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Abstract. A cloud of aerosol particles sediments in air containing reactants. On the basis of
a macroscopic chemical and mass transfer model founded on the kinetic theory of heterogeneous
reactions we analyzed the spreading of chemical reaction through the cloud of aerosol particles. In
this paper we considered a binary reaction with one volatile and one non-volatile product at the
surface of aerosol particles. If the finite saturation capacity with respect to non-volatile reaction
product accumulated in the droplet is taken into account, the eventual deceleration of the reaction
results in the propagation of a saturation front. The spatial distributions of concentrations and their
evolution in time are determined, as well as the velocity of saturation front.
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1. Introduction. Heterogeneous chemical reactions are known to play an important
role in a wide class of geophysical phenomena, including atmospheric processes |1], This was
first recognized in the late 1970s for the production of H2S04 and HX03 in acid rain |2],
Their critical role for the depletion of stratospheric 0 3 was established in the late 1980s
I3, While the “homogeneous” chemistry of most of the processes is quite well understood,
their «heterogeneous» counterparts still remain the subject of considerable debate (see, e.g.,
I3l pp. 216-229). The term «heterogeneous» is used both for true heterogeneous reactions
taking place at the surface of a particle or a liquid droplet and for the reactions that occur
homogeneously in the dispersed condensed phase |1}, In the present work we consider the
former type.

The theory of heterogeneous reactions of gas with individual liquid droplets is considered
in many papers |46] and books [7] and |8], This overall process includes several steps: mass
transfer of reacting species in gaseous phase, adsorption or/and mass transport across the
aerosol surface, chemical reaction at the surface, mass transport and the chemical reaction
within the liquid droplets, possible evolution of volatile product species into the gas phase,
and subsequent gas-phase mass transport of the evolved gaseous product. Some of the steps
may become rate-limiting. In order to evaluate the rate of the overall process one needs to
identify such a step (or steps) and to evaluate the rate of such step(s). If the mass-transport
processes are essentially faster than the chemical reactions, then the rate of the overall process
is governed essentially by chemical kinetics. In the opposite limit, for very fast reactions, the
overall process is controlled by the rate of gas-phase mass transport [,
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Investigations in atmospheric physics and chemistry are often aimed at understanding
and predicting space-time distributions of reactants and reaction products at macroscopic
scales (at the scales much larger then the size of aerosol particles and their mutual distances)
which is important for predicting air pollution at regional and global scales as well as
for climatology. The importance of heterogeneous atmospheric reaction is now commonly
recognized (see e.g. 9] and PB|), The first generation of global multiphase atmospheric
models were termed equilibrium models |10,11], However it was soon recognized 111,121that
no such equilibrium is ever attained. So the problem of treating the time-dependent mass
exchange, uptake and production due to chemical reaction arises. The kinetic expressions,
once obtained, usually are incorporated into elaborate global models, which include tens
of reactants and hundreds of reactions. However, the fully nonlinear description of the
chemical kinetics is computationally demanding and often introduces instabilities. Therefore,
the treatment of heterogeneous reactions is typically simplified by the assumption of excess
of one of the reactants |2,9,13,14|,

In the present paper we apply a macroscopic approach proposed in the chemical reactor
engineering context by 115—19| to describe the spatial-temporal distribution of reactants and
the product for fast binary heterogeneous reactions in a cloud of liquid droplets. The theory
has been experimentally validated in two phase liquid-liquid chemical reactors by ]20,21], The
treatment here takes into account a second order fast irreversible reaction at the surface of
the droplets, overall mass transfer due to bulk convection as well as due to turbulent diffusion.
The heterogeneous character of the chemical reaction is taken into account by distinguishing
the mean reactant concentration in the bulk fluid and the mean local concentrations at the
surfaces of particles as macroscopic variables of the model. The resulting model, which is
described in the next section, is non-linear, yet it admits an analysis by approximation theory
in closed form. We show below for an example of a single binary heterogeneous reaction, that
the reactant which is in a global excess still may be in local (at the reactive surface) deficit in
some space-time domains if the local mass transfer between particles and gas phase is taken
into account properly. If the finite capacity with respect to non-volatile reaction product
accumulated in the droplet is taken into account, the eventual deceleration of the reaction
results in the spreading of a saturation front. This qualitative effect is targeted in the present
communication. The spatial distributions and their evolution in time of concentrations are
determined, as well as the velocity of saturation front. Contrary to the common practice of
dealing with a binary heterogeneous reaction, we do not a priori assume local excess of one
of the reactants. Our analysis reveals coexistence of a spatial domain where one reactant is
in local excess with another domain where the other reactant is in excess and the first one
is depleted.

We applied our theory to a particular type of reaction where gaseous reactants are
distributed in the air, but one of the reaction products is gaseous and the other one is
non-volatile. The latter product is soluble and accumulates in the droplets. Reactions of
this kind play an important role in the chain of reactions of ozone depletion in polar
stratospheric clouds. As an example we considered the binary chemical reaction of chlorine
nitrate C10X02 and HC1 yielding the gaseous product CI2, and the non- volatile product
HXO03, These reactions are well known to be slow in the gaseous phase even at room
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temperature; they become feasible only as a result of hydration on the surface of liquid
droplets and the formation of ionic intermediates |3], The particles are assumed to be of the
kind normally referred to as polar stratospheric clouds type Ib, that is supercooled ternary
H2504/HX03/H20 solutions. The non volatile product HXO03 is taken up by droplets which
finally turn into quasi-binary HX03/H20 droplets with close to 1:3 stoichiometry. This
reaction is considered in the literature to be practically irreversible under stratospheric
conditions |3,

The paper is organized as follows. In the section 1 we describe the macroscopic model
that is applied in the section 3 to study macroscopic dynamics of spatial distributions of
concentrations of the reactants and the reaction products when a cloud of liquid droplets
sediments in the stratosphere. It is assumed that the binary reaction takes place on the
surface of aerosol particles. If the finite solubility capacity of droplets is taken into account,
the theory predicts formation of a stationary advancing reaction saturation front. In the
section 4 we applied the theoretical results to the above mentioned stratospheric reaction
and give numerical estimates for this case. We discuss in the same section the results obtained
and the accuracy of approximations. The details of calculations are presented in Appendices
A, B, and C.

2. The model. We consider an ensemble of identical droplets sedimenting in air with
constant velocity determined by the balance of gravitational force and Stokes friction. Pre-
mixed reactants Ai and A2, with concentrations ¢\ and c2 react on the surface of the liquid
droplets, a single gaseous product A3 with a concentration c3 is injected to the air. Since
the reaction is fast at the surface of aerosols and is slow in the bulk air, the heterogeneous
nature of the reaction should be taken into account and will effect macroscopic dynamics.

At the scale of a single particle both molecular diffusion and convection contribute to
the 3-dimensional mass transport between the local gas and the droplet, however, for the
particular problem addressed in the present paper, mass transport at the particle scale is
approximated by molecular diffusion. Thus the flux densities to/from the surface j\™ are

driven by the difference between bulk d and surface ¢\ concentrations
jf =Ki(ci- : i=1 2 3, (1)

where  are the mass transfer coefficients. The bulk concentrations c* are defined as con-
centrations of reagents and reaction product far away from the aerosol particles (that is at
distances much larger than the particle size) and the surface concentrations are defined
as values of the concentrations at the surface of aerosol particles. The difference between bulk
and surface concentrations is maintained by chemical reaction at the surface. Concentrations
a and are measured in mole fractions and therefore are non-dimensional.

To determine the fluxes of reactants to the particles, it is necessary to evaluate, in the
vicinity of each particle, the distribution of concentrations, which approaches concentration

at the surface and c¢* far from the particle. Implicit in the definition of the mass transfer
coefficients Ki, both molecular diffusion and convection contribute to the mass transport
between the local gas and the droplets, which move relative to the surrounding gas. For
the particular example which is considered in the present paper, Stokes sedimentation
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at low Reynolds and Peclet numbers of the small particles is assumed (see section 4).
Equation (1) follows from the solution of the steady diffusion problem. The overall
large-scale gradient introduces slight anisotropy, however for a purely diffusion problem the
corresponding corrections will be of the order of the ratio: (particle size)/(scale of the overall
gradients). To apply the model to larger particles or faster flow, known correlations for  may
be used |6,6,7] and B} We consider a dilute suspension of droplets following the estimate of
the mean ratio of diameter to inter-drop spacing in clouds less than 10-2 J4], Consequently,
the local concentration distributions around a particle is unaffected by the presence of other
particles.

For binary surface reaction of first order with respect to each reagent, the reaction rate
R is given by the kinetic mass action law:

R=k(c[8)d®- ~49) > (2)

where K is the reaction rate coefficient and K is the equilibrium constant. The latter equation
implicitly assumes that the adsorption/desorption kinetics for reagents and product is fast
and that it is not rate-limiting. Equation (2) also implies that the relative surface coverage
is low. Discussion of the rate (2) is given in the Appendix A). For further discussion see
also 19|,

The rate of generation of the product at the surface (per unit of surface, per unit of time)
equates to the absolute value of the flux density of the volatile product from the surface in
a pseudo-steadyv-state. Due to stoiehiometrv. the flux densitv of the reagents to the surface

() () () _ D

isg” =A" = =R

Ki (ci - = K2 (c2- c2n) = k3 (c3n) - c3) = R . (3)

The «microphysics» of the model is contained in this equation. In the present communication
we assume the reaction to be fast, i.e. the external mass transfer in the gaseous phase to be
rate-limiting, see |45] and p| This means that the ratio of the mass transfer coefficients k
to surface reaction rate constant K is large n/k 1 (since concentrations d are measured in
dimensionless units, k and k for the surface reaction are measured in the same units).

Our goal at this stage is to elaborate macroscopic equations to describe dynamics of
concentrations at large scales. Therefore, we need to average out small scale phenomena at
the single particle scale, but to take into account the mean effect of heterogeneous reaction
to large scale dynamics. Thus, we need to introduce mean variables, averaged over an
ensemble of particles. At this point we introduce the concept of local concentration. The
local concentrations d of species result from averaging of surface concentration over all
condensed phase particles of the same size in a physically small volume, positioned at a point
with coordinates (x, Y, z), at the time t. that still contains a big number of aerosol particles.
A size of this volume is supposed to be smaller than the typical scale of bulk gradients (cloud
scale), but much larger than the droplet size. Thus, for a macroscopically nonuniform system,
the local concentrations di(t,x,y,z) are macroscopic variables, depending on macroscopic
time and on large scale coordinates. We consider here an ensemble of identical particles,
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that is monodisperse aerosols. In this ease, the averaging procedure is simplified and one can
associate the local concentrations ¢* with mean values of surface concentrations c-n). That
allows the next step - to average out surface concentrations in the mass action law (3) and
to arrive at equations for macroscopic variables ¢* and c* only:

Ki (ci - Cl) =n2(c2- ¢2) = k3(c3- ¢3) = K : 4)

Xow we turn to the macrophysics of the problem. At large scales (a cloud scale) the dynamics
of bulk concentrations ¢*is governed by three mass-conservation equations that take the form
of the advection-diffusion equations with the source/sink term @®* in the right-hand side

c
D’\ +\]-~cr=022r-or, i=1,2,3, (5)

where D is the dispersion coefficient and U = const is the velocity of superficial uniform flow
in the frame of reference attached to the sedimenting droplets. At the cloud scale, that is at
the scale which is much larger than the size of a single droplet, dispersion is due to turbulent
mixing, so D may be identified as the turbulent diffusion coefficient and ®b ®2 are sinks
and ®3is a source due to chemical reaction. The difference in scales allows us to treat the
mesoscale (scale of a single particle) transport by introducing macroscopic distributed sink
and source terms @* in (5), phenomenologically averaging out mesoscale phenomena such as
local mass transfer to and from the droplet surfaces. Using ¢* and c* introduced above, we
write the sink and source terms in the conventional way

Pi=SKi(i- q), i=123 (6)

where S is the reactive surface per unit volume.

For uniform overall flow the macroscopic transport is essentially one dimensional. Thus,
bulk concentrations Ci(t, n) and the local concentrations 5j(i, n) depend on time and a single
macroscopic coordinate n. This, particularly, is a reasonable approximation for sedimenting
particles.

Substituting equations for the @ (6) into (5) and taking into account the effective one-
dimensionality of the macroscopic fluxes one arrives at

fic- 3ce Cix m
A L g A :DI/\-S Kr(c,~cr) , =123, (7)

where IX= [T and nis a macroscopic coordinate in the direction of the uniform flow U.
For further analysis it is convenient to put the equations in non-dimensional form.
All concentrations are measured in mole fractions and are already non-dimensional. The
characteristic time scale r for the local mass transfer is r = [S k2]_1. The characteristic
length of turbulent diffusion during the time r is /= \f~Dr = \/D/S k2. The intrinsic scale
| appears in the problem due to distinction between the bulk and local concentrations. The
dimensionless time and coordinate are t' = t/T; X = z/l respectively. We define also the
dimensionless parameters ¥ = k/n2;, W = /k2, 2= 1, = k-#Ax2; and p = MI/D. The
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latter combination looks like a Peelet number; however, it is not a usual Peelet number,
because D is not a molecular, but eddy diffusivity and the corresponding lengthscale /is
not a geometrical size, but the intrinsic length characterizing the heterogeneous reaction.
Finally, in the non-dimensional form, the basic system of equations reads:

de\ d'20\ de.\

(8)

dt! dx2  fdx ©)

(10)

WM(ci- Cl)= (c2- ¢2) = vi(c3- )= n CiC2- —c3 (11)

This closed system (8)-(11) is strongly nonlinear due to the nonlinear coupling between
the bulk and local concentrations introduced by the equation (11). The equations (8)-(ll),
with suitable initial and boundary conditions, are a differential algebraic system (DAE),
with three partial differential equation (PDE) constraints and three nonlinear algebraic
constraints. DAEs are notoriously stiff, requiring careful numerical integration schemes to
avoid instability. The model in this form in the context of heterogeneous chemical reactors
theory was introduced and analyzed in ]15-19],

In present communication we consider a particular type of heterogeneous reaction of two
gaseous reactants with two reaction products, one of them is gaseous and the other one is
non-volatile. The latter product is soluble and accumulates in the droplets. It is reasonable to
assume that the concentrations of the non-volatile product at the surface of the droplet and
inside the droplet rapidly reach the thermodynamic equilibrium described, e.g., by Henry’s
law. When a non-volatile product of reaction accumulates within the droplet, the ratio of
reverse to forward reaction rates is increased. Therefore, due to shift of thermodynamic
equilibrium with respect to solubility, the forward reaction eventually stops. Instead of
following a gradual change of the equilibrium, we introduce the assumption of a finite capacity
of droplets, due to solubility limitations, which yields a physically similar effect. Supposing
that a cloud of droplets has a finite capacity for the accumulated species per unit volume
Q =(number of molecules, stored in a droplet) x (number of droplets per unit volume),
we assume quenching of the reaction when the actual amount of non-volatile product in the
droplets reaches this value (see Fig. 1). Due to stoichiometry, the amount of non-volatile
product is proportional to the consumed amount of each reactant. Mathematically, the finite
solubility assumption results in the imposition of an additional integral condition:

(12)
where the integral is taken over time to saturation and N is the number of molecules per

unit volume in the atmosphere. Despite the «kinematic appearance» of this constraint, it
originates from thermodynamic equilibrium.
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Fig. 1. Schematic presentation of the model: a uniform air flow with velocity U through a cloud
of liquid particles. The downwards gradually increasing grayscale intensity corresponds to increasing
content of non-volatile product. Zf is the far boundary of the reaction domain, where reaction starts;
z = Vt is the position of saturation front, where the reaction ceases.

Additionally, assuming that the macroscopic scale L over which concentration changes
is much less than the extent of the spatial domain, we analyze our model over an infinite
domain.

3. Propagating saturation front. In this section we study the propagation of the
reaction front through a cloud of aerosol droplets. When the air flow, containing premixed
reactants Ai and A2, enters the cloud, the reaction starts at the surface of the droplets.
After a certain time, due to the finite capacity of droplets, the reaction ceases. Therefore,
one can subdivide the whole domain into three regions: one where reaction has not yet
started, the reaction zone, and the region where particles are already saturated with a non-
volatile product and thus there is no reaction despite of the presence of both reactants in the
surrounding air. Introducing the non-dimensional velocity v of the saturation front, we make
a coordinate transformation to the frame moving with this front (see Fig. 1). The velocity
V in Fig. 1is related to non-dimensional velocity v by V = vI/T = v\/DSk2- Defining the
new coordinate by £ = x —uvt', and looking for stationary solutions in the moving frame,
equations (8)-(10) for the reaction zone take the form

e - g i=123, (13)

where s = p —v and due to our normalization u2 = 1 It is worth noticing that a stationary
solution exists only in this reference frame; both in the frame coupled with the particles and
in the frame moving with the overall flow, the process is essentially non-stationary.

In the domains without reaction the governing equations are

Be- )
= i=1 2 3. (14)

The above equations should be supplemented by boundary conditions. In the domain
—00 < £ < 0 the droplets are saturated by the non-volatile product. The spatial distribution
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of concentrations is governed by the equations (14). The boundary conditions are

afrco = d°> (15)
r2?g N G):A§°> (16)
GK-,_«, = 0e 17)

In the reaction zone, 0 < £ < £* the concentrations are governed by the equations
(11) and (13). The far boundary of this domain corresponds to the point where the
bulk concentrations of all components equal their local (surface) concentrations, that is, the
difference p = c¢2 —c2 vanishes. For < £ < 00 the concentrations are again governed by
equations (14). For £ —00 all concentrations approach constant values. At £E= 0 and £=
the bulk concentrations and fluxes of all species are continuous.

In the present paper we consider an irreversible reaction, that is K, which is the ratio of
reaction rate constants for the forward and reverse reactions tends to infinity. This means
the limit 1/K —0 in the kinetic mass action law, last equality in (11) reads

(c3- ¢3) =1i)cic2e (18)

As already mentioned above, we assume reaction to be fast as compared to the external
mass transfer in the gaseous phase |4], bl and p| This means that ¥ = «k/x2 tends to
infinity )] —>00 and the quasi-stationary surface constraint (18) at leading order reads

cic2=0. (19)

This equation means that for fast irreversible reaction in vicinity of the surface of a droplet
at least one of the reactants is completely depleted. This does not mean, of course, the
quenching of the reaction but just the immediate consumption of the reactant that is locally
in deficit as it arrives at the surface of the droplet. For a single component such a situation
at the surface of an individual particle is referred to as the «ideally absorbing condition» 4],
For the fast irreversible binary homogeneous reaction in a liquid layer a similar approach
was developed by |24],

The non-linear analytic solution for large, but finite K and for large and finite ¥ are also
available 15| and |19], The evaluation of corrections to this theory becomes essential for
multiple reactions systems.

The equations governing the concentration of the product c3 are decoupled in the limit
(19) from the equations governing concentrations of the reactants. Thus, the distribution of
the product may be evaluated afterwards. In addition, the far boundary  of the reaction
domain (i.e. Zf in laboratory frame, (see Fig. 1) is taken to infinity. Thus, only the reaction
zone 0 < £ < 00 and the «saturated» region where the reaction is switched off —00 < £< 0
remain.

From the overall conservation of mass, see Appendix B, or alternatively, from smooth
matching of solutions in reactive and non-reactive domains, it follows that s should be
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positive. This implies that v <p , that is the saturation front moves slower than the flow.
The general solutions of equations (14) in the non-reactive domain are

G=aiexp{s +c¢°°; £<0; i=1,2. (20)

where a\ and a2 are constants to be determined from the smooth matching of the solutions
in adjacent domains.

Let us consider some global corollaries of (19). As mentioned above, the local concentration
of at least one reactant is completely depleted, while the bulk concentrations cb c2 remain
nonzero for any finite £, the bulk concentration of the reagent which is in overall deficit (as
compared to stoichiometric ratio) approaches zero in the limit £ — 00, Obviously, either
ci or c2 may be zero everywhere, just because of an overall deficit of Ai or A2 respectively.
However, the non-trivial possibility is the coexistence of domains of local depletion of different
concentrations. This means that while in the vicinity of the surfaces of all particles in some
macroscopic domain say, the reagent Ai is depleted, in the adjacent macroscopic domain in
the vicinity of the surfaces of all particles are depleted is the reagent A2, We show below that
the necessary, but not sufficient condition for this to happen is the difference of the rates of
local mass transfer. Generally, there are four possibilities:

1. Al is in excess everywhere, that is due to the deficit of A2

c2=0, ci(f)*0, 0<£<o00; (21)

2. A2is in excess everywhere, that is due to the deficit of Al

ci=0, c2(£)"0, 0<£<oo0; (22)

3. Both reactantsarecompletely depleted due to the reaction. Suppose,that the reactant
Ai is moredepleted near the origin (E = 0), that is the local (inthevicinity of the
particle surface) concentration ¢\ equals to zero. The reactant A2is more depleted far
away from the origin; in that domain the local concentration c2 in the vicinity of the
particle surface is zero. The self-consistency of these assumptions will be verified later.
There must be a point £ = X, such that

ci=0, c2(£)"0, 0<£<X, (23)

ci(fy 0, ¢2=0, X <£<00; (24)

4. Again both reactants are essentially depleted, but now the reactant A2is more depleted
near the origin (£ = 0). For this case

c~i(f)*0, c¢2=0, 0<E£<X, (25)
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C=0, c20 0, X<£E£<o00. (26)

Of course, only two of these possibilities are physically different, therefore we consider
below only cases 1 and 3. We would like to note here that the non-linear basic system
degenerates in this limit to piecewise-linear system in adjacent spatial domains in cases 3
and 4. Thus, the problem remains non-linear due to the matching of the solutions in the
adjacent domains. The fully nonlinear analysis by |15], |19] reveals the piecewise solution to
be the correct leading order approximation in both small parameters proportional to 1/K
and 1/)].

The cases 1 and 2 are simpler. The conditions (21) and (22), respectively, linearize the
system. For the first case, for c2=0, ci ¢ 0, 0 < £ < 00 equations (13) for i = 1,2 read

d2p dp
w o ~8K~ "=0,

d2ci dei _ .
&2 S 4= AA
where for this particular case p = c2
The solutions to (27) and (28), are exponentially decaying. Performing the smooth
matching at £ = 0 for the solutions (20) and solutions of the system (27)-(28), we obtain for
ci and c2 finally

Be'®
cl = Cf - exp {s , C<0O; (29)
/00
c2=c~ - exp{s , C<OQ; (30)
yc>°
Cl= —-exp{-~} +C--c-, C>0, (31)
p+s
c2=c~—"exp{-/73£}, C>0, 32
hexp{-/3£} (32)

where 3=\ j +1- |

The above solutions exist for arbitrary positive s = p —v. However, the actual value
of non-dimensional velocity of the saturation front v is determined by the finite capacity
assumption (see Section 2). Let us consider droplets at the (macroscopic) point x = 0, where
X is a coordinate in the frame of reference immobile with respect to droplets. The reaction
starts at time t'tart = —o0 and is turned off when the saturation front £= 0—vt1= 0 arrives
at this point, that is tén = 0. Taking £tart and t6n as integration limits in the equation (12)

one gets
0

N f p(=VT)dT =Q. (33)
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Changing the integration variable ( = -v/ in (33) one obtain* \Q/N = J . «)«m The

0
integral may be evaluated either directly, using solution (32), or from the conservation of
mass by integration of the equation (13) and (14) (see the Appendix B). This finally yields

P = P
1+Q s 140l (34)

where dimensionless Q = Q/Nc.f. If the capacity of the droplets is large enough () >> I
then from eq. (34) it follows that s &p: however the velocity of the saturation front v is
necessarily smaller.

To determine the range of parameters corresponding to the present case ¢\ ® 0 one has
to calculate ¢\ for £ > 0 using the solution (32) and eq. (11):

1
d SCOB 1- A—_)exp{—/3£}+c~—d§°/\ (35)
[
If ui > 1then c¢i decreases with ~ and
mm{cT}l = PP (36)
If ui < 1then di increases with £ and

ui/3
37
vi{(3 + ) (37)

If miiilci} becomes negative, the assumption of preferential depletion of the reactant A2in
the whole domain (21), is violated either in the vicinity of £= 0 or at infinity, so either case
3 or case 4 must be considered. If such «exchange of depletion», or «crossover», takes place
for £> 0, one has two subdomains. In each subdomain the method of solution is essentially
the same; however the matching of solutions in both subdomains at the point £ = X, is
needed, see (23)-(26).

Fig. 2. Schematic presentation of the local concentrations ci and c2
as functions of the coordinate £ in the moving frame for the case 3.



178 HAYUHbIE BEAOMOCTU Cepus: Martematuka. ®usmka. 2014. Nel2(183). Bein. 35

For the third ease, (see Fig. 2) in the subdomain 0 < £ < X, where ¢t\=10, Cc2(E) ¢ 0,
one obtains
<Ci <X
= °’ (38)

d2@ do2 _ (39)

Solutions of these equations should be matched with (20) at £= 0.

In the subdomain X < £ < oo concentrations ¢\ and c2 are governed by the equations
(27)-(28), Their solutions should be matched with the solutions of (38) and (39) at the
boundary £= X. Then X is determined by the transcendental equation:

al(l +a2p)easX + a%(aif3- le~aiX _ a
s(l -/nXa'l + Q2 a—1"’ 1

wherea = ¢™/c™ ,Qi=\ | +vl+”~anda2=\j+ V \ —" . Thus, four conditions

of smooth matching of the solutions at £ = X result in a single transcendental equation that
we analyze numerically below. The complete solution to the problem (27), (28), (38), (39)
and (40) withcorresponding boundaryconditions can nowbe easily written down; being
cumbersome they are given in theAppendix C). This solutiondepends parametrically on X
which is a root of the equation (40). For the existence of this case the parameter a should
satisfv

1<, <1+ -y, (41)

M
that is, the «faster» reagent should have lower value of the initial concentration, but this
difference should not be too large.

4. Discussion and conclusions. The solution obtained describes propagation of a
heterogeneous chemical reaction through a cloud of liquid droplets. The saturation front,
that is the boundary of the region where the particles are already saturated, moves with a
constant velocity v which is expressed through the uniform flow velocity p by equation (34)
for cases 1 and 3 and equation (57) for cases 2 and 4. It also depends on the dimensionless
capacity Q of the droplets. The solutions are stationary in a frame moving with the velocity
v with respect to the cloud of droplets; v is necessarily smaller then p.

The steady lag of the saturation front relative to overall flow translates into a steady
widening of macroscopic reaction domain. Qualitatively this continuously decreases the
observed local intensity of reaction. Consequently, the observed mean rate for a heterogeneous
reaction producing a product stored in the particles, will be lower for an descending cloud of
particles, than for a quiescent cloud. Thus we hypothesize that the observed confinement of
the reactions of this type in polar stratospheric clouds to a definite altitude, which is rightly
attributed to temperature, pressure and radiative conditions, may have an additional, purely
dynamic cause.

The point £ = X, which is also moving with the velocity v with respect to droplets,
separates the region where the local concentration c\is depleted from the region where c2 is
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depleted. In the approximation of irreversible reaction (K 00) both local concentrations
ci and c2vanish at the X -point. We would like to emphasize that the position of this
“switch-point” X is determined in a self-consistent way. X as solution of the equation (40)
depends on a, s and i/i. In Fig. 3 we present X as function of a and s for fixed value of /.

30
20

10

Fig. 3. Position of switch point X as function of concentration ratio a
and flow velocity s in moving frame for W\ = 0.2.

It is easily seen from (41), that < 1is the necessary though not sufficient condition for
the existence of the switch-point X. Since = k\/k2is the ratio of mass-transfer coefficients
i/i ® 1is a manifestation of the asymmetry in mesoscopic mass-transfer. An aerosol particle
in the flow is surrounded by a boundary layer. Even though the boundary layer can be
turbulent, in the near field of the surface there is always a laminar boundary layer in which
the transport of the molecules is due to molecular diffusion which is different for different
species, that is iAi ® 1. X as function of w at fixed values of a and s is presented in Fig. 4.

X
30
25
20

15

10

0.1 0.2 0.3 0.4

Fig. 4. Position of switch point X as function of the ratio
of mass transfer coefficients v\ at fixed a = 2.0 and s = 2.5.
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The uptake of reactants and, respectively, the generation of the product are space/time
dependent and fundamentally controlled by the existence of a switch point X. At the switch-
point, the local excess of reactant A2 is replaced by the local excess of reactant A~ For the
case considered, the ratio of the initial concentrations c*°/c"° of the reactants Ar and A2
exceeds the stoichiometric ratio. Therefore one is tempted to consider the reaction in the
whole domain as quasi-first order with respect to A2, This would be equivalent to a traditional
model, which neglects the change of the local concentration due to the «switch». However,
the change of the regime has a dramatic effect on the distribution of the reaction product.
Indeed, let us compare the modeling of the reaction with and without the switch point; the
latter corresponds to traditional modeling.

The generation of the product (uptake of the reactants) is proportional to the integrals
of supersaturationp over reaction domain (see eq. (12) and (54)). To estimate the error
in uptake of thereactants (or the vyield of the reaction products) in thedomain[o,Em],
which is introduced by ignoring the switch, that is not considering the evolution of the local
concentrations, it is expedient to consider the relative error ET\

fra j fa
Erciizm) = ( \] V*IE = \] pd~j /\] pdE, (42)
0 0 "0

where p* is evaluated ignoring the existence of the switch, assuming the local excess of the
reactant Ai in the whole domain. The relative error ETt\as a function of £0is shown in the
Fig. 5.

b

Fig. 5. The relative error Erc{ as function of £m at fixed values ofa = 2.0, s = 2.0 and W = 0.2.
The position £m = 1//3 = 2.41 and the corresponding value EW{2Al) = 1.42 are indicated.

If we ignore the switch and admit quasi-first order decay (40), the characteristic decay
length of p is 1/]3. So to estimate the lower bound of the error, we take £m = 1/(3 (see Fig. 5).
For this special position the error is about 40%; however, for £0= 1 the error increases
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tenfold up to 400%. That is, even for the simple ease of a single-reaction, neglecting local
concentration changes may result in a substantial error in the uptake of reactants.

The dependence of as a function of parameters a and s is presented in Fig. 6.
This dependence clearly resembles the function X(a,s), presented in the Fig. 3. This is a
manifestation of the importance of the crossover or switch point.

To estimate the value of s = p/(l + Q_1), where Q is a relative capacity of the droplets
with respect to nonvolatile reaction product, we notice that the effect of saturation of the
droplets on the overall distribution of concentration is substantial only if () 1 Thus, as
an estimate of s one can take s ~ p , where p is the non-dimensional relative velocity of
droplets with respect to ambient air. Considering an ensemble of droplets sedimenting in the
air one can estimate the velocity using the Stokes formula (see e.g. |4]),

Fig. 6. Relative error Eroi(1//3 as function of the a and s at fixed value of v\ = 0.2.

Xow we give some estimates using known atmospheric data, for the example of the
heterogeneous reaction of chlorine nitrate with hydrochloric acid at the surface of stratospheric
aerosol particles. Assuming a free molecular regime for mass transfer (see e.g. p|), the mass
transfer coefficients K\ and k2 may be evaluated using the formula k = av/4 , where
a is the mass accommodation coefficient and v = \JAKT/T:T Here k is Boltzmann’s
constant, and mO0 is the mass of a molecule of species in question. Taking the value of
T = 222 K at the altitude 25 km (see Appendix B in B|]) and assuming the values of mass
accommodation coefficients of HC1 and C10X 02 as 0.1 and 0.03 respectively one arrives at
the values of K\ = 1.68 and k2 = 9.14 m/s. The estimate of sedimentation velocity at the
same altitude using the Stokes formula (see e.g. J4]) yields the value of order 10-4 m/s. To
estimate the approximate value of s ~ p, where the non-dimensional velocity p is defined
above as p = U/\/Sk2D. we use the surface to volume ratio S = 10-6 m2/m3 |13] and
D « 10-3 m2/s. Dole at al. |%] give the estimate of turbulent diffusion in the stratosphere
as D less than 10-2 m2/s based on the measurement by atmospheric radar PROUST. Then
s is of the order of one; the ratio U &0.2. We used values of this order of magnitude in the
examples exhibited in Figs. 3-6.
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To avoid misunderstanding we would like to point out that the above numerical estimates,
based on particular atmospheric data, reveal the importance of the exchange of local depletion
and estimate a possible error introduced by ignoring the detailed evolution of the local
concentrations in space/time evolving systems.

On the other hand, the spreading of the saturation front, and as a consequence «smearing»
of reaction over a wider spatial domain in a descending layer of particles, is quite a «coarse»
effect for a mass-transfer-limited reaction of the above mentioned type, based on conservation
of mass and on the interplay of overall mass transport and the sinks/sources due to the
presence of particles, weakly dependent on the details of kinetics and values of the reaction
rate constant.

We have considered above an ensemble of identical particles. Being reasonable first
approximation this is still a simplification of reality. For identical particles there is a single
local concentration of the species for all particles at the same physical point, see Section
2. For Ns discrete size classes the averaging results in Ns different variables, that is a local
concentration, ¢”, n = 1,2,..., Ns for each size class. This results in a drastic increase in the
number of governing equations. All parameters of local mass transfer and reaction kinetics,
introduced in this communication for an ensemble of identical particles, will also differ for
different size classes. Still, the same approach may be applied; however for polydisperse
aerosols the mathematics becomes much more involved. The effects of particle size distribution
will be subject of a special communication.

In summary, a model, describing fast heterogeneous chemical reaction and mass transfer
in a one-dimensional overall flow has been developed. If the basic system of equations is
supplemented by the finite capacity assumption reflecting the finite storage ability with
respect to a non-volatile product, a travelling-wave regime exists. In this regime, the width
of the reaction domain tends to increase. This system may be extended in a rather straight-
forward way to include multicomponent, multiple reactions, several kinds of particles and
different size classes. As shown in |15], essentially the same approach may be used to analyze
a «batch reactor» - in the context of aerosol systems, this constitutes a well mixed «parcel»
of air or laboratory experiments in a chamber. For a reversible reaction finite K should
be considered. To solve the problem for small, but finite K we have to use the modified
Thiele moduli (mTm) approach see 116 18] and |19], The interplay of local and global mass-
transfer is taken into account in a self-consistent way. As a consequence, even if one of
the reactants initially is in local excess, crossover may happen due to asymmetry in mass
transfer coefficients. This may result in significant corrections to the uptake of reactants and
the spatial-temporal distribution of the products.

Appendix A. We assume the following mechanism for heterogeneous reaction
Ai + Particle ~ (A )adsorbed , (43)

A2 + (“)adsorbed ~ ~3 + (~4)adsoi'bed > (44)
adsorbed < (~4)dissolved ~’ (45)

whereonly the second step represents chemical Kinetics: k+ and k~arerate coefficients
for theforward andreverse reactions, respectively, on the surface. If Alisidentified with
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HC1, A2with CHOX02, A3 with CI2, and A4 with HXO3, the model (43)-(45) applies under
reasonable assumptions for the reaction of chlorine activation, considered in the present paper
as an example. The kinetic expression for this mechanism will be derived below, but first we
introduce the following notations for the concentrations at the surfaces of the particles
and their relative surface coverages s*

Al ds) Si
A2 e -
A @ -
a4 - S

If for A\ the Langmuir kinetics is assumed, the mass balance on the surface is given by
equations

= kic™ (1 —Si —S4) —K[si —k+S\C* + A c"S4, (46)

A= AFSIA)-A*4")s4-b  s4- (s el (47)

where K\ and A-are adsorption and desorption rate constants, respectively; b is the dissolution
rate constant, and (S4) nis the equilibrium value of s4, determined by the instantaneous
content of A4 inside the droplet (the diffusion of the non-volatile product A4 inside the small
droplet is considered as fast and not rate-limiting).

Making the common assumption of a pseudo - stationary state at the surface, we obtain

VA _si —aa)—aisi — "~ sid) 42 fog =
o) A —si —sa) —aisi K\sd” 4 K\§ s4= 6 )
%S o %4 $4- a2 s4- (SAequil = 0’ (49)

where a\ = ki/Zki, a2 = b/k\. Solution of this system for si, s4, though elementary, yields
quite cumbersome expressions. However, the exact solutions are not needed within the scope
of the present communication. Indeed, our consideration is restricted to the case when the
adsorption/desorption and dissolution kinetics are fast in comparison to all other processes;
that is k+/ki 1, k~/k\ 1, while ab a2 are neither too large, nor too small. It follows
from (49), that s4 ~ (s4)equil- According to our finite capacity assumption, we do not treat
the gradual increase of (S4) n caused by increased content of A4 in the droplet. Instead,
we assume it to be constant and small; thus the reaction is switched off when the limiting
content of A4 in the droplet is reached.
For si the same assumptions yield

cfs)/cii
= ¥ i (5%
Then the expression for the reaction rate R is :
Ifs* V)
= N | - * * QK
R Iéi i+ c”\l’/’ai [< %), ¥ 4%, (51)
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or, introducing rate constant Kk = k+/a\ and effective equilibrium constant
K = k+ a\k (54)equil

for the surface reaction.
A\ J»!
. Gi) &) (52)
i +ci /ai R

This equation still differs from (2) of Section 2 by the Langmuir multiplier, 1+c¢[~] ab which
is close to unity only for the relatively low coverage of the surface. This multiplier is taken
into account in J19] and shown to be of possible importance for reversible reaction. In the
present paper, for large k and K —>00, that is for fast irreversible reaction, both (52) and
(40) result in the same limiting form, c~c” —0. See the corresponding equation (19) for
the local concentrations.

Appendix B. Let us integrate equation (14) over domain —e0 < £ < 0, and equation

(13) over domain 0 < £ < o0:
dc2

0= 53
—dE 200 = > (53)

2 P - / <p(QiE = 0. (54)

Both c2 and dc2/d£ are continuous at £= 0; therefore

SC2J-00 = ~J (55)
0

or T

[cr - c2]+co] s = —VvQ . (56)

For the cases 1 and 3 c2H0 = 0; this immediately yields the result equation (34). Exactly
the same procedure, but applied to equations (14) and (13) yields for the cases 2 and 4

p

57
1+ Q/cr &7

Appendix C. Here the full solution for the third case, see (23)-(24) and (38)-(41), is
given. For0 < £< X

1
Ql-

XY
Qiexp(a'2X) + q2exp(—4'iX) 1- Pi exp(a2xX) —sc X

x exp(-Q'i (X - £))+ g2~ 1. exp(—Q'iX) + s exp(0'2(X - 0) (58)

M
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€2 —Ccl1—C?° + c~ (59)
C=0 2= (1—YQ—c™+cr. (60)
For X <£<o00
5,00 _ ,00

a= | b exp(-/3 K- A")) +cf- cf, (61)

roo_ ro
c2 =Vx—, ZTexp(-/S (f- A™), (62)
ci=cl - cN- (cf- cE)exp(—B(C- X)), c2=0, (63)

Both bulk concentrations are decreasing for £ —00; while the concentration of the reagent
A2 which is in deficit with respect to stoichiometric ratio approaches zero, the concentration
of the reagent Alapproaches ¢ —¢°. However, while the local concentration c2 is decreasing
from some finite value at £ = 0 to zero at £ = X and remains zero for larger £, the local
concentration ¢\ increases from zero at £= X to ¢ —c£ for £ —00, see Fig 1. The simple
relation between the bulk concentrations, (59), (61), and (62) is a direct consequence of
the equal dispersion coefficients for all species in the equations for the macroscopic mass
transport, eq,(7). However, the method of solution outlined in the present communication
does not use this fact, so it is valid for the case of different dispersion coefficients as well,
when there is no such simple connection. The above solutions depend parametrically on X,
which is a root of the equation (40). For the present case to exist the ratio a of the initial
concentrations should belong to the interval [1,1 + sj3{\ —"i)/~i], see (41). One can see
from (40), that X approaches zero when a approaches the upper limit. This means that the
solutions (61)-(63), representing the local deficit of A2, become valid starting from £ = 0,
that is the Case 1 - for sufficiently large excess of initial concentration Ai is both in global
and (despite slower mass transfer) local excess over whole reactive domain. On the other
hand, if a approaches the lower limit, X tends to infinity, that is the domain where solutions
(58)- (60) are valid spreads over all £ This means, in its turn, that we approach the Case 2,
when Ai is in global and local deficit in the whole reactive domain.

The above consideration presumes w, < 1. Of course, for > 1the switch is also possible;
however, than it should be a < 1, but again, not too small (Case 4). It is worth noticing,
that each of the (physically equivalent) Cases 1and 2 is possible both for iAi < 1and i/ > 1,
see eqgs. (36),(37) for the Case 1. This corresponds to a single non-zero local concentration
either increasing, or decreasing with £in the whole reactive domain; of course, the difference
between the corresponding bulk and local concentrations, which is the driving force for the
process, always decreases with £ Such non-trivial and non-monotonic parametric dependence
is a manifestation of the strongly nonlinear character of the problem considered.
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O PACMTPOCTPAHEHNWN ®POHTA HACbBIWEHWNA FETEPOTEHHOW
XNUMMNYECKOW PEAKUWMW B APO30OJ/IbHOM OBJTAKE

".A. XomeHKo, *M1.0. Muegnos-letpocsaH, B.b. 3nmmepmaH

"“HaumoHanbHbIli Hay4YHbI LeHTp XD TN,
yn. Akagemunyeckas, 1, XapbkoB, 61108, YkpauHa, e-mail: peter.mchedlov@free.fr

AHHOTayna. O61ako g3po30/ibHbIX HacTUL, OCAXAAeTCA B BO3AYXE, COflepXKalLleM peareHThbl. Wc-
XOAA U3 MaKpOCKOMUYECKON MOAENN XMMUW 1 MaeeonepeHoea, OCHOBaHHOW Ha KUHETUYECKOI Teopuu
reTEPOreHHbIX XMMUYECKMNX peakunid, Mbl aHaIN3MPYeM PacrpoCcTpaHeHUe XMMWYECKON peakuuu B
o61ake a3po30/ibHbIX YacTul,. B 3TO paboTe Mbl pacCMaTpuBaeM OWMHApPHYHO Peakuuio C OfHWM
NeTYYMM N OLHWM HeneTyuymm MPOLYKTOM, MPOTEKAtOLLYK0 Ha MOBEPXHOCTW “a3p030/IbHbIX YacTULL.
Ecnn NnpuHATL BO BHUMaHME KOHEYHYHO eMKOCTb Kar/in Mo HaCbILLEHWUIO HENeTyuYUM MPOLYKTOM pe-
kLW, 3aMef/IeHne peakLy B KOHLE KOHLIOB MPUBOAMT K PacrpoCTPaHEHNH0 (PPOHTA HACbILLEHMS.
HanzeHbl NpoCTPaHCTBEHHOE pacnpefenieHne KOHLEHTPALMI, UX 3BOJKOLMSA CO BPEMEHEM U CKOPOCTb
(bpoHTa HacbILWEeHNS.

KntoueBble CnoBa: aspo3onb, Kanss, reTeporeHHas XMMMUecKas peakums, mMaeeonepeHoe.
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