equilibrium models |10,11|, However it was soon recognized 111,121 that 
no such equilibrium is ever attained. So the problem of treating the time-dependent mass 
exchange, uptake and production due to chemical reaction arises. The kinetic expressions, 
once obtained, usually are incorporated into elaborate global models, which include tens 
of reactants and hundreds of reactions. However, the fully nonlinear description of the 
chemical kinetics is computationally demanding and often introduces instabilities. Therefore, 
the treatment of heterogeneous reactions is typ ically simplified by the assumption of excess 
of one of the reactants |2,9,13 ,14|,

In the present paper we apply a macroscopic approach proposed in the chemical reactor 
engineering context by 115—19| to describe the spatial-tem poral distribution of reactants and 
the product for fast binary heterogeneous reactions in a cloud of liquid droplets. The theory 
has been experimentally validated in two phase liquid-liquid chemical reactors by |20,21|, The 
treatment here takes into account a second order fast irreversible reaction at the surface of 
the droplets, overall mass transfer due to bulk convection as well as due to turbulent diffusion. 
The heterogeneous character of the chemical reaction is taken into account by distinguishing 
the mean reactant concentration in the bulk fluid and the mean local concentrations at the 
surfaces of particles as macroscopic variables of the model. The resulting model, which is 
described in the next section, is non-linear, yet it adm its an analysis by approximation theory 
in closed form. We show below for an example of a single binary heterogeneous reaction, that 
the reactant which is in a global excess still may be in local (at the reactive surface) deficit in 
some space-time domains if the local mass transfer between particles and gas phase is taken 
into account properly. If the finite capacity with respect to non-volatile reaction product 
accumulated in the droplet is taken into account, the eventual deceleration of the reaction 
results in the spreading of a saturation front. This qualitative effect is targeted in the present 
communication. The spatial distributions and their evolution in time of concentrations are 
determined, as well as the velocity of saturation front. Contrary to the common practice of 
dealing with a binary heterogeneous reaction, we do not a p r i o r i  assume local excess of one 
of the reactants. Our analysis reveals coexistence of a spatial domain where one reactant is 
in local excess with another domain where the other reactant is in excess and the first one 
is depleted.

We applied our theory to a particular type of reaction where gaseous reactants are 
distributed in the air, but one of the reaction products is gaseous and the other one is 
non-volatile. The latter product is soluble and accumulates in the droplets. Reactions of 
this kind play an important role in the chain of reactions of ozone depletion in polar 
stratospheric clouds. As an example we considered the binary chemical reaction of chlorine 
nitrate C 10X 02 and HC1 yielding the gaseous product Cl2, and the non- volatile product 
H X 03, These reactions are well known to be slow in the gaseous phase even at room
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temperature; they become feasible only as a result of hydration on the surface of liquid 
droplets and the formation of ionic intermediates |3|, The particles are assumed to be of the 
kind normally referred to as polar stratospheric clouds type lb, that is supercooled ternary 
H2SO4/HXO3/H2O solutions. The non volatile product H X 03 is taken up by droplets which 
finally turn into quasi-binary H X 03/H20  droplets with close to 1:3 stoichiometry. This 
reaction is considered in the literature to be practically irreversible under stratospheric 
conditions |3|,

The paper is organized as follows. In the section 1 we describe the macroscopic model 
that is applied in the section 3 to study macroscopic dynamics of spatial distributions of 
concentrations of the reactants and the reaction products when a cloud of liquid droplets 
sediments in the stratosphere. It is assumed that the binary reaction takes place on the 
surface of aerosol particles. If the finite solubility capacity of droplets is taken into account, 
the theory predicts formation of a stationary advancing reaction saturation front. In the 
section 4 we applied the theoretical results to the above mentioned stratospheric reaction 
and give numerical estimates for this case. We discuss in the same section the results obtained 
and the accuracy of approximations. The details of calculations are presented in Appendices 
A, B, and C.

2. The model. We consider an ensemble of identical droplets sedimenting in air with 
constant velocity determined by the balance of gravitational force and Stokes friction. Pre
mixed reactants A i and A2, with concentrations c.\ and c2 react on the surface of the liquid 
droplets, a single gaseous product A3 with a concentration c3 is injected to the air. Since 
the reaction is fast at the surface of aerosols and is slow in the bulk air, the heterogeneous 
nature of the reaction should be taken into account and will effect macroscopic dynamics.

At the scale of a single particle both molecular diffusion and convection contribute to 
the 3-dimensional mass transport between the local gas and the droplet, however, for the 
particular problem addressed in the present paper, mass transport at the particle scale is 
approximated by molecular diffusion. Thus the flux densities to/from the surface j\^ are 
driven by the difference between bulk d  and surface c\ concentrations

j f  = Ki ( c i  -  , i = 1, 2, 3, (1)

where are the mass transfer coefficients. The bulk concentrations c* are defined as con
centrations of reagents and reaction product far away from the aerosol particles (that is at 
distances much larger than the particle size) and the surface concentrations are defined 
as values of the concentrations at the surface of aerosol particles. The difference between bulk 
and surface concentrations is maintained by chemical reaction at the surface. Concentrations 
Ci and are measured in mole fractions and therefore are non-dimensional.

To determine the fluxes of reactants to the particles, it is necessary to evaluate, in the 
vicinity of each particle, the distribution of concentrations, which approaches concentration

at the surface and c* far from the particle. Implicit in the definition of the mass transfer 
coefficients Ki, both molecular diffusion and convection contribute to the mass transport 
between the local gas and the droplets, which move relative to the surrounding gas. For 
the particular example which is considered in the present paper, Stokes sedimentation
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at low Reynolds and Peclet numbers of the small particles is assumed (see section 4). 
Equation (1) follows from the solution of the steady diffusion problem. The overall 
large-scale gradient introduces slight anisotropy, however for a purely diffusion problem the 
corresponding corrections will be of the order of the ratio: (particle size)/(scale of the overall 
gradients). To apply the model to larger particles or faster flow, known correlations for may 
be used |6,6,7| and |8 |, We consider a dilute suspension of droplets following the estim ate of 
the mean ratio of diameter to inter-drop spacing in clouds less than 10-2 |4|, Consequently, 
the local concentration distributions around a particle is unaffected by the presence of other 
particles.

For binary surface reaction of first order with respect to each reagent, the reaction rate 
R  is given by the kinetic mass action law:

R = k ( c [ 8)d28) -  ^ 4 S))  > (2)

where к is the reaction rate coefficient and К  is the equilibrium constant. The latter equation 
im plicitly assumes that the adsorption/desorption kinetics for reagents and product is fast 
and that it is not rate-lim iting. Equation (2) also implies that the relative surface coverage 
is low. Discussion of the rate (2) is given in the Appendix A). For further discussion see 
also |19|,

The rate of generation of the product at the surface (per unit of surface, per unit of time) 
equates to the absolute value of the flux density of the volatile product from the surface in 
a pseudo-steadv-state. Due to stoiehiometrv. the flux densitv of the reagents to the surface
• -(s) .(s) “ .(s) D
is я  = A  = = R

K i  ( c i  -  =  K2 ( c 2 -  с 2л))  =  к 3 ( с 3л) -  c 3)  =  R . (3 )

The «microphysics» of the model is contained in this equation. In the present communication 
we assume the reaction to be fast, i.e. the external mass transfer in the gaseous phase to be 
rate-lim iting, see |4,5| and |6|, This means that the ratio of the mass transfer coefficients к  
to surface reaction rate constant к  is large n/k 1 (since concentrations d  are measured in 
dimensionless units, к  and к for the surface reaction are measured in the same units).

Our goal at this stage is to elaborate macroscopic equations to describe dynamics of 
concentrations at large scales. Therefore, we need to average out small scale phenomena at 
the single particle scale, but to take into account the mean effect of heterogeneous reaction 
to large scale dynamics. Thus, we need to introduce mean variables, averaged over an 
ensemble of particles. At this point we introduce the concept of lo ca l  c o n c en t r a t i o n .  The 
local concentrations d  of species result from averaging of surface concentration over all 
condensed phase particles of the same size in a physically small volume, positioned at a point 
with coordinates (x, y ,  z), at the time t. that still contains a big number of aerosol particles. 
A size of this volume is supposed to be smaller than the typical scale of bulk gradients (cloud 
scale), but much larger than the droplet size. Thus, for a macroscopically nonuniform system, 
the local concentrations d i ( t , x , y , z )  are macroscopic variables, depending on macroscopic 
time and on large scale coordinates. We consider here an ensemble of identical particles,
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that is monodisperse aerosols. In this ease, the averaging procedure is simplified and one can 
associate the local concentrations c* with mean values of surface concentrations с-л). That 
allows the next step -  to average out surface concentrations in the mass action law (3) and 
to arrive at equations for macroscopic variables c* and c* only:

Ki (ci -  Cl) = n -2 (c2 -  c2) = k3 (c3 -  c3) = к . (4)

Xow we turn to the macrophysics of the problem. At large scales (a cloud scale) the dynamics 
of bulk concentrations c* is governed by three mass-conservation equations that take the form 
of the advection-diffusion equations with the source/sink term Ф* in the right-hand side

f)C'
- ^  + \ ] - ^ с г = 0 ^ 2с г - Ф г , i = 1 , 2 , 3 ,  (5)

where D is the dispersion coefficient and U  = const is the velocity of superficial uniform flow 
in the frame of reference attached to the sedimenting droplets. At the cloud scale, that is at 
the scale which is much larger than the size of a single droplet, dispersion is due to turbulent 
mixing, so D may be identified as the turbulent diffusion coefficient and Фь Ф2 are sinks 
and Ф3 is a source due to chemical reaction. The difference in scales allows us to treat the 
mesoscale (scale of a single particle) transport by introducing macroscopic distributed sink 
and source terms Ф* in (5), phenomenologically averaging out mesoscale phenomena such as 
local mass transfer to and from the droplet surfaces. Using c* and c* introduced above, we 
write the sink and source terms in the conventional way

Фi = S  Ki (c.i -  q ) , i = 1, 2 , 3, (6)

where S  is the reactive surface per unit volume.
For uniform overall flow the macroscopic transport is essentially one dimensional. Thus, 

bulk concentrations Ci(t, л) and the local concentrations 5j(i, л) depend on time and a single 
macroscopic coordinate л. This, particularly, is a reasonable approximation for sedimenting 
particles.

Substituting equations for the Ф* (6) into (5) and taking into account the effective one- 
dimensionality of the macroscopic fluxes one arrives at

fjc- 3 c  • ci2 с  ■
^  + 1l ^  = D ^ - S  к г ( с , ~ с г) , i = 1, 2, 3, (7)

where IX = |TJ| and л is a macroscopic coordinate in the direction of the uniform flow U.
For further analysis it is convenient to put the equations in non-dimensional form. 

All concentrations are measured in mole fractions and are already non-dimensional. The 
characteristic time scale r  for the local mass transfer is r  = [S' k2]_1. The characteristic 
length of turbulent diffusion during the time r  is / = \f~Dr = \/D/S k2. The intrinsic scale 
I appears in the problem due to distinction between the bulk and local concentrations. The 
dimensionless time and coordinate are t' = t /т; x = z/l respectively. We define also the 
dimensionless parameters ?/ = k/n2; v\ = /k2; v2 = 1; щ  = к -л/к2; and p  = Ml/D. The



latter combination looks like a Peelet number; however, it is not a usual Peelet number, 
because D is not a molecular, but eddy diffusivity and the corresponding lengthscale / is 
not a geometrical size, but the intrinsic length characterizing the heterogeneous reaction. 
Finally, in the non-dimensional form, the basic system of equations reads:

172 НАУЧНЫЕ ВЕДОМОСТИ Щ Ж  Серия: Математика. Физика. 2014. №12(183). Вып. 35

This closed system (8)-(11) is strongly nonlinear due to the nonlinear coupling between 
the bulk and local concentrations introduced by the equation (11). The equations (8) - ( l l ) ,  
with suitable in itia l and boundary conditions, are a differential algebraic system (DAE), 
with three partia l differential equation (PDE) constraints and three nonlinear algebraic 
constraints. DAEs are notoriously stiff, requiring careful numerical integration schemes to 
avoid instability. The model in this form in the context of heterogeneous chemical reactors 
theory was introduced and analyzed in |15-19|,

In present communication we consider a particular type of heterogeneous reaction of two 
gaseous reactants with two reaction products, one of them is gaseous and the other one is 
non-volatile. The latter product is soluble and accumulates in the droplets. It is reasonable to 
assume that the concentrations of the non-volatile product at the surface of the droplet and 
inside the droplet rapidly reach the thermodynamic equilibrium described, e.g., by Henry’s 
law. When a non-volatile product of reaction accumulates within the droplet, the ratio of 
reverse to forward reaction rates is increased. Therefore, due to shift of thermodynamic 
equilibrium with respect to solubility, the forward reaction eventually stops. Instead of 
following a gradual change of the equilibrium, we introduce the assumption of a finite capacity 
of droplets, due to solubility lim itations, which yields a physically sim ilar effect. Supposing 
that a cloud of droplets has a finite capacity for the accumulated species per unit volume 
Q = (number of molecules, stored in a droplet) x (number of droplets per unit volume), 
we assume quenching of the reaction when the actual amount of non-volatile product in the 
droplets reaches this value (see Fig. 1). Due to stoichiometry, the amount of non-volatile 
product is proportional to the consumed amount of each reactant. M athem atically, the finite 
solubility assumption results in the imposition of an additional integral condition:

dc\ d'2c\ dc.\
(8)

dt ! d x 2 11 dx (9)

(10 )

V\ (ci -  Cl) =  (c2 -  c2) =  V-i (c3 -  C3 ) =  n CiC2- —c3 (11)

(12 )

where the integral is taken over time to saturation and N is the number of molecules per 
unit volume in the atmosphere. Despite the «kinematic appearance» of this constraint, it 
originates from thermodynamic equilibrium.
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Fig. 1. Schematic presentation of the model: a uniform air flow with velocity U through a cloud 
of liquid particles. The downwards gradually increasing grayscale intensity corresponds to increasing 
content of non-volatile product. Zf is the far boundary of the reaction domain, where reaction starts; 
z = Vt is the position of saturation front, where the reaction ceases.

Additionally, assuming that the macroscopic scale L over which concentration changes 
is much less than the extent of the spatial domain, we analyze our model over an infinite 
domain.

3. Propagating saturation  front. In this section we study the propagation of the 
reaction front through a cloud of aerosol droplets. When the air flow, containing premixed 
reactants A i and A2, enters the cloud, the reaction starts at the surface of the droplets. 
After a certain time, due to the finite capacity of droplets, the reaction ceases. Therefore, 
one can subdivide the whole domain into three regions: one where reaction has not yet 
started, the reaction zone, and the region where particles are already saturated with a non
volatile product and thus there is no reaction despite of the presence of both reactants in the 
surrounding air. Introducing the non-dimensional velocity v  of the saturation front, we make 
a coordinate transformation to the frame moving with this front (see Fig. 1). The velocity 
V in Fig. 1 is related to non-dimensional velocity v  by V = v l /т = v\/DSk2- Defining the 
new coordinate by £ = x — vt', and looking for stationary solutions in the moving frame, 
equations (8)- (10) for the reaction zone take the form

Fp‘c  3c-
= Vi ( d  -  Ci) ; i = 1, 2, 3 , (13)

where s  = p  — v  and due to our normalization u2 = 1. It is worth noticing that a stationary 
solution exists only in this reference frame; both in the frame coupled with the particles and 
in the frame moving with the overall flow, the process is essentially non-stationary.

In the domains without reaction the governing equations are

Be-
= i = 1, 2, 3 . (14)

The above equations should be supplemented by boundary conditions. In the domain 
— oo < £ < 0 the droplets are saturated by the non-volatile product. The spatial distribution
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of concentrations is governed by the equations (14). The boundary conditions are

I oo 
Cl|?^-co = Cl > (15)

r  1 — °̂°2 Ig—̂—oo — 2 > (16)

Сз|{-,_«, = 0• (17)

In the reaction zone, 0 < £ < £*, the concentrations are governed by the equations 
(11) and (13). The far boundary of this domain corresponds to the point where the 
bulk concentrations of all components equal their local (surface) concentrations, that is, the 
difference p  = c2 — c2 vanishes. For < £ < oo the concentrations are again governed by 
equations (14). For £ —> oo all concentrations approach constant values. At £ = 0 and £ = 
the bulk concentrations and fluxes of all species are continuous.

In the present paper we consider an irreversible reaction, that is К , which is the ratio of 
reaction rate constants for the forward and reverse reactions tends to infinity. This means 
the lim it 1/K —> 0 in the kinetic mass action law, last equality in (11) reads

(c3 -  c3) = i ) c i c 2 • (18)

As already mentioned above, we assume reaction to be fast as compared to the external 
mass transfer in the gaseous phase |4|, |5| and |6| This means that ?/ =  к / к 2 tends to 
infinity )] —>• oo and the quasi-stationary surface constraint (18) at leading order reads

c i c2 =  0 . (19)

This equation means that for fast irreversible reaction in vicinity of the surface of a droplet 
at least one of the reactants is c o m p l e t e l y  depleted. This does not mean, of course, the 
quenching of the reaction but just the immediate consumption of the reactant that is locally 
in deficit as it arrives at the surface of the droplet. For a single component such a situation 
at the surface of an individual particle is referred to as the «ideally absorbing condition» |4|, 
For the fast irreversible binary h o m o g e n e o u s  reaction in a liquid layer a sim ilar approach 
was developed by |24|,

The non-linear analytic solution for large, but finite К  and for large and finite ?/ are also 
available |15| and |19|, The evaluation of corrections to this theory becomes essential for 
multiple reactions systems.

The equations governing the concentration of the product c3 are decoupled in the lim it 
(19) from the equations governing concentrations of the reactants. Thus, the distribution of 
the product may be evaluated afterwards. In addition, the far boundary of the reaction 
domain (i.e. Zf in laboratory frame, (see Fig. 1) is taken to infinity. Thus, only the reaction 
zone 0 < £ < oo and the «saturated» region where the reaction is switched off — oo < £ < 0 
remain.

From the overall conservation of mass, see Appendix B, or alternatively, from smooth 
matching of solutions in reactive and non-reactive domains, it follows that s  should be
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positive. This implies that v  < p  , that is the saturation front moves slower than the flow. 
The general solutions of equations (14) in the non-reactive domain are

Ci = ai exp{s + c°° ; £ < 0 ; i = 1 , 2 . (20)

where a\ and a 2 are constants to be determined from the smooth matching of the solutions 
in adjacent domains.

Let us consider some global corollaries of (19). As mentioned above, the local concentration 
of at least one reactant is completely depleted, while the bulk concentrations cb c2 remain 
nonzero for any finite £; the bulk concentration of the reagent which is in overall deficit (as 
compared to stoichiometric ratio) approaches zero in the lim it £ —> oo, Obviously, either 
ci or c2 may be zero everywhere, just because of an overall deficit of A i or A2 respectively. 
However, the non-trivial possibility is the coexistence of domains of local depletion of different 
concentrations. This means that while in the vicinity of the surfaces of all particles in some 
macroscopic domain say, the reagent A i is depleted, in the adjacent macroscopic domain in 
the vicinity of the surfaces of all particles are depleted is the reagent A2, We show below that 
the necessary, but not sufficient condition for this to happen is the difference of the rates of 
local mass transfer. Generally, there are four possibilities:

1 . A ! is in excess everywhere, that is due to the deficit of A2

c2 = 0 , c i ( f ) ^ 0 , 0 < £ < oo ; (21)

2 . A2 is in excess everywhere, that is due to the deficit of Ai

ci = 0 , c2( £ ) ^ 0 , 0 < £ < o o ;  (22)

3. Both reactants are completely depleted due to the reaction. Suppose, that the reactant
Ai is more depleted near the origin (£ = 0), that is the local (in the vicinity of the
particle surface) concentration c\ equals to zero. The reactant A2 is more depleted far 
away from the origin; in that domain the local concentration c2 in the vicinity of the 
particle surface is zero. The self-consistency of these assumptions will be verified later. 
There must be a point £ = X , such that

ci = 0 , c2( £ ) ^ 0 , 0 < £ < X ,  (23)

ci ( f)  ^ 0 ,  c2 = 0, X  < £ < oo ; (24)

4. Again both reactants are essentially depleted, but now the reactant A2 is more depleted 
near the origin (£ = 0). For this case

c~ i(f)^0 , c2 = 0, 0 < £ < X ,  (25)
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Ci = 0 , с2 (С) ф  0 , X  < £ < оо . (26)

Of course, only two of these possibilities are physically different, therefore we consider 
below only cases 1 and 3. We would like to note here that the non-linear basic system 
degenerates in this lim it to piecewise-linear system in adjacent spatial domains in cases 3 
and 4. Thus, the problem remains non-linear due to the matching of the solutions in the 
adjacent domains. The fully nonlinear analysis by |15|, |19| reveals the piecewise solution to 
be the correct leading order approximation in both small parameters proportional to 1 /К  
and 1/)].

The cases 1 and 2 are simpler. The conditions (21) and (22), respectively, linearize the 
system. For the first case, for c2 = 0, ci ф  0, 0 < £ < oo equations (13) for i = 1,2 read

d'2p  d p

w  ~ 8Ж ~  ^ =0 ,

d 2c i  d c i  _  ( .
<9£2 S 4>'  ̂ ^

where for this particular case p  = c2.
The solutions to (27) and (28), are exponentially decaying. Performing the smooth 

matching at £ = 0 for the solutions (20) and solutions of the system (27)-(28), we obtain for 
ci and c2 finally

Be'
Cl = Cf -  exp {s , С < 0; (29)

,oo

,oo/V
c2 = c~ -  exp {s , С < 0; (30)

чс°°
Cl =  — - e x p { - ^ }  +  C~ -  c ~  , C > 0 ,  (31)

p  + s

c2 = c~—^ e x p { -/ 3 £ }  , С > 0, (32)

where j3 = \ j + 1 -  |

/3 + s

The above solutions exist for arb itrary positive s  = p  — v. However, the actual value 
of non-dimensional velocity of the saturation front v  is determined by the finite capacity 
assumption (see Section 2). Let us consider droplets at the (macroscopic) point x = 0, where 
x is a coordinate in the frame of reference immobile with respect to droplets. The reaction 
starts at time t 'tart = — oo and is turned off when the saturation front £ = 0 — v t 1 = 0 arrives 
at this point, that is t'6n = 0. Taking £'tart and t'6n as integration lim its in the equation (12) 
one gets

о

N f  p ( —VT)dT = Q . (33)
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Changing the integration variable (  = - v /  in (33) one obtain* VQ/N = J  „ « ) « ■  The
0

integral may be evaluated either directly, using solution (32), or from the conservation of 
mass by integration of the equation (13) and (14) (see the Appendix B). This finally yields

P
1 + Q

s = p
1 + Q - i (34)

where dimensionless Q = Q/Nc. f .  If the capacity of the droplets is large enough ( )  >> I. 
then from eq. (34) it follows that s  & p:  however the velocity of the saturation front v  is 
necessarily smaller.

To determine the range of parameters corresponding to the present case c.\ Ф 0 one has 
to calculate c\ for £ > 0 using the solution (32) and eq. (11):

1
Cl SC о

/3
1 -  — ) exp {—/3£} + c~ -  d

^i
,oo 
2 ^

If ui > 1 then c i  decreases with  ̂ and

Г ~ 'l oo OOmm{ci} = c1 — c2

If ui < 1 then di increases with £ and

ui/3
vi{(3 + s)

(35)

(36)

(37)

If m iiilc i}  becomes negative, the assumption of preferential depletion of the reactant A2 in 
the whole domain (21), is violated either in the vicinity of £ = 0 or at infinity, so either case 
3 or case 4 must be considered. If such «exchange of depletion», or «crossover», takes place 
for £ > 0, one has two subdomains. In each subdomain the method of solution is essentially 
the same; however the matching of solutions in both subdomains at the point £ = X , is 
needed, see (23)-(26).

Fig. 2. Schematic presentation of the local concentrations ci and c'2 
as functions of the coordinate £ in the moving frame for the case 3.
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For the third ease, (see Fig. 2) in the subdomain 0 < £ < X , where c.\ = 0, c2(£) ф  0,
one obtains

<92Ci <9ci
= ° ’ (38)

d 2C2 d o 2 = (39)

Solutions of these equations should be matched with (20) at £ = 0.
In the subdomain X  < £ < oo concentrations c\ and c2 are governed by the equations 

(27)-(28), Their solutions should be matched with the solutions of (38) and (39) at the 
boundary £ = X.  Then X  is determined by the transcendental equation:

a l ( l  + а 2р ) е азХ + a%(a i/3 -  l ) e~aiX _  a
s ( l  -/ л Х а '! + Q'2) ct — 1 ’ 1 j

where a  = c^°/c^° , Q'i = \ j + v l + ^ and a 2 = \ j + V \  — ^ . Thus, four conditions
of smooth matching of the solutions at £ = X  result in a single transcendental equation that 
we analyze numerically below. The complete solution to the problem (27), (28), (38), (39) 
and (40) with corresponding boundary conditions can now be easily written down; being
cumbersome they are given in the Appendix C). This solution depends param etrically on X
which is a root of the equation (40). For the existence of this case the parameter a  should 
satisfv

1 < „ < 1 + -  l/l} , (41)
1̂

that is, the «faster» reagent should have lower value of the in itia l concentration, but this 
difference should not be too large.

4. Discussion and conclusions. The solution obtained describes propagation of a 
heterogeneous chemical reaction through a cloud of liquid droplets. The saturation front, 
that is the boundary of the region where the particles are already saturated, moves with a 
constant velocity v  which is expressed through the uniform flow velocity p  by equation (34) 
for cases 1 and 3 and equation (57) for cases 2 and 4. It also depends on the dimensionless 
capacity Q of the droplets. The solutions are stationary in a frame moving with the velocity 
v  with respect to the cloud of droplets; v  is necessarily smaller then p.

The steady lag of the saturation front relative to overall flow translates into a steady 
widening of macroscopic reaction domain. Q ualitatively this continuously decreases the 
observed local intensity of reaction. Consequently, the observed mean rate for a heterogeneous 
reaction producing a product stored in the particles, will be lower for an descending cloud of 
particles, than for a quiescent cloud. Thus we hypothesize that the observed confinement of 
the reactions of this type in polar stratospheric clouds to a definite altitude, which is rightly 
attributed to temperature, pressure and radiative conditions, may have an additional, purely 
dynamic cause.

The point £ = X , which is also moving with the velocity v  with respect to droplets, 
separates the region where the local concentration c.\ is depleted from the region where c2 is
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depleted. In the approximation of irreversible reaction (К  oo) both local concentrations 
ci and c -2 vanish at the X  -point. We would like to emphasize that the position of this 
“switch-point” X  is determined in a self-consistent way. X  as solution of the equation (40) 
depends on a,  s  and i/i. In Fig. 3 we present X  as function of a  and s  for fixed value of i/i.

30

20
X

10

Fig. 3. Position of switch point X as function of concentration ratio a  
and flow velocity s in moving frame for v\ = 0.2.

It is easily seen from (41), that < 1 is the necessary though not sufficient condition for 
the existence of the sw i t c h -p o i n t  X.  Since = к\/к2 is the ratio of mass-transfer coefficients 
i/i ф  1 is a manifestation of the asymm etry in mesoscopic mass-transfer. An aerosol particle 
in the flow is surrounded by a boundary layer. Even though the boundary layer can be 
turbulent, in the near field of the surface there is always a lam inar boundary layer in which 
the transport of the molecules is due to molecular diffusion which is different for different 
species, that is i/i Ф 1. X  as function of щ  at fixed values of a  and s  is presented in Fig. 4.

X

30 

25 

20 

15 

10 

5

0.1 0.2 0.3 0.4

Fig. 4. Position of switch point X  as function of the ratio 
of mass transfer coefficients v\ at fixed a  = 2.0 and s = 2.5.
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The uptake of reactants and, respectively, the generation of the product are space/time 
dependent and fundamentally controlled by the existence of a switch point X.  At the switch- 
point, the local excess of reactant A2 is replaced by the local excess of reactant A^ For the 
case considered, the ratio of the in itia l concentrations c^°/c^° of the reactants Аг and A2 
exceeds the stoichiometric ratio. Therefore one is tempted to consider the reaction in the 
whole domain as quasi-first order with respect to A2, This would be equivalent to a traditional 
model, which neglects the change of the local concentration due to the «switch». However, 
the change of the regime has a dramatic effect on the distribution of the reaction product. 
Indeed, let us compare the modeling of the reaction with and without the switch point; the 
latter corresponds to traditional modeling.

The generation of the product (uptake of the reactants) is proportional to the integrals 
of supersaturation p  over reaction domain (see eq. (12) and (54)). To estim ate the error
in uptake of the reactants (or the yield of the reaction products) in the domain [0 ,£m],
which is introduced by ignoring the switch, that is not considering the evolution of the local 
concentrations, it is expedient to consider the relative error Етс\

£ra £ra j £ra

ErciiZm) = (  J  V*d£ -  J  p d ^ j  / J  pd£,  (42)
0 0 ' 0

where p* is evaluated ignoring the existence of the switch, assuming the local excess of the 
reactant Ai in the whole domain. The relative error Етс\ as a function of £TO is shown in the 
Fig. 5.

Erel

Fig. 5. The relative error Erc-[ as function of £m at fixed values of a  = 2.0, s  = 2.0 and v\ = 0.2. 
The position £m = 1//3 = 2.41 and the corresponding value EV(̂ {2A1) = 1.42 are indicated.

If we ignore the switch and admit quasi-first order decay (40), the characteristic decay 
length of p  is I/j3. So to estim ate the lower bound of the error, we take £m = 1/(3 (see Fig. 5). 
For this special position the error is about 40%; however, for £TO = 1 the error increases
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tenfold up to 400%. That is, even for the simple ease of a single-reaction, neglecting local 
concentration changes may result in a substantial error in the uptake of reactants.

The dependence of as a function of parameters a  and s  is presented in Fig. 6 .
This dependence clearly resembles the function X( a , s ) ,  presented in the Fig. 3. This is a 
manifestation of the importance of the crossover or switch point.

To estim ate the value of s  = p / ( l  + Q_1), where Q is a relative capacity of the droplets 
with respect to nonvolatile reaction product, we notice that the effect of saturation of the 
droplets on the overall distribution of concentration is substantial only if ( )  1. Thus, as
an estim ate of s  one can take s  ~ p  , where p  is the non-dimensional relative velocity of 
droplets with respect to ambient air. Considering an ensemble of droplets sedimenting in the 
air one can estim ate the velocity using the Stokes formula (see e.g. |4|),

Fig. 6. Relative error Eroi( 1 //3) as function of the a  and s  at fixed value of v\ = 0.2.

Xow we give some estimates using known atmospheric data, for the example of the 
heterogeneous reaction of chlorine n itrate with hydrochloric acid at the surface of stratospheric 
aerosol particles. Assuming a free molecular regime for mass transfer (see e.g. |6 |), the mass 
transfer coefficients K\ and k2 may be evaluated using the formula к  = a v /4 , where 
a  is the mass accommodation coefficient and v  = \J^kT/т:т .̂ Here k is Boltzmann’s 
constant, and m 0 is the mass of a molecule of species in question. Taking the value of 
T  = 222 К at the altitude 25 km (see Appendix В in |8|) and assuming the values of mass 
accommodation coefficients of HC1 and C 10X 02 as 0.1 and 0.03 respectively one arrives at 
the values of K\ = 1.68 and k2 = 9.14 m/s. The estim ate of sedimentation velocity at the 
same altitude using the Stokes formula (see e.g. |4|) yields the value of order 10-4 m/s. To 
estim ate the approximate value of s  ~ p,  where the non-dimensional velocity p  is defined 
above as p  = U/\/Sk2D. we use the surface to volume ratio S  = 10-6 m2/m3 |13| and 
D «  10-3  m2/s. Dole at al. |25| give the estim ate of turbulent diffusion in the stratosphere 
as D less than 10-2 m2/s based on the measurement by atmospheric radar PROUST. Then 
s  is of the order of one; the ratio Ui & 0.2. We used values of this order of magnitude in the 
examples exhibited in Figs. 3-6.
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То avoid misunderstanding we would like to point out that the above numerical estimates, 
based on particular atmospheric data, reveal the importance of the exchange of local depletion 
and estim ate a possible error introduced by ignoring the detailed evolution of the local 
concentrations in space/time evolving systems.

On the other hand, the spreading of the saturation front, and as a consequence «smearing» 
of reaction over a wider spatial domain in a descending layer of particles, is quite a «coarse» 
effect for a mass-transfer-limited reaction of the above mentioned type, based on conservation 
of mass and on the interplay of overall mass transport and the sinks/sources due to the 
presence of particles, weakly dependent on the details of kinetics and values of the reaction 
rate constant.

We have considered above an ensemble of identical particles. Being reasonable first 
approximation this is still a simplification of reality. For identical particles there is a single 
local concentration of the species for all particles at the same physical point, see Section
2. For Ns discrete size classes the averaging results in Ns different variables, that is a local 
concentration, c” , n  = 1,2, . . . ,  Ns for each size class. This results in a drastic increase in the 
number of governing equations. All parameters of local mass transfer and reaction kinetics, 
introduced in this communication for an ensemble of identical particles, will also differ for 
different size classes. Still, the same approach may be applied; however for polydisperse 
aerosols the mathematics becomes much more involved. The effects of particle size distribution 
will be subject of a special communication.

In summary, a model, describing fast heterogeneous chemical reaction and mass transfer 
in a one-dimensional overall flow has been developed. If the basic system of equations is 
supplemented by the finite capacity assumption reflecting the finite storage ab ility with 
respect to a non-volatile product, a travelling-wave regime exists. In this regime, the width 
of the reaction domain tends to increase. This system may be extended in a rather straight
forward way to include multicomponent, multiple reactions, several kinds of particles and 
different size classes. As shown in |15|, essentially the same approach may be used to analyze 
a «batch reactor» -  in the context of aerosol systems, this constitutes a well mixed «parcel» 
of air or laboratory experiments in a chamber. For a reversible reaction finite К  should 
be considered. To solve the problem for small, but finite К  we have to use the modified 
Thiele moduli (mTm) approach see 116 18| and |19|, The interplay of local and global mass- 
transfer is taken into account in a self-consistent way. As a consequence, even if one of 
the reactants in itia lly  is in local excess, crossover may happen due to asymm etry in mass 
transfer coefficients. This may result in significant corrections to the uptake of reactants and 
the spatial-tem poral distribution of the products.

A ppendix A . We assume the following mechanism for heterogeneous reaction

A i  +  P a r t ic le  ^  ( A ) adsorbed , (43)

A-2 +  (^l)adsorbed ^  ^ 3  +  ( ^ 4 ) adsoi'bed > (44)

a d so rb ed  < ( ^ 4 ) d i s s o lv e d  ’ (45)

where only the second step represents chemical kinetics: k+ and k~ are rate coefficients
for the forward and reverse reactions, respectively, on the surface. If A1 is identified with
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НС1, А-2 with СЮХО2, А-з with CI2, and А4 with НХО3, the model (43)-(45) applies under 
reasonable assumptions for the reaction of chlorine activation, considered in the present paper 
as an example. The kinetic expression for this mechanism will be derived below, but first we 
introduce the following notations for the concentrations at the surfaces of the particles 
and their relative surface coverages s*

Al (s)Cl S i

A‘2 c {s)c 2 -
A3 c {s)c3 -
a 4 - s4

If for A\ the Langmuir kinetics is assumed, the mass balance on the surface is given by 
equations

= k i c ^  (1 — Si — S4) — k[s i  — k+S\C2̂  + A:_c ^ S 4 , (46)

^  = A:+S i4 ') -A :“ 4 ' )s4 - b  s4 - ( s 4)equil , (47)

where к\ and A:- are adsorption and desorption rate constants, respectively; b is the dissolution 
rate constant, and (S4) n is the equilibrium value of s4, determined by the instantaneous 
content of A4 inside the droplet (the diffusion of the non-volatile product A4 inside the small 
droplet is considered as fast and not rate-lim iting).

Making the common assumption of a pseudo - stationary state at the surface, we obtain

(*’) (Л \ ^  (*’) I ^ (*’) A fc\ (1 — Si — S4) — a iS i — — SiQ + —  C3 S4 = 0, (48)
K\ K\

A+ (s) к— s -  — 4  s4 -  a 2 
A’ 1 A’ 1 S4 -  (S4)equil = 0 ’ (49)

where a\ = ki/ki,  a 2 = b/k\. Solution of this system for s i,  s4, though elementary, yields 
quite cumbersome expressions. However, the exact solutions are not needed within the scope 
of the present communication. Indeed, our consideration is restricted to the case when the 
adsorption/desorption and dissolution kinetics are fast in comparison to all other processes; 
that is k+/ki 1, k~/к\ 1, while a b a 2 are neither too large, nor too small. It follows
from (49), that s4 ~  (s4)equil- According to our finite capacity assumption, we do not treat 
the gradual increase of (S4) n caused by increased content of A4 in the droplet. Instead, 
we assume it to be constant and small; thus the reaction is switched off when the lim iting 
content of A4 in the droplet is reached.

For s i the same assumptions yield

c[s)/cii 
1 + е[л) /cii

Then the expression for the reaction rate R  is :

1 1
=  :-------- (7Г- • ( 5°)

7;,+ГЬ 02

a i 1 + c ^ / a i
R = r - - - -  ; i , , -  г  < * ) « ,* 4*’ ; (5 1 )
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or, introducing rate constant к = k+/a\ and effective equilibrium constant

К  = k+ a\k (s4)

for the surface reaction.

R = к
> )> ’) C-i C-2

equil

J » '

i  + c i /a i R
(52)

This equation still differs from (2) of Section 2 by the Langmuir multiplier, 1 + c[^ j a b which 
is close to unity only for the relatively low coverage of the surface. This multiplier is taken 
into account in |19| and shown to be of possible importance for reversible reaction. In the 
present paper, for large к and К  —>• oo, that is for fast irreversible reaction, both (52) and 
(40) result in the same lim iting form, c ^ c ^  —> 0. See the corresponding equation (19) for 
the local concentrations.

A p p en d ix  B . Let us integrate equation (14) over domain — oo < £ < 0, and equation 
(13) over domain 0 < £ < oo:

d c2
~d£ SC2I-CO = °>

d c .2

Ж
~ s  c2|0°° -  / <p(Qd£ = 0.

(53)

(54)

Both c2 and d c 2/d£ are continuous at £ = 0; therefore

SC2|-oo = ~ J  
0

or 77
[СГ  -  c2 |+co] S = —v Q  .

(55)

(56)

For the cases 1 and 3 c2|+00 = 0; this immediately yields the result equation (34). Exactly 
the same procedure, but applied to equations (14) and (13) yields for the cases 2 and 4:

P

1 + Q/cr
(57)

A p p en d ix  C . Here the full solution for the third case, see (23)-(24) and (38)-(41), is 
given. For 0 < £ < X

1
Cl Q'i exp(a'2X ) + q'2 exp(—q'iX )

Q'l -
1 -  Pi

exp(a'2X ) — s c x

x exp(-Q 'i (X -  £)) + Q'2" 1 -  Vi
exp(—Q'iX) + sc^° exp(o'2 (X -  0 ) (58)
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с2 — с 1 — с?° + с~ (59)

Ci = 0; с-2 = (1 — Ух) С\ — с̂ ° + с^°. (60)

For X  < £ < оо
„оо _  „оо

Cl = ехр(-/3 К -  А')) + c f  -  c f , (61)I — Ь>1
r oo _  r oo

c2 = v x— — exp(-/5 (f -  A")), (62)
1 -  z/i

ci = сГ -  c^ -  ( c f  -  c£°) exp(—/3 (С -  X )), c2 = 0, (63)

Both bulk concentrations are decreasing for £ —> oo; while the concentration of the reagent 
Д2 which is in deficit with respect to stoichiometric ratio approaches zero, the concentration 
of the reagent A1 approaches ĉ ° — c^°. However, while the local concentration c2 is decreasing 
from some finite value at £ = 0 to zero at £ = X  and remains zero for larger £, the local 
concentration c.\ increases from zero at £ = X  to ĉ ° — c£° for £ —> oo, see Fig 1. The simple 
relation between the bulk concentrations, (59), (61), and (62) is a direct consequence of 
the equal dispersion coefficients for all species in the equations for the macroscopic mass 
transport, eq,(7). However, the method of solution outlined in the present communication 
does not use this fact, so it is valid for the case of different dispersion coefficients as well, 
when there is no such simple connection. The above solutions depend param etrically on X , 
which is a root of the equation (40). For the present case to exist the ratio a  of the in itia l 
concentrations should belong to the interval [1,1 + sj3{\ — ^i)/^i], see (41). One can see 
from (40), that X  approaches zero when a  approaches the upper lim it. This means that the 
solutions (61)-(63), representing the local deficit of A2, become valid starting from £ = 0, 
that is the Case 1 -  for sufficiently large excess of in itia l concentration Ai  is both in global 
and (despite slower mass transfer) local excess over whole reactive domain. On the other 
hand, if a  approaches the lower lim it, X  tends to infinity, that is the domain where solutions 
(58)- (60) are valid spreads over all £. This means, in its turn, that we approach the Case 2, 
when Ai  is in global and local deficit in the whole reactive domain.

The above consideration presumes щ  < 1. Of course, for > 1 the switch is also possible; 
however, than it should be a  < 1, but again, not too small (Case 4). It is worth noticing, 
that each of the (physically equivalent) Cases 1 and 2 is possible both for i/i < 1 and i/i > 1, 
see eqs. (36),(37) for the Case 1. This corresponds to a single non-zero local concentration 
either increasing, or decreasing with £ in the whole reactive domain; of course, the difference 
between the corresponding bulk and local concentrations, which is the driving force for the 
process, always decreases with £. Such non-trivial and non-monotonic parametric dependence 
is a manifestation of the strongly nonlinear character of the problem considered.

Acknowledgements. The authors are thankful to Reinhard Zellner for interesting dis
cussion of this work. The discussions with Ceeile Coeur and Leonid Davydov are also 
acknowledged. GK and WBZ thank the French-British Alliance Program for a travel award, 
PX02.061. GK and PMP thank the French-Ukrainian Dnipro Program for a travel award, 
WBZ would like to thank the University du Littoral for a visiting professorship and the 
EPSRC Advanced Research Fellowship Programme (Grant Xo. GR/A01435), PMP would



186 НАУЧНЫЕ ВЕДОМОСТИ Серия: Математика. Физика. 2014. №12(183). Вып. 35

like to thank the University du Littoral Cote d ’Opale, France for visiting Professorship and 
French M inistry of Education and Research for a research fellowship.

References

1. Warneek P. Fundamentals /7 in: Global aspects of atmospheric chemistry. Topics in physical 
chemistry / Vol. 6, ed. by Deutsche Bunsen-Gesellsehaft fur Physikalisehe Chemic e.V., R. 
Zellner, guest editor / Springer: Darmstadt, New York, 1999. P. 1-20.

2. Calvert J.G. (Ed.): SO2 , NO, NO2 Oxidation Mechanisms: Atmospheric Considerations / 
Butterworth: Boston, 1984.

3. Zellner R. Chemistry of Stratosphere /7 in: Global aspects of atmospheric chemistry. Topics 
in physical chemistry, Vol. 6, ed. by Deutsche Bunsen-Gesellsehaft fiir Physikalisehe Chemic 
e.V., R. Zellner guest editor / Springer: Darmstadt, New York, 1999. P.181-254.

4. Schwartz S.E. Mass transport considerations pertinent to to aqueous phase reactions of gases 
in liquid-water clouds // in: Chemistry of multiphase atmospheric systems, Ed. W.Jaesehke, 
NATO ASI series. Vol. G6, 1986.

5. .Jacob D..J. Heterogeneous chemistry and tropospheric ozone // Atmospheric Environment. 
2000. 34. P.2131-2159.

6. Widmann .J.F., Davies E..J. Mathematical models of the uptake of CIONO2 and other gases 
by atmospheric aerosols /7 .J. Aerosol Sei. 1997. 28(1). P.87-106.

7. Seinfeld J.H. Atmospheric chemistry and phvsies of air pollution / .John Wilcv & Sons: N-Y., 
1986.

8. Jacobson M.Z. Fundamentals of atmospheric modeling / Cambridge University Press, 1999.
9. Ravishankara A.R. Heterogeneous and multiphase chemistry in the Troposphere /7 Science. 

1997. 276. P.1058-1065.
10. Pilinis C., Seinfeld .J.H., Seigneur C. Mathemetieal modeling of the dynamics of multicompo

nent atmocphcric aerosols /7 Atmos. Environ. 1987. 21. P.943-955.
11. Koo B., Gavdos T.M., Pandis S.N. Evaluation of the equilibrium, dynamic, and hybrid aerosol 

modeling approaches /7 Aerosol Science and Technology. 2003. 37. P.53-64.
12. Meng Z., Seinfeld J.H. Time scales to achieve atmospheric gas-acrosol equilibrium for volatile 

species /7 Atmospheric Environment. 1996. 30. P.2889-2900.
13. Tabazadeh A., Tureo R. A model for heterogeneous chemical process on the surface of ice and 

nitric acid trihvdratc particles /7 .J. Geophvs. Res. 1993. 98(D7). P.12727-12740.
14. Hanson D.R., Ravishakara A.R., Solomon S. Heterogeneous reactions in sulfie acid aerosols: 

A framework for model calculations /7 .J. Geophvs. Res. 1994. 99(D2). P.3615-3629.
15. Mehedlov-Pctrossvan P.O., Zimmerman W.B., Khomcnko G. Fast binary reactions in a he

terogeneous catalvtic batch reactor // Chemical Engineering Science. 2003. 58(12).
P.2691-2703.

16. Mehedlov-Pctrossvan P.O., Khomcnko G., Zimmerman W.B. Nearly irreversible, fast hete
rogeneous reactions in premixed flow /7 Chemical Engineering Science. 2003. 58(13).
P.3005-3023.

17. Mehedlov-Pctrossvan P.O., Khomcnko G., Zimmerman W.B. Fast heterogeneous catalytic 
reactions in a CST reactor: perturbativc approach // Kharkov University Bulletin, Chemical 
series. 2001. 7(30). P.53-65.

18. Zimmerman W.B., Mehedlov-Pctrossvan P.O., Khomcnko G.A. Diffusion limited mixing and 
reaction in heterogeneous eatalvsis of initially segregated species // Chemic Symposium 
Series. 1999. 146. P.317-324.

19. Zimmerman W.B., Mehedlov-Pctrossvan P.O., Khomcnko G.A. Noncquilibrium effects on fast 
binary reactions in a heterogeneous catalytic batch reactor // Chemical Engineering Science. 
2005/ 60. P.3061-3076.

20. Deshpande K.B., Zimmerman W.B. Experimental study of mass transfer limited reaction. 
Part I: A novel approach to infer asymmetric mass transfer coefficients / / Chemical Enginee
ring Science. 2005. 60(11). P.2879-2893.



НАУЧНЫЕ ВЕДОМОСТИ Серия: Математика. Физика. 2014. №12(183). Вып. 35 187

21. Deshpande К.В., Zimmerman W.B. Experimental study of mass transfer limited reaction. 
Part II: Existence of crossover phenomenon /7 Chemical Engineering Science. 2005. 
60;№15. P.4147-4156.

22. Soo S.L. Fluid Dynamics of Multiphase Systems / Blasdell Publ.: Massachusetts-Toronto- 
London, 1967.

23. Satterfield C.N. Mass transfer in heterogeneous catalysis / MIT Press: Cambridge, Mass., 
1970.

24. Dankwerts P.V. Absorption by simultaneous diffusion and chemical reaction /7 Transactions 
of the Faraday Society. 1950. 46. P.300-304.

25. Dole .J., Wilson R., Dalaudier F., Sidi C. Energetics of small scale turbulence in the lower 
stratosphere from high resolution radar measurements /7 Annales Geophvsieae. 2001.
19. P.945-952.

О РАСПРОСТРАНЕНИИ ФРОНТА НАСЫ Щ ЕНИЯ ГЕТЕРОГЕННОЙ 
ХИМ ИЧЕСКОЙ РЕАКЦИИ В АЭРО ЗОЛЬНО М  ОБЛАКЕ

Г.А. Хоменко, *П.О. М чедлов-П етросян, В .Б . Зиммерман

"“Национальный научный центр ХФТИ, 
ул. Академическая, 1, Харьков, 61108, Украина, e-mail: peter.mchedlov@free.fr

Аннотация. Облако аэрозольных частиц осаждается в воздухе, содержащем реагенты. Ис
ходя из макроскопической модели химии и маееопереноеа, основанной на кинетической теории 
гетерогенных химических реакций, мы анализируем распространение химической реакции в 
облаке аэрозольных частиц. В этой работе мы рассматриваем бинарную реакцию с одним 
летучим и одним нелетучим продуктом, протекающую на поверхности аэрозольных частиц. 
Если принять во внимание конечную емкость капли по насыщению нелетучим продуктом ре
акции, замедление реакции в конце концов приводит к распространению фронта насыщения. 
Найдены пространственное распределение концентраций, их эволюция со временем и скорость 
фронта насыщения.

Клю чевые слова: аэрозоль, капля, гетерогенная химическая реакция, маееопереное.

mailto:peter.mchedlov@free.fr

