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AHHoTaumA. BpaboTe 661 U3yUeHbl HauabHO-KPaeBble 3a4aum ¢ PasHbIMU TUMAMU FPaHUYHbIX YCNIOBUIA ANS ABYXMEPHOIA
MOAUMMUKALMM YpaBHEHNS KaBaxapb! C BbICOKOW HENIMHEHOCTbIO. Y paBHEHWe paccMaTpMBanoch Ha nosy-nonoce KOHeYHoii
WWUPUHBI. BbIN NONYYEHbI pe3ybTaTbl O CYLIECTBOBAHUM W e4UHCTBEHHOCTW CUMIbHBIX W CMabblX peLleHnii NocTaBNeHHbIX
3a/jay 1 0 MCCUMaLMM PeLleHnii Ha GECKOHEUHOCTH. PelleHns paccMaTpmBanmnch B BECOBLIX NpocTpaHcTBax Co6onesa.

KnioueBble CoBa: ABYXMepHOe ypaBHeHMe KaBaxapbl, pa3pellMocTb HauaNbHO-KpaeBoi 3adaun, uccunauus peweHni
Ha 6eCKOHEUHOCTH

BnarogapHocTu: Pa6oTa BbINOMHEHA NPpU (hMHAHCOBOM NoafepXke MnHo6pHayKu Poccum B pamKkax rocyiapCTBEHHOTO
3aflaHuns: cornaweHme no 075-03-2020-223/3 (FSSF-2020-0018).

AnauyntnposaHua: MapTtbiHOB E. B. 2023. HauanbHo-KpaeBble 3ajauu 418 AByXMepHOro ypasHeHus Kasaxapbl. [MpuknagHas
maTeMaTnka & ®usmka, 55(1): 12-28. DOl 10.52575/2687-0959-2023-55-1-12-28

1 Introduction. In the following paper we consider initial-boundary value problems for two dimensional
Kawahara equation:

L, - (Usoox + AYYYY)X + A(Pxx +Ayy )X +aux + (g(u))x=f (t,x,y), (D

posed on a domain M+ = (0, T)X E+, where E+ = R+ X (0,L) = {(x,y) :x >0,0 <y < L}is a half-strip of a given
width L and T=>0is arbitrary forequation (1), with the initial condition:

n(0,x,y) =ul(x,y), (x,y)eE+ @
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and boundary conditions:
nt, 0y) =ux(t,0y)=0 (ty) €BT=(0,T)X(0L), (©)
and boundary conditions for (t,x) € Qy,+ = (0, T) X R+ of one of the following two types:

a). u(t,x, 0) = n(t,x,L)
b).uy(t,x, 0) = uy(t,x,L)

uyy(t,x, 0) = uyy(t,x,L) =0,
nyyy(t,x, 0) = Uyyy(t,x,L) =0.

The assumptions on the function g(u) are specified later; a, b are arbitrary real constants. Results on global
existence are bases on estimates which are the analogues of the following conservation laws for the initial value
problem

/l u2dxdy = const, /I (ux +u2, +bug +bu2 —2g*(u))dxdy = const,
JJr2 JIR2

where U

g*(u) = g(9)do.
Jo
The equation (1) is a two-dimensional version of the Kawahara equation:
Ut —uxxxxx + buxxx +aux +uux =0.

Obtained in [10], it describes the propagation oflong nonlinear waves in weakly dispersive media. Kawahara
equation (also known as fifth-order Korteweg-de Vries equation) is a modification ofthe well-known Korteweg-de
Vries equation (KdV):

Ut + uxxx +aux +uux =0,

which also has the two-dimensional form, so called Zakharov - Kuznetsov equation:
Ut + uxxx +uXyy +aux +un ux —°.

In this paper we establish global existence and uniqueness of solutions to initial-boundary value problems (1) - (4)
and large-time decay under small input data.

Through the years there was awide variety of investigations dedicated to various aspects of the Kawahara
equation and some of its modifications. The initial value problem and initial-boundary value problems are
considered, for instance, in [ , 1, , ].However, two-dimensional modifications of Kawahara equation are
studied considerably less. Kawahara equation has a another two-dimensional modification known as Kawahara -
Zakharov - Kuznetsov:

Ut —uxxxxx + uxxx + uXyy +aux +uux = 0.

For the first time an initial-boundary value problem for this equation was considered in [ ].The author obtained
global existence, uniqueness of regular solutions and large-time decay for the small initial data. Those results
were extended for the three-dimensional case of the Kawahara equation in [ ].Recently, in [ ] author studied
smoothness properties of solutions of a two-dimensional Kawahara equation.

Our methods are similar to those given in [ ], where the author studied the initial-boundary value problems
for the Kawahara - Zakharov - Kuznetsov equation on a half-strip. Previously, the author also obtained similar
results for Zakharov - Kuznetsov equation in [, , ].However, in our case we studied a different form of
two-dimensional Kawahara equation given by (1).

Introduce function spaces H+ taking into account boundary conditions (4). For any multi-index v = (v1, v2),
let dv =dx dy and H+ = L2+for k > 1the space H+ consists of functions g>(x) such that dvf € L2+ifvl+v2 <k
and in case (a)

dimPly=0 = dT<P\y=L =0, Vm € [0, k/2),
and in case (b)
AT+1PYy=0 =aT+> \Wy=L =0, Vm € [0, (k —1)/2).
Now, let us give the definition of the admissible weight function.

Definition 1.1. Thefunction f (x) is called admissible weight function iff is an infinitely smooth positive
function on R+, such thatfor eachj € N andVx >0

VEAIOOL < e() F(x).

Introduce the following
pT DXOH /AL

A+(u; T) = sup [/ mn2dydxdt. (5)
X0>°N° X0 vO
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14 Initial-boundary value problems for two dimensional Kawahara equation

We construct solutions to the considered problems in space Xﬁ’wx) (IM3) for two cases for k = 0 (weak

solutions), k = 2 (strong solutions) and for admissible weight /(x), such that ¥’ (x) are also admissible weight
functions, consisting of functions u(t, x, y), such that

we Co([0, T HYY ™) 0 Lo, T B ),

Further, we denote Xf;“” (I13.) as XK &) (IT3). Introduce the notion of weak solutions to the considered
problems, define special function spaces of smooth functions. Let S(3,) be a space of infinitely smooth on PN
function ¢(x,y) such that (1 +x)"[0%¢p(x,y)| < c(n, «) for any n, multi-index a,(x,y) € %y and azzl’"(p|y:0 =
a§m¢|y:L =0 for case (a) and a§m+1(p|y:0 = a§m+1(p|yzL = 0 for case (b) for any m.

Definition 1.2. Letuy € Loy, f € Ll(OLT;_Lz,Jr). The function u € Leo(0,T; Ly+) is called a weak solution of
problem (1) — (4), 1f for any ¢ € C([0,T]; S()), such that (p|t:T = (p|x:0 = (px|x:0 = (pxx|x:0 = 0, the following
relation is satisfied:

// (1P — UPrxxxx — UPyyyyx T DUQrsex + DU + AUy + g(u) @y + f)dtdxdy + // uo(p|t:0dxdy =0. (6)
I, 3,

Now let us introduce the main results. The first two theorems establish global existence and uniqueness of

weak and strong solutions respectably.
Theorem 1.1, Letu, € LZix), f e L0, T;Lﬁx)) for certain admissible weight function y(x), such that ¢’ (x) is
also an admissible weight function. Let g € C*(R) and for certain constants p € [0,4) andc > 0

lg’(w)] < clulf VueR, (7)

and 1f p > 1 the function  for certain constants n and ¢ > 0 satisfies an inequality ¥(x) < c¢(1+x)"¢'(x). Then
there exists a weak solution to problem (1) - (4)u € Xjﬁ”) (I13.); moreover A* (txx; T) + A*(yy; T) < +o0. In addition,
if p <3 in (7) and for certain positive ¢,

W PPN x) 2 e Va2 0, (8)

then this solution is unique in XZ(X) (I1%,).

Remark 1.1. The exponential weight /(x) = e*** Yo > 0 and the power weight /(x) = (1+x)*** Va > 1(1+ 1—1]),
p > 0, satisfy the hypothesis of the Theorem 1.1 (including uniqueness). Ifuy € Lo+, f € L1(0,T; Ly ), there exists a
weak solution u € C,,([0,T]; Lz +), A" (tixx) + A* (1) < +o0.

Theorem 1.2. Let u; € ﬁi,w(ﬂ’ f e Ly(0, T;ﬁf’wx)) for certain admissible weight function ¥(x), such that
¥’ (x) is also an admissible weight function, uy(0,y) = uox(0,y) = 0. Let g € C*(R) and verifies condition (8)
for p € [0,4). Then there exists a strong solution to problem (1) — () u € X:;Wx) (I13.); moreover A* (txxxx; T) +
A (thyyyys T) + A (txxyys T') < +oo. In addition, if for certain constantsq = 0 and ¢ > 0

lg" (Wl < clul? VueR, 9)
and for certain positive ¢y and r € (2,4]

Y (x) YT (x) 2y VX 20, (10)

then this solution is unique in Xi’wx) (I1%,).

Remark 1.2. The exponential weight ¥/(x) = e*** Ya > 0 and the power weight ¥(x) = (1 + x)2** Va > 0,
satisfy the hypothesis of the Theorem 1.2 (including uniqueness). Ifu, € H2, uy(0,1) = uox(0,y) = 0, f € L, (0, T; H),
there exists a weak solution u € C,,(]0, T];ﬁf), A () + A (Uyyyy) + AT (Uenyys T') < +00.

Next, we introduce two theorems on large-time decay of weak and strong solutions.

Theorem 1.3. Let the function g € C1(R) satisfies inequality (7) for p € (0,3]. Then there exists Ly > 0, ap > 0
and €y > 0 such that for any L € (0,Ly], @ € (0, ] and f = 7*/(8L*), such that ifu, € e lluollL,, < e, f=0,

2+ 7
the corresponding unique solution u(t,x,y) to problem (1) — (4) in the case a). from the space Xf)mx(l'[;) YT > 0
satisfies an inequality:
leu(t, I, < e P e ™ull?, Ve =0, (1)
Theorem 1.4. Let the function g € C*(R) satisfies inequality (7) for p € [1,4] and inequality (9) forq=p — 1.
Then there exists Ly > 0, ag > 0 and €, > 0, such that for any L € (0, L], @ € (0, a] and § = n*/(8L*), such that if
Uy € Hhei fora € (0,a], luollz,. < €0, uo(0,y) = ux0(0,y) =0, f = 0 the corresponding unique solution u(t, x, y)
to problem (1) — (4) in the case a). from the space Xcla’ezaX(H}),VT > 0 satisfies an inequality

lle™u(t, - MI%, < cllugll graes, @ fle™*P* Vi 2 0. (12)
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2. Preparations. In this section we establish some preliminary results. First, introduce the following notations:
let y(x) be a cutoff function, y is an infinitely smooth non-decreasing function on R such that y(x) =0 forx < 0,
y(x) =1forx > 1, y(x)+y(l- x) = 1; let Sexp(E+) be a space of infinitely smooth functions f(x, y) on E+
such that enxldvf(x, y)I < c(n, v) for any n, multi-index v,(x, y) e E+; let Sexp(E+) be a subspace of Sexp(E+),
consisting of functions, on the boundaries y = 0,y =L verifying the same conditions as in the definition of the
space Sexp (E+). This space is dense in H+.

Further, we drop limits of integration in integrals with respect to x and y over the whole half-strip E+ and and
with respect to x over the half-line R+. The following interpolating inequalities are very important for our next
steps.

Lemma 2.1. Letf 1(x),f2(x) be two admissible weightfunctions, q e [2, +x]

TRy

thenfor everyfunction satisfying (1fxx |+ Ifyy| + 1f\)f\/2(x) eL2+f ( x ) e L2+ f (0,y) =0, f (x, 0)fy(x, 0)=
f (x,L)fy(x,L) =0, thefollowing inequality holds:

\\ffaf 1 /2-sWig+ < cW(Ifxx 1+ Ifyyl + 1f\)f\/2112+ 1 1#2WI-2 , (13)

where the constant ¢ depends on L, g and the properties of the functions f I; if, in addition, f | = 0orf \y=L =0 then
this constant is uniform with respect to L.

Proof. Without loss of generality, assume that f is a smooth, decaying at +x function (for example f e Sexp (E+)).
First, uniformly with respect to L we establish the following:

JJ (Pl +V)f\/2f 2 2dxdy < c(JJ (f2x +fyy+f2)fidxdy)12(JJ f 2f 2dxdy)1/2. (14)
In fact, boundary conditions on the function f yield that
JJ (vl +A)f\/2f 2 2dxdy =- JJ (fxx +fyy)fl/2ff1/2dxdy - JJ ffx(frfrfdxdy.
Since ft are admissible weight functions, we get
JJ (vl +Vv@)fl/2f 2/2dxdy < ~2(J3J (flx +f gy)fidxdy)v2(JJ f 2f 2dxdy) 172
+c(JJ fxfl|2fI|2dxdy)12(JJ f 2f 1dxdy)14(JJ f 2f 2dxdy) 1/4,

whence (14) follows.
Next, we use the following interpolating inequality from [1] in the case of the domain Q = E+

W i, (fi) < c(Wxx 1IbL(Q) + Viyy IIbL(Q) + If 1(Q)), (15)

and apply it to the function f =f 2f'l/2f'~ 2, then

WfI/4f 2 4V~ ) < CJ I [1(F2f 1 /2f2502)xx | + 1 (F2F\ /2F 1 [2)yy | + f 2F | [2f | /2] dxdy. (16)

Here,
(fofl/2f2>2)xx = 2 (ffxx +fl)fl/2f 2 2 +4 ffx($\/2$r2)" +f 2(fl/2f1/2)",

33 FEXXIRV/2f 1 /2dxdy < (33 fIxf 1dxdy)2(JdJ f 2f 2dxdy) 12,

and since ft are admissible weight functions

JJ Iffx (fl/2f 22)'1dxdy < c(JJ flfl/2f 2/2dxdy)4/2(JJ f 27 1dxdy) V4
(JJ ~2h2dxdy)1/4,
JJ f21(fl2f112)"1dxdy < cJJ f2f\l2f112 < c(JJ f 2f 1dxdy) 12

ISSN 2687 0959 TMpuknagHas MmaTemaTuka& dPusnka, 2023, Tom 55, Ne 1
Applied Mathematics &Physics, 2023, Volume 55, No 1



16 Initial-boundary value problemsfor two dimensional Kawahara equation

J) fad)R

Other terms in the right-hand side of (16) are estimated in a similar way and with the use of (14) inequality (13) in
the case g =+~ follows.
Ifq € (2, +«>), then with the use ofthe (14) forq = +7

WpiH'd/2-Sh g+= (\]J \W\g—2J N U —p2Ixdxdy)llg < W p~r4r 4A\[g+2)/qW ffI12\R &
< cW(WxX\ + Wyy \ + Vp\)I\2WA+Wvfi2WM—=2 .

Finlay, if, for instance, (p\y=. = (p\ = 0, extend the function tpby zero to the quarter-plate R+ X R+ and carry

out the same argument with the use of (15) for Q = R+ X R+ and (14) for L = +/, then estimate (13) becomes
uniform with respect to !.00

Further we also use an interpolating inequality, following from the one in [4].

Lemma 2.2. Let J1(x), J2(x) be two admissible weightfunctions, such that J1(x) < cOf 2(x), Vx > 0for certain
constant c0 > 0, g € [2,+ro)

TH T v

then there exists a constant ¢ > 0, such thatfor anyfunction (p(x, y) verifying (xxj\/2(x), (pyyjl2(x) € L2(E+),
p f%i2 (x) € L2(E+), if\v\ = 1thefollowing inequality holds:

WAV f §f 2 2—s W< cW(\pxx \ + \(pyy D fJ 2VR2+XWA(pfl/2W 2 +cLl p » 2W2+. (18)

We use next two lemmas from [3].
Lemma 2.3. Let J (x) be an admissible weightfunction, then there exists a constant ¢ depending on the properties

ofthefunction J, such thatfor anyfunction p (x, y) verifying pxx,p € L2+) thefollowing inequalities hold:

JJ <c[JJ <yIxipdxdy1'1/[J J 1'/x +(19)

Jo VAx~dxdy <c[JJ pMNJdxdy]24[JJ (p2Jdxdy]l4+cJJ (p2idxdy. (20)

Introduce anisotropic Sobolev spaces with smoothness properties only with respect to x. Let H+k’0 be a
space of functions p(x,y)€L2+ such that dikp € L2+ for j < Kk endowed with the natural norm Upliim) =

(2 Wjpw2H12. LetH+—m = {(p(xy) = Pj(x,y) : V(pj €L2+], endowed with the natural norm
WollH( -0 = & * Whj W 1J1/2.

Lemma 2.4. Ifp € H+HO , dXp € H+~m'0 for n > k +m, dj+1fé€lx+andfor certain constant ¢ = c(k, m, n)
WAk HpWix+< c(\W j p + WpWher0). (21)

For the large-time decay results we need the Steklov inequality in the following form:
rI_f 2(y)d L2 I_L(f (u))2d (22)
< — "(u .
n e n2J0 y

where f € H1(0,L).

LetJi(y), | € N, be the orthonormal in L2(0, L) system ofthe eigenfunctions for the operator (-J") on the
segment [0, L] with corresponding boundary conditions J (0) = J(L) =0in the case (a) and J'(0) =J'(L) =0in
the case (b), A[ be the corresponding eigenvalues. Such systems are well known and can be written in trigonometric
functions.

Besides equation (1) we consider a linear equation:

Ut —(uxxxx + Uyyyy)x +b(uxx +Uyy)x +aux =J (t,x, yf (23)

with initial and boundary conditions (2) - (4). Weak solutions to this problem are understood similarly to Definition
1.2.

Lemma 2.5. Letu0 € Sexp(E+),f € CTQ[0,T];Sexp(E+)) . Set d0(x,y) = u0(x,y) andforj>1
H- = dl-4f (0,x,y) + (d% +dxdfy —bdj —bdxdg —adx)H —(x, y), (24)
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and let 5]-(0, y) = 5jx(0, y) = 0 for any j.Then there exists a unique solution to problem (23), (2) — (4) u €
coo( [Oa T], Sexp(z+))-

Proof. Consider the corresponding initial value problem. Let > = R x (0, L) and S(X)) bea space of infinitely
smooth on ¥ functions ¢(x, y) such that (1 + |x|)"|0%@(x,y)| < c(n, a) for any n, multi-index a, (x,y) € » and
on the boundaries y = 0, y = L verifying the same conditions as in the definition if the space S(3,). Extend the
functions u, and f to the whole strip such that u, € S(3), f € C([0,T];S(Z)) and consider problem (23) (in
Iy = (0, T) X %), (2) (in %), (4) (in Q7 = (0, T) X R). Then with the use of the Fourier transform for the variable x
and the Fourier series for the variable y a solution to problem (23), (2) — (4) can be written as the following:

ttix) = o [ 3wt & e
I=1

where ,
ﬁ(l’, g, l) — uf\o(ér, l)ei(§5+§/1%+b§3+b§/ll—a§)t + / f(’l', g, l)ei(§5+§/1%+b§3+b§/ll—a§)(t—r) dr,
0

(&1 = //X &5y (y)uo (. y) dxdy, (25)
flnen = /L &5y () £, x, y)dcdy.

According to the properties of the 1y and f this solution u € C* ([0, T]; S(Z)).
Next, leto = a,’ﬁaéu for some k, I. Then the function » satisfies an equation of (23) type, where f is replaced

by a,’;ag f.Letm > 5, ¥(x) = x™ (note that this function is not an admissible weight function). Multiplying this
equation by 20(t, x, y)¥(x) and integrating over 3, we get

d ’ ’
T / o*Ydxdy + ‘//(50)2”( + Z)zy)lﬁ dxdy +b //(30,% + Uz)lﬁ dxdy )

- // 5029 dxdy + // (= + by + a0l dxdy + 2 // 9kd, foydxdy,

//0,%dedy=—ﬂoxxo¢’dxdy+%‘//ozlﬁ”’dxdy,
//U;Z,‘dedy:—//oyymﬁ’dxdy,

ﬂoilﬁ’”dxdyz—ﬂoxxo¢”’dxdy—ﬂoxo¢(4)dxdy.

Note, that ¢ < 6y'#/(5) , * < 20§ (5).

From the equality above we get

2
—Bb//z;,zclﬁ’dxdy < ﬂoix¢’dxdy+%‘//Uzlﬁ’dxdy+%//ozlﬁ”’dxdy,

2
—b//oilﬁ’dxdy < ﬂo§y¢’dxdy+%ﬂoz¢’dxdy,
//0,%!ﬁ”’dxdy < ﬂoix¢’dxdy+8ﬂoz¢(5)dxdy.

% / v*ydxdy < c(a,b) // W + 9"+ )oldxdy + 2 // ok, foydxdy. (27)

where

Equally (26) yields

Fix @ > 0 and let n > 5. For any m € [5, n] multiplying the corresponding inequality (27) by (2a)™/(m!) and
summing by m we obtain that for

5 (2ax)™
znzﬂZ)( m!) 0%(t, x, y)dxdy,

due to the special choice of the function ¢, inequalities

zn(t) <czu(t) +¢, z,(0) < ¢,
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18 Initial-boundary value problems for two dimensional Kawahara equation

hold uniformly with respect to n, whence it follows that

sup ﬂezaxozdxdy < o0,
telo,T]

Thus, u € C*([0,T]; S;xp (34+)). We will use the following notation w(t, x, y) for the constructed solution of the
initial value problem.

Let po(t,y) = —0(t,0,y), p1(t, y) = —wx(2,0,y). Note that the functions p; € C* (Br) and satisfy boundary
conditions (4), and the compatibility conditions from the hypothesis of the lemma ensure that a! 3(0,y) =0, VL
Consider in IT}. an initial-boundary value problem:

U = (Uxxxex T Uyyyy)x T 0(txx +Uyy)x + atie =0, (28)

0,u

u| x=0 = ,Uo(ta y)a ux|x:0 = ’Ul(t, y)a (29)

t=0
with boundary conditions (4).

Let \P(t’ X, y) = /JO(t’ y)’?(l—x) +,u1 (t’ y)x’?(l—x), F(l’, X, y) = _\Pt +(\lexxx+\Ilyyyy)x_b(\lex+\Ilyy)x_a\le = 0,
U(t,x,y) = u(t,x,y) — ¥(t,x,y), then the problem (28), (29), (4) is equivalent to problem (23), (2) - (4) for the
function U, uy = 0, f = F. It is obvious, that F € C*([0, T]; Sexp (2,)) and aiF(O, x,y) =0, VL

Apply the Galerkin method. Let {¢;(x) : j = 1,2,3...} be a set of linearly independent functions complete
in the space {¢ € H°(R,) : ¢(0) = ¢’(0) = 0}. Seek an approximate solution of the last problem in the form

Ue(t,x,y) = X5, ciji ()@ (x)¥(y) via conditions:
/ (Ukt - (kaxxx + Ukyyyy)x + b(kax + Ukyy)x + aka)(Pi (x)‘pm(y)dXdy

—ﬂF¢i¢mdxdy =0, im=1..,k te[0,T]cku(0)=0.

Multiplying (30) by 2¢gim, (t) and summing with respect to i, m, we find that

L
%‘//Uidxdy+‘/0 Ukzxx|x:0dy:2‘//Fdexdy, (31)

NUkllz. o720y < IIFllL, 0.1:Ls) - (32)

thus

Multiplying (30) by ¢;, (0), putting t = 0 and summing with respect to i,m, we obtain that Ukt| i~ - Then
differentiating (30) with respect to ¢, multiplying by 2¢;; (t) and summing with respect to i, m, we find (similar to
(32)) that

WUz 0.2, < IFllLy 0,18, - (33)

Since ¢,§f“> (y) = (—Am)" ¥ (y) it follows from (30) that for any n and [ similary to (32) and (33)
19} Ukllr (078, < 19105 FllLy o, - (34)

Estimate (34) provides existence of a weak solution U(¢,x,y) to the considered problem such that aﬁagU €

C([0,T]; Lz+), for all [, n in the sense of the corresponding integral equality of the corresponding integral equality

of (6) type for g = 0, f = F, ug = 0. Note, that the traces of the function U satisfy conditions (2) for uy = 0 and (4).
It follows from the corresponding equality of (6) type that since

Uxxxxx = Ut - Uyyyyx + b(Uxx + Uyy)x + aUx - F, (35)

aiagUxxxxx € C([0,T] ;H£_3’0)) Vi, n therefore, the application of inequality (21) (for ¢ = aﬁagU, k =0,m = 3)yields
that aﬁa;Ux € C([0,T]; Ly4), VI, n then the application twice of (35) and (21) (fork=1,m=2andk =2,m=1)
yields that aﬁagUm € C([0,T]; Lz+), V1, n. And again from (35) follows that aﬁagUxxxxx € C([0,T]; Ly 4+), VI, n, the
function U satisfies (23) in IT}. and its traces satisfy (2). For any natural m differentiating corresponding equation
(23) 5(m — 1) times and using induction with respect to m, we derive that aﬁa;’;ma;U € C([0,T]; Lo+ ).

As a result, the solution to the problem (28), (29), (4) is constructed such that aﬁa;?agu € C([0,T]; Lo+), Y, m,n.
From now on in the proof we use notation v(t, x, y) for this solution.

The function u(t, x, y) + v(t, x, y) is the solution to problem (23), (2) — (4) such that aﬁa;;lagu € C([0,T]; Lo+ ),
Vi, m,n. Let u(t, x, y)n(x — 1). The function u solves an initial value problem in the strip % of (23), (2), (4) type,
where the functions f, u, are substituted by corresponding functions f, u, from the same classes and the obtained

result at the beginning of the proof for the initial value problem together with the obvious uniqueness provide
thatuw € C® ([0, T]; Sexp (24+)) and so u € CP([0, T]; Sexp(Z4)).0
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Lemma 2.6. A generalized solution to problem (23), (2) - (4) is unique in the space Ly (IT%.).
Proof. This lemma is a corollary of the following result on existence of smooth solutions to the corresponding
adjoint problem. O

In ITY. consider an initial-boundary value problem for an equation:

U + (uxxxx + uyyyy)x - b(uxx + ”yy)x — AUy = f(t, X, y), (36)
with initial condition (2), boundary conditions: (4) and boundary conditions

u|x:0 = ux|x:0 = uxx|x:0 =0. (37)

Lemma 2.7. Let uy € S(3,), fec™(o, T1;S(34)) and 5]-(0, y) = 5jx(0, y) = 0 for any j, where here in the
definition of the corresponding functions ® i in comparison with (24) the sign before the second term in the right-hand
side is changed. Then there exists a unique solution to problem (36), (2), (37), (4), u € C*([0,T]; S(Z.)).

Proof. Extend the functions u and f to the whole strip and consider problem (36), (2), (4), construct its solution
w € C*([0,T];S(%4)) in a similar way with the only obvious difference in (25).

Let po(t, y) =~ (8, 0,4), 1 = —wx (1,0, ), iz = —wxx (2, 0, y). Note that the functions y; € C% (Br) and satisfy
boundary conditions (4). Moreover,the compatibility conditions form the hypothesis of the lemma ensure that
dLu;(0,y) = 0, VL. InIIf. Consider an initial-boundary value problem:

U + (uxxxx + uyyyy)x - b(uxx + uyy)x —auy = 0, (38)

0,u

u o = R0y |y = (B ) x|, = 2t ), (39)

t=0 ~
and with boundary conditions (4).

Let \Il(ta X, y) = IJO(ta y)U(l - x) + /Jl(ta y)x’?(l - x) + IJZ(ta y)xzﬂ(l - x)/2, F(ta X, y) = _\lexxxx - \lexxxy +
bWxx + bWy yy + a¥ — ¥, U(t, x,y) = u(t,x,y) — ¥(t,x,y), then problem (38), (39), (4) is equivalent to problem
(36), (2), (37), (4) for the function U, uy = 0, f = F. Obviously F € C*(]0, T1;S(3,)) and A F(0,x,y) =0, VI

Let {¢;(x) : j =1,2,3,...} be the same set of functions as in the proof of Lemma 2.5. Seek an approximate
solution in the form Uk (t,x,y) = le,lzl ckji(t)e;(x)¥i(y) via conditions:

// [Usk@ithm — Uk(0"" Yo + @0 = b0} Y — bV, — i) )dxdy
(40)

—//F(pi¢mdxdy —0im=123 ktel0T],

ckji(0) = 0. Multiplying (40) by 2c¢kim (¢) and summing with respect to i, m, we derive equality (31), which implies
estimate (32). Similarly we get (34), which provide existence of a weak solution U (¢, x, y) to the considered problem
such that aﬁagU € C([0,T]; Ly+), ¥I,n = 0 in the following sense: for any function ¢ € Lo (0, T; HE), such that ¢,,

Prxxxxes Pyyyyx € Loo(0, T35 Lay), ¢|t:T = (/5|x:0 = ¢x|x:0 = 0 the following equality is satisfied:

R T L R LM )

Then also similarly to the proof of Lemma 2.5 we obtain a solution to problem (38), (39), (4) v such that
207 d0C([0,T]; Lo ), VI, m, n.

Similar to Lemma 2.5 we show that the function u = w + v is the desired solution. O

Remark 2.1. In further lemmas of this section we first consider smooth solutions constructed in Lemma 2.5 and
then pass to the limit on the basis of obtained estimates.

Lemma 2.8. Let /(x) be admissible weight function, such that ¥’ (x) is also an admissible weight function,

x x 12 (x) (¢ (x)) "V . .
Uy € Ly f = fo+ fix, where fy € Ll(O,T;LZEr )),fl € Lyys(0, T;Lﬁz( Y )™ 2). Then there exist a unique weak

2+ 7

solution to problem (23), (2) — (4) form the space XV ™) (I13.) and a function yi; € Ly(Br) such that for any function
¢ € Loo(0, T; HY), Pt P Pyyyyx € Loo(0, T Lot) ¢|t:T = (/5|x:0 = ¢x|x:0 = 0 the following equality holds:

//fn* (Ur — UPsxxxx — UPyyyyx + DlUxxx + DUy + audy + fi — figx)dtdxdy

+// u0¢|t:0dxdy—ﬂ u2<]5xx|x:0dydt:0.
DN Br

lullxew a) + el s, < o(T), (42)

(41)

Moreover, fora.e.t € (0;T]
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20 Initial-boundary value problems for two dimensional Kawahara equation

andfora. et € (0;T]

%// u*pdxdy +(0) ‘/OL 12 dy + ‘//[Suix +ul, +3bu + bu?, — au?]y’ dxdy
- [ vy iy [y Pasiy=2 [ gupisas- [ 2fiizan "

if i =0, then in equality (43) one can put ¢y = 1.
Proof. Multiplying (23) by 2u(x,y,t)¥(x) and integrating over 2., thus we obtain (43) with gz = sy

According to (20) for arbitrary ¢ > 0 =
| // fi(up)xdxdy| < cll(luxl + )@Y 1, LAY G T,
< on [l (utex + gy D g 2172 + g 2, JNAY (),
(44)

<e / (2, +ub, )y dxdy + c(e)]| f1||i{;/z(x)(¢,(x))71/z( // utdxdy)'’
2.+

+Cq ||f1 ||L1/,3/2(X)(1/,/(X))71/2 (ﬂ uzxﬁdxdy)l/z’
2,+

and according to (19)

// Wiy + 19" )dxdy < £// w2 ' dxdy + c(e) // u*ydxdy. (45)
//u V' dxdy = ﬂuuyy¢ dxdy < eﬂuyy¢ dxdy+c(e)//u Ydxdy. (46)

It follows from (43) — (45), that for smooth solutions

Moreover,

llull v sy + o o Br) < e (47)

The end of the proof is standard. O
Lemma 2.9. Let /(x) be admissible weight function, such that ¥’ (x) is also an admissible weight function,

wo € H™) us(0,9) = uox(0,y) =0, £ = fi + fi, where fy € H2V'™), fi € L,(0, T; Lw IV Then there exist a
strong solution u € X>¥*)(11T) to problem (23), (2) - (4) and a function 4 € Ly(Br) such that for anyt € (0, T)

el ooy + ptallacsey < (T (ol goven + 1ol v + ||f1||L2(0’t;LZf<x>/¢f<x>)),

andfora. et € (0,T)

% //(uix + uéy +bu? + bui)lﬁdxdy + / (U ¥+ Mol + 2nxtiax ¥ = 2bUexlian ¥/
302 " = 2tV + Attt + uZ Y — 4bud Y+ (B + a)u,zcxlﬁ)|x:0dy
+/ (50U + 61Uy + 8bUL o + 6bUS, + b, +4bul, + 2bu’, +
+(3b% — a)ul, +4b%ul, — abul + (b* — a)ul )Y dxdy
/ (—5u?,. — 6bu’, — Su,zcyy - buzy - b*ul - Sbu,zcy - bzuz)lﬁ”’dxdy
+/ (u®, + uéy +bul + buz)lﬁ(5)dxdy
= 2/ (foxxtixx + foyyttyy + bfoxtix + bfoyuy)¥dxdy
<2 [ (ltes)e = fvtent|
2 [ Lt + g = bl = by ¥y
if fi = 0 then in equality (48) one can put (x) = 1.
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Proof. Multiplying (23) by 2(txxp(x))xx + 2Uyyyyp(x) — 2b(uxp(x))x — 2buyyp(x) where either p = ¥/(x) or
p(x) = 1 and integrating over %, we get equality (48) for py = thxxxx|x—0, Where ¢ is substituted by p. Here
according to (20) for an arbitrary ¢ > 0

L
[ sty < [[ deaxdycte) [ udparay 49)
0
similarly to (45) and (46)

//(uixx + uiyy + u,zcyy + uixy)lﬁ’dxdy <e //(uixxx + ugz;yyy + u,zcxyy)lﬁ’dxdy +c(e) //(uix + uzy)lﬁdxdy, (50)

and
| // L Gox ) + thgy ] ddy] < ¢ // (o + 182y + 1) dxdy + () // PR Ndxdy.  (51)

Inequalities (47), (49) — (51) and equality (48) imply that for smooth solutions
lall st (rzg ) + Netsowex gl By < C(T)(||uo||ﬁ3¢<x> Flfolly, o 2000y + ||f1||L2(0’t;L£<x>/¢f<x>)). (52)

i
Lemma 2.10. Let the hypothesis of Lemma 2.9 be satisfied for /(x) = e*** for certaina > 0. Letg € C*(R), g(0) =
0. Consider the strong solution u € X%V (I13.) to problem (23), (2) — (4). Then for a.e.t € (0,T)

d . ,
2] o sy s ] g/ hueCuenes = bues + gy ~ bugy iy

//g(u)(uxxxx — bllex + Uyyyy — buiyy) p'dxdy — a// g (w)p'dxdy = //g(u)fpdxdy.

where either p(x) = 1 or p(x) is an admissible weight function such that p(x) < c¢(x) Vx = 0.
Proof. In the smooth case equality (53) is obtained via multiplication of (23) by g(u(t, x,y))p(x) and subsequent
integration and in the general case via closure, which here is easily justified since X>¥*) (IT}.) € Lo(IT1) and

v ~v¢.0

3. Existence of solutions. The following is the appropriate text. In this section we proof of the existence of
the solutions in the first two theorems.

Lemma 3.1. Let g € CY(R), g(0) = 0. |¢(w)| < ¢ Vu € R. ¢(x) = e*** for certain a > 0, uy € Lﬁx),
feLli(0,T; Lﬁx)). Then problem (1) — (4) has a unique weak solution u € XV (I1%).
Proof . We apply the contraction principle. For t, € (0,T] define a mapping A on XY™ (IT*) as follows:
u=~Ave XV (ITf ) is a weak solution to a linear problem:

U — (Uxxxx + uyyyy)x +b(txx + ”yy)x +auy = f(t,x,y) — (9(0))x,

in 1T} and boundary conditions (2) - (4).
Note that 3/2(")~"? < ¢/, |g(v)| < c|o| thus, Lemma 3.1 provides that the mapping A exists. Moreover, for
functions 0,7 € X¥® (ITf ) according to inequality (42)

3/4
A0l gy < C(T)(IluollLﬁx) + ||f||L1(0’T;LZ+<x>) +1! o1l v g ) 50
180 = Adll oo ;) < (D)t llo = Bl v () -

whence first the local result succeeds. Next, since the constant in the right-hand side in the above inequalities is
uniform with respect to 1y and f, one can extend the solution to the whole time segment [0, T] by the standard
argument.O

Proof of Existence Part of Theorem 1.1. For h € (0; 1] consider a set of initial-boundary value problems:

Ur — (uxxxx + uyyyy)x + b(uxx + ”yy)x + aux + g;l(u)ux = f(t, X, y), (55)

with an initial condition:
u|,_y = uon(x), (56)

with boundary conditions (3) and (4), where
fult,x,y) = f(tx,yn(1/h—x),  un(x,y) = uo(x)n(1/h - x),
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22 Initial-boundary value problemsfor two dimensional Kawahara equation

hU
gh(u)= g'(u)y(2 - h\ul), gh(u) = /0 gh(s)dd.

Note, that gh(u) —g(u) if \u\ < i/h, gh(u) —0if\u\ > 2/h, \gh(u)\ < c(h) Vu and the function gh satisfy inequality
(7) uniformly with respect to h.

Lemma 3.1 implies that there exists a unique solution to this problem uh e Xeax(M+) for any a > 0.

Next, establish appropriate estimates for functions uh uniform with respect to h (we drop the subscript hin
intermediate steps for simplicity). First, note that g'(u)ux e Li(0,T; (x)) and so the hypothesis of Lemma 3.1 is
satisfied (for fi —f2 = 0). Then equality (43) provides that for both for p(x) =i and p (x) = :

dt 4P w2pdxdy +p (0) J " ¥+ J)P [Qui 4 @y +3buR +bu2 - au2]p’dxdy
(57)
- JJ [bux +bu2lp@@dxdy +JJ u2p (5)dxdy —2JJ fupdxdy +JJ(g'(u)u)*p'dxdy.
Choosing p =i with respect to h and to L we get
\\uh lie([QT];L2H < C (58)
Let p = . Note that uniformly with respect to h
\(g'h(u)u)*\ < clu\p+2. (59)

Letq —p +2, s —s0(q) from (17), fi(x) = ®'(x), f 2(x) = (fh(x) 72*)(9 (gs —p/4 < i). Applying (18), we obtain
that

JJ \u\p+2J/" dxdy —J 3 WP42A T A 2 (i/2 - xdy

<c( ff (ugx +n2 +u2)"idxdy)gs( ff u2n2dxdy)q(i/2 s)

3 (60)
—( J-(u"x +u2yy+ u2)*idxdy)os ( J-(u 2" ) y(1-2) uu(1-2) ~ )qs/2 s)

< °(J-(u"x +Uyy+u2)M xd y)p/4(\]-u2*hjxdy)(4 p)4 (\Imu2dxdy)pl2.
Since the norm of the functions uhin the space L2+ is already estimated in (58) it follows from (57), (59) and (60),
that uniformly with respect to h

WhW\XA(X) (W) < °. (61)

Write the analogue of (55) where p is substituted by po(x - x0) for any x0 > 0 Then it easily follows (5), that
J+(uhxx;T) +A+(uhyy) < c. (62)

Let En —(0, n) X (O, L). It follows from (62) and interpolating inequality from [1] (where Qn —(n,n + i) X (0, L)):

If h m(Qn) < c(I)(\]JQTM +fiy +f 2)dxdy)i/4(v.lQ2dde)I|i,

that uniformly with respect to h
\Wh 1Ib4(0,T;,Lm(En)) < d
and
Woh(Uh) \Li/p (OT-22E,)) < C

Then from equation (1) itself it follows, that uniformly with respect to h

Wuhtlk (OT;HS5(E,)) < C (63)

Since the embedding Hi(En) < L2(En) is compact, it follows from [15] that the set uhis relatively compact in
Lq(0, T;L2(En)) for g < +x.
Extract a sub-sequence of the functions uh, again denoted as uh, such thatas h ~ +0
uh~ n*-weaklyin L,x(0,T;
U-hxx,U-hyy - * U-xx,*yy weakly in L2(0,T;d2+ );
Uh A Ustrongly in  Lmax(24/ (4-p))(0,T;L2(En))Vn.
Let ¢ is a test function from Definition 1.2 with supptp e En. Then, since

\gh(uh) - gh(u)\ < c(\uh\p +\u\p)\uh - n\
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with the use of (63), we obtain, that the limit function u verifies (6).
Now, note that g(#)¢x € Leo(0, T; L14) if p < 1. Incase p > 1

T
gl < [ g L[] gl 9y #1470 drayat

<o /0 ' [( // (u, + 12, +u?)y dxdy)”’( // w2pdxdy) P (64)

( // Q(y" )P P g dy) 2] dt < o

since ()12~ (P12 < ¢(1 + x)P™* by virtue of the additional property of the function . Approximating any
test function from Definition 1.2 by the compactly supported ones and passing to the limit we obtain equality (1)
in the general case. O

Lemma 3.2. Let g € C3(R), g(0) = 0, |¢’(w)|, |g”’ (u)| < cVu € R. ¢(x) = 2* for certain a > 0, uy € ﬁf’wx),
ue(0,y) = uoy(0,y) =0, f € La(0, T;ﬁf’wx)). Then there exists to € (0, T) such that the problem (1) - (4) has a
unique strong solutionu € X>¥® (I}).
Proof. Similarly to the proof of Lemma 3.1 we construct the desired solution as a fixed point of the map A but
defined on the space XY &) (IT} ). Here §/* /4’ ~ ¢ and Lemma 2.9 where f; = f, fi = ¢’ (v)ox ensures that such a

map exists. Moreover, for functions v, € X>¥ ) (I} ) according to inequality (48)

1/2
180llx2pc0 < e(T)luoll gzveo + IFIlp, (o pgeveo + B/ 1ol xew ),
and, since |g'(0)ox — ¢'(0)0x| < c(lox] + [0x[)|o = 0] + clox — v,
1/2

A2 — Av]|x2v 0 < c(T)ty" "ol xeveo + 0l xeweo ) o = 0l xew s

whence the assertion of the lemma succeeds. Here for convenience we denoted X%¥ () (ITf)) as X 2¥(x) o
Proof of Existence Part of Theorem 1.2. We will proof, that if X 2’ezm(l'[;), a > 0 is a solution to problem

(1) — (4) for some T’ € (0, T], where the function g € C%(R) verifies (7), then for any admissible function ¥(x),
such that ¢ is also admissible and ¢ (x) < ce?**, Vx > 0,
el s,y < €T, Dol o 11 g o). (65)
Using (57), where g2 = tixx|x—0 We obtain
||”||X1//<x)(n;,) + [thsex | x=0ll 1, By < C. (66)
Next, since the hypotheses of Lemma 2.9 and Lemma 2.10 are satisfied, write down the corresponding analogues

of equalities (48) and (53) and subtract from the first one the doubled second one, then with the use of (49) and
(50) for sufficiently small ¢ we get

% //(uix + uéy +bu? + buz — 29" (u)) pdxdy + / (u,zcxxxp)|x:0dy + / (5u® . + 6u92€xyy + uzyyy)p’dxdy
< // 29(t) (Useseexe — Dl + Uyyyyyy — buiy,) p’dxdy — 2a//g*(u)p’dxdy
+£/ u,zcxxx|x:0dy +¢(e) / u,zcx|x:0dy + e/ (ul, ..+ u,zcxyy + uzyyy)p’dxdy
+c(e) //(uix +ul ) pdxdy + c/ (fee + fiy + P pdxdy
+2 // (9" (Wt [ 2t p” + i p” = buxp'])dxdy — 2 // g(u)fpdxdy — 2 / (9" (w)g(u))*p’ dxdy.
Choose p = 1. Note, that (7) with (66) imply that

[ 10 @iaxdy < clulf_tath, < exd ] (2ovi, o raxayper, (68)

[ atwrsaxty < et als. ..

Thus, from (67) we get
||”xx||Lo<,(0,T’;Lz,+) + ||”yy||Loo(0,T’;Lz,+) <ec
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24 Initial-boundary value problems for two dimensional Kawahara equation

In particular
el iz, ) < e (69)

Now, in (67) chose p(x) = ¢/(x). By virtue of (69) |g(u)| < c|u| and then estimate (65) easily follows.
Note, that from (67) (where p(x) = po(x — x0) for any xo = 0) follows

/1+(uxxxx;T/) +/1+(uxxyy;T/) +/1+(uyyyy;T/) <e.

To finish the proof consider the set of initial-boundary value problems (55), (56), (3), (4). Lemma 3.2 imply that
for any h € (0, 1] there exists a solution to such a problem uj, € X%V (H;ro(h)). Then with the use of estimate
(65) we first extend this solution to the whole time segment [0, T] and then similarly to the end of the proof of
the previous theorem pass to the limit as A — +co and construct the desired solution. Note, that here due to (69)
g(u)dx € L1 (IT}) Vp without any additional assumptions on the weight function ¢.0

4. Uniqueness of solutions. The following is the appropriate text. In the following section we give proof of
the uniqueness of the solutions in the first two theorems.

Theorem 4.1. Let p € [0,3] in (7), ¥(x) be an admissible weight function, such that ¥ (x) is also an admissible
weight function and inequality (8) be verified. Then for any T > 0 and M > 0 there exists a constant ¢ = ¢(T, M),
such that for any two weak solutions u(t, x,y) and u(t, x,y) to problem (1) — (4), satisfying ||u||X;€<x), ||ﬁ||Xg<x> <M

with corresponding data uy, uy € L/ fs fe L (0, T; L;&’ix)) the following inequality holds:

2+ 7

I = llygeor < lllto = Tallgeo + 1 = Flly, g ) (70)

Proof . Letw =u—u, wy =ug —tg, F= f— f For the function w apply Lemma 3.1, where f; = 0. Note that
inequality (8) implies that (7/¢")"/* < c(y’)P/*yP/, thus

( // |ulPulpdxdy)® < [[|ul? (¥ /¢ ) x| // Wi (') P dxdy]
< c||u(¢/)1/4¢1/4”pw||u(¢/)1/4¢1/4”i2’+ (71)
< cﬂ//(uix + uéy + u2)¢’dxdy)P/4+1/4(ﬂ ubPdxdy)P/ 4

$0 ¢’ (u)u, € L;(0, T, LYY, since p<3.

2,+
As a result, we derive from (43) that for t € (0, T]

L ¢
// o*pdxdy +¢(0) ‘/0 ,u§|x:0dy +‘/0 //[Swix + wzy +3bo? + wz - aw® Y dxdydr

< // wipdxdy + c /0 t // wPpdxdyds +2 /0 t / (F = (¢ (Wux — ¢’ @) wipdxdtdr.

2|/0t//(g/(u)—g/(ﬁ?ﬁx)wxﬁdxdﬂ = 2|/0t//(g(u)_g@(w¢)xdxdt| < c/ (ul? + (@) (i) ldxdy, (73)

(72)

Where

where similarly to (71)
// [ul? | 0wy dxdy < Il (P9 1 ( // W2 (W) 2 o ddy) 2 // P ydxdy)?

< ¢( // (12, + 12, +uP)y dxdy)?’*( // ubPdxdy)P’*( // (02, + @, + )Y dxdy)'( // w0 Pdxdy)®/*

< Eﬂ(wix + wzy + )y dxdy

+e(e)( // (U2, + sy, +u®)Y dxdy)?” // w*Pdxdy,

where ¢ > 0 can be chosen arbitrarily small. Then inequalities (72), (74) provide the desired result.0

The next theorem provides the uniqueness part of Theorem 1.2.

Theorem 4.2. Let the function g € C*(R) verifies condition (9). Let y(x) be an admissible weight function, such
that ' (x) is also an admissible weight function and condition (10) holds. Then for any T > 0 and M > 0 there exists
a constant ¢ = ¢(T, M), such that for any two strong solutions u(t, x,y) and u(t, x,y) to problem (1) — (4), satisfying

(74)
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llull g2y () 2tll 20 ayy <M with the corresponding data ug, ty € Lzﬁx), f.f e L0 T; LY ™) inequality (70)

2+
holds.
Proof. The proof mostly repeats the proof of Theorem 4.1. Note that here obviously ¢’ (@)uy, ¢ ()x €

Loo (0, T LZ ix)), thus equality (72) holds. The difference is related only to the nonlinear term. In comparison with
(73) we estimate it in the following way: since

3 W =g/ @ = (¢ @) - 9@ +9' @or. 2] [[ (6 s - g @0z
=12 [ (¢ - g @movisdy - [[ " @otpaxdy - [[ ¢ @y ard (75)
< [[ ul? + @)l + @0t ydrdy +c [ o*yaxdy
By virtue of (10) §f < ey (1) 2(ypry(r=2)/(2r) g (r42) (20

// jul s |o® Pdxdy < c / [l [ 2P () 5op 2 dedy

[ A [ e P P70 b Al

< 2 [ (0204 03, 4 0ty ey [[ o parayy =

<e // (@2 + 0y, + @)Y dxdy + cle) // w¥dxdy,

where sy(r) = 3 — £ < 1and 2 < -5 < +oo. The desired result obtained from (72) and (75). O

Theorem 4.3. Let the function g € C%(R) verifies condition (9). Let y(x) be an admissible weight function, such
that ' (x) is also an admissible weight function and for certain positive constant

¥ (0)Yl(x) = ¢y Yx = 0. (76)
Then for any T > 0 and M > 0 there exists constant ¢ = ¢(T, M) such that for any two strong solutions u(t, x,y)
and u(t, x,y) to problem (1) - (4), satisfying ||lull \2yc0 lull y2y0 < M, with corresponding data u, 1 € HY™,
£.f € Ly(0, T;ﬁfwx)), up(0,y) = uo(0,y) = 0, the following inequality holds:

e =l oy ey < ellluo = Boll goveo +1F = Fllp, o rgpven )

Proof. First of all note that the hypothesis of Theorem 4.2 is satisfied and, consequently, inequality (70) holds.
Let g} (u) = g’ (u) — ¢'(0), then according to (9)

g7 ()] < clul?*. (77)
Adjoin the term g’ (0)u, to the linear term aqu, and consider an equation of (1) type, where g’ is substituted by g;.
Condition (76) implies that

P2 (x) 2
< T (x). (78)
¥ (x)
In particular it means that g (u)uy, g} ()t € Lo (0, T; LZ i/ V0 Write corresponding analog of (48) for v = u—u
and fi = g} (w)ux — g; (W)iiy, then

t
//(wix + wzy +bo? + bwz)lﬁdxdy + ‘/0 / (5u2 o + 6u)zcxyy + uzyyy)lﬁ’dxdydr
2

t
< ﬂ(ngx + cogyy + bl + bwgy)lﬁdxdy + c/ / (g} (Wuy — g (W)ike)? ‘é/ dxdydr
0

t t
e‘/o / (@2, + wixyy + wzyyy)lﬁ’dxdydr+ c(s)‘/0 //(wix + wzy + 0?)dxdydr
t
+c/ / (F2 + Fiy + F)ydxdydr,
0

To estimate the integral with the nonlinear term apply (77), (78) and the corresponding analogue of (75)

‘//(g{(u)ux —g’l(ﬁ)ﬁx)zg—f)dxdyd < c//(|u|2q + [a)*D)ul o’y dxdy + c// 1|27 w2y 2 dxdy, (79)
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where
/ |ul*Tul w0y T2 dxdy < |y PN NPl oy N,

< c||u||2qz+;(x) ‘//(w,zcx + wzy + bl + bwz)dxdy,/ [T 02 0* YT 2 dxdy

< Jup 4137 [ o2paxay,

The statement of the theorem follows from inequality (79). O

5. Large-time decay of solutions. Now, we proof last two theorems and establish large-time decay of
solutions.
Proof of Theorem 1.3. Let ¥/(x) = €*** for a € (0, ay], will be specified later, u; € LV f = 0. Consider the

2+

unique solution to problem (1) — (4) from the space X/, y(x) (IT3.) VT.

Note that according to (71) ¢’ (u)u, € L1(0,T; wa))
Apply Lemma 3.1, where f; = ¢’ (u)uy., f; = 0, then equality (57) for p = 1 provides, that

lu(t, )., < luollz,, V&2 0.

Equality (57) for p = ¢ implies that

d L
' // u*dxdy + ‘/0 pody + 20{// [5u, + uzy + (3b + 4a®)ul + buz + (4a°b + 160" — a)u?]ydxdy 0

- 2 / (¢ (wpw)" Ydxdy

With the use of inequalities (59) and (60) we derive that uniformly with respect to L for certain constant c¢*
depending on the properties of the function g,

2//(g’(u)u)”‘lﬁdxd < c(ﬂ(uix+u2 +uz)lﬁdxdy)p/4(‘//uzlﬁdxdy)(4_'0)/4||uo||'zl+
<1 [ uter it paxdy e Qa2 s, ) [[ v yardy

It follows from (22) that

// u*dxdy < —//u Ydxdy < —(ﬂ 2¢dXdy)1/2(ﬂ uyy!ﬁdxdy)l/z
f—// wydsdy < [ o, vaxay. -

2a // uy ydedy > 5 // wpdxdy + % // u?, dxdy. (83)

13 + 42| // wydxdy < // 2 Ydxdy + (b, ) // ubpddy, (84)
21| // W fidrdy < - // w2 pdxdy + c(b) // ubydxdr (85)

Combining (80) — (85) we find that
2
dt // Ydxdy + ‘/0 Sdy

—c(bam)—c (IIuOIIiZf(4_P) +lluoll7, )1 ﬂu2¢dxdy <0

and, so
In particular

Moreover,

+a/ (uxx+uyy)xﬁdxdy+a[ e

> ¢ (6413/(4 P) +eﬁ)

Choose Ly, ap and €, such that L > ¢(b, a, ap). Then it follows from (86) that

16L4

L
%// u*ydxdy +/ pody + a//(uix + uzy)dxdy + aﬁ// u?dxdy < 0. (87)
0

Ipuknadnas mamemamura & Pusuxa, 2023, mom 55, Ne 1
Applied Mathematics & Physics, 2023, Volume 55, No 1

i 16L4

ISSN 2687-0959



E. Martynov 27

where f = % O
Proof of Theorem 1.4. Let the values Ly, a, €, ff be the same as as in the proof of the previous theorem,
¥(x) = €2 for certain a € (0; ], up € Hf’wx), ue(0,y) = uox(0,y) =0, |luollz,, < €o. Consider the unique

solution to problem (1) — (4) u € Xi’wx) (I13.), VT. Since g’ (u)ux € Lo (0, T; L;&’ix)). Repeat the proof of Theorem
1.3 and obtain (86). Besides (11), it follows from (87) that

+o0 L
‘/0 eaﬁr[‘/o ufcx|x:0dy + a//[uix +ﬁuzy]lﬁdxdy]dr < ||u0||L12/j+<x). (88)

Similarly to (67), from (48) and (53) we get (for p = 0)

d \ L
7 //(uix + uiy +bu? + buzzl — 29" (u))pdxdy < C‘/o u,zcx|x:0dy,
whence with the use of (68) and (88) follows that uniformly with respect to t > 0

””xx”L% + ”uyy”Lz,+ <c

and
llullr., ) < e (89)

In(67)letp =4
% //(ufm + uzy +bu® + buzzl - 2¢" (u))Ydxdy + / (W) |y Y
+2a / (50 + 618y + g Wiy
< Za// 2g(u) (Usxxx — blixx + Uyyyy — by )Wdxdy — 4aa//g*(u)xﬁdxdy
+£/ W |0y + C(€) / wh| _ dy + Zea//(ufcxxx Ul gy UGy, Vdxdy
+ac(e) //(ufm +uf, Vpdxdy + 2/ (g (W)t [4QU ey + 40 Uy — 20tbu | ) dxdy
~ta [ (¢ gt yaxdy

Inequality (12) follows from (88) and (89). O
Thanks. The author thanks professor A. V. Faminskii for his guidance and suggestions.
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