

ФИЗИКА

 $\mathrm{MSC}~65\mathrm{Z}05$

МОЛЕКУЛЯРНО-ДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПОВЕДЕНИЯ ФУЛЛЕРЕНА С₆₀ ВНУТРИ ОБОЛОЧКИ С₅₄₀

О.Е. Глухова, И.Н. Салий, А.С. Колесникова, М.М. Слепченков, В.В. Шунаев

Саратовский государственнй университет имени Н.Г.Чернышевского, ул. Астраханская, 83, Саратов, 410012, Россия, e-mail: graphene@yandex.ru, sin@sgu.ru

Аннотация. В работе представлены результаты теоретического исследования двухоболочечного фуллерена $C_{60} @ C_{540}$. С целью выявления закономерностей движения внутреннего фуллерена в поле удерживающего потенциала внешней оболочки. Рассчитан многоямный потенциал взаимодействия фуллеренов C_{60} и C_{540} . На основе данных о топологии структуры двухоболочечного фуллерена и анализа рельефа энергетической поверхности взаимодействия фуллеренов прогнозируются возможные варианты туннелирования фуллерена C_{60} между потенциальными ямами. Составленный прогноз подтвержден данными численного эксперимента движения фуллерена C_{60} в ноле молекулы C_{540} .

Ключевые слова: двухоболочечный фуллерен, многоямный потенциал, потенциальные ямы, топология, энергетическая поверхность, туннелирование.

1. Введение. С появлением углеродных наноструктур начался новый этап развития современного материаловедения. Обладая миниатюрными размерами и широким спектром уникальных свойств, углеродные нанообъекты являются перспективным материалом, находящим применение в различных технологических отраслях. Широко известны такие наноструктурированные материалы, как углеродные нанотрубки, графен и его производные, фуллереновые нанокластеры. На основе последних был создан новый класс наноструктур, получивший название «углеродные онионы» [1]. Эти структуры представляют собой сферические наночастицы, состоящие из вложенных друг в друга концентрических графитовых слоев. Подобные материалы можно успешно синтезировать с помощью таких технологий, как электронное облучение [2], конденсация из углеродных паров [3] и вакуумный отжиг наноалмаза [4]. Основным структурным компонентом углеродных онионов являются фуллерены Голдберга первого типа икосаэдрической группы симметрии благодаря их высокой стабильности [5]. Наиболее распространенной конфигурацией углеродных онионов является двухоболочечная фуллереновая структура но причине её легкого синтеза. На основе двухоболоченых фуллеренов создан целый ряд устройств нового поколения. В частности, на базе наночастицы C₆₀ @ C₄₅₀ предложены модели наноэлемента памяти и наногироскопа [6]. Сформулированы условия, при которых гибридное соединение C₆₀ @ C₂₄₀ можно рассматривать в качестве плазмонного резонатора, что открывает новые перспективы для исследований в области нанофотоники [7]. Анализ электронной структуры и статической дипольной поляризуемости углеродного ониона C₆₀ @ C₂₄₀ показал, что внешний фуллерен С₂₄₀ практически полностью защищает внутренний фуллерен С₆₀ от действия статического электрического поля [8]. Следовательно, двухоболочечный фуллерен C₆₀ @ C₂₄₀ можно использовать в качестве экранированной камеры.

106 НАУЧНЫЕ ВЕДОМОСТИ

Несмотря на большое количество работ в области исследования многооболочечных фуллеренов, во многих из них внимание уделяется только вопросам топологии объектов. В то же время, очень мало работ посвящено изучению закономерностей поведения молекул внутри фуллеренов, хотя с движением внутреннего объекта в потенциальном ноле внешнего фуллерена связан ряд уникальных эффектов. Одним из таких эффектов является быстрое устойчивое вращение фуллерена C_{20} в полости фуллерена C_{80} [9]. Другой эффект заключается в существовании гироскопа, представляющего собой быстровращающуюся молекулу C_2SC_2 внутри C_{84} [10].

Целью настоящей работы является выявление закономерностей движения малого фуллерена C_{60} в нанопространстве большого икосаэдрического внешнего фуллерена C_{540} и определение пространственной конфигурации многоямного потенциала взаимодействия этих объектов.

2. Метод исследования. Компьютерное моделирование поведения внутреннего фуллерена в углеродных нанокластерах с икосаэдрической внешней оболочкой осуществлялось молекулярной динамикой с использованием метода на основе потенциала Бреннера для расчета полной энергии. В основе используемого метода молекулярной динамики лежит решение уравнения движения Ньютона. Ускорения атомов находятся путем вычисления силы, действующей на каждый атом системы. В результате интегрирования уравнений движения вычисляется траектория, которая характеризует зависимость координат, скоростей и ускорений атомов от времени. Зная координаты и скорости каждого атома, можно прогнозировать состояние системы в любой момент времени.

На этапе релаксации системы необходимо использование термостата. Использовался термостат, масштабирующий скорость [15]. Масштабирование проводится на каждом шаге интерирования. В работе использовались следующие параметры: время шага — 1 фс, смещение атома — 0.00001 нм, максимальная сила — 50 мэВ/нм, корень квадратный из производной — 0.5 мэВ/нм, разница энергий — 0.0005 эВ.

В рамках данного подхода полная энергия системы представляется суммой трех термов [11]:

$$E_{\rm tot} = E_{\rm b} + E_{\rm tors} + E_{\rm vdW} . \tag{1}$$

Для удобства описания «сферы действия» каждого потенциала в (1) топологическую сетку в окрестности атома с номером *i* удобно разбить на три группы атомов, окружающих данный. Первая группа образована атомами, связанными с *i*-м химическими связями, вторая группа — атомами, образующими химические связи с атомами первой грунны, третья — всеми остальными.

Рассмотрим подробнее потенциалы в выражении (1). Терм представляет энергию химически взаимодействующих атомов и описывается потенциалом Бреннера [12]:

$$E_b = \frac{1}{2} \sum_{i=1}^{N_{\text{at}}} \left(\sum_{j(\neq i)} \left(V_R(r_{ij}) - B_{ij} V_A(r_{ij}) \right) \right)$$
(2)

где $V_R(r_{ij})$ и $V_A(r_{ij})$ — представляют парные потенциалы отталкивания и притяжения между атомами первой группы но отношению к *i*-му, определяемые химическими тинами атомов и расстоянием между ними r_{ij} ; i, j — номера атомов, $N_{\rm at}$ — количество атомов; индекс *j* пробегает все номера атомов первой группы в окружении *i*-ого атома. Многочастичный терм B_{ij} корректирует энергию взаимодействия нары атомов $\{i, j\}$, учитывая специфику взаимодействия σ — и π — электронных облаков.

НАУЧНЫЕ ВЕДОМОСТИ

Терм E_{tors} в (1) представляет энергию торсионного взаимодействия на связи между парой $\{i, j\}$, которая определяется величиной угла между двумя гранями, общим ребром которых является эта связь. Таким образом, этот терм рассчитывается с учетом атомов первой и второй групп по отношению к *i*-му. Энергия торсионного взаимодействия играет большую роль при расчете атомной структуры и механических свойств деформаций неплоских систем, какими становятся, в частности, графеновые нанопластины при деформациях изгиба. Выражение для энергии E_{tors} можно записать как [12]

$$E_{\text{tors}} = \frac{1}{2} \sum_{i=1}^{N_{\text{at}}} \left(\sum_{j \neq i} \left(\sum_{k \neq i, j} \left(\sum_{l \neq i, j, k} V_{\text{tors}}(\omega_{ijkl}) \right) \right) \right), \tag{3}$$

где торсионный потенциал $V_{\text{tors}}(\omega_{ijkl})$ обычно представляется как функция линейного угла ω_{ijkl} двугранного, иостроенного на базе атомов с номерами i, j, k, l с ребром на связи $\{i, j\}$ (k и l — атомы первой группы по отношению к атомам с номерами i и j, соответственно):

$$V_{\rm tors}(\omega) = t \left[\frac{256}{405} \cos^{10}(\omega/2) - \frac{1}{10} \right] \,. \tag{4}$$

Здесь t — высота вращательного барьера, которая задается индивидуально для заданного типа структуры (для связи типа углерод-углерод t = 0.3079 эВ [12]). Терм E_{vdW} (1) описывает ван-дер-ваальсовое взаимодействие несвязанных атомов:

$$E_{\rm vdW} = \frac{1}{2} \sum_{i=1}^{N_{\rm at}} \left(\sum_{j \neq i} V_{\rm vdW}(r_{ij}) \right).$$
(5)

Для расчета энергии ван-дер-ваальсового взаимодействие *i*-ого атома с атомами третьей групны использовался потенциал Морзе [13]:

$$V_{\text{Morse}}(r_{ij}) = D_e \left[\left(1 - \exp(-\beta(r_{ij} - r_e)) \right)^2 - 1 \right] + E_r \exp(-\beta' r_{ij}),$$
(6)

где D_e – равновесная энергия связи для данного типа взаимодействующих атомов, r_e – равновесное расстояние между атомами, E_r – энергия, представляющая межъядерное отталкивание, β и β' – величины, обратные характерным межатомным расстояниям для взаимодействующих атомов (для углеродных структур, подобных графиту, $D_e = 0.0065$ эВ, $E_r = 0.00694$ эВ, $r_e = 0.405$ нм, $\beta = 10^{-1}$, $\beta' = 40^{-1}$ [14]).

3. Атомная структура наночастицы C_{60} @ C_{540} . Молекула C_{540} , являющаяся внешней оболочкой наночастицы, представляет собой молекулу фуллерена икосаэдрической симметрии I_h . Молекула C_{60} имеет структуру усеченного икосаэдра. Она включает двенадцать пятиугольников и двадцать шестиугольников. Численные значения геометрических и энергетических параметров фуллеренов C_{540} и C_{60} (в равновесном состоянии) представляены в табл. 1.

Таблица 1

еометрические и энергетические параметры	і для фуллереновой наночастицы	C_{60} @	C_{540}
--	--------------------------------	------------	-----------

C _n	<i>Е</i> _{<i>g</i>} , эВ	<i>Р</i> _{ion} , эВ	<i>Е</i> _b , эВ	$\Delta H, \frac{\text{KKaл}}{\text{МОЛЬ X АТОМ}}$	<i>R</i> , им	<u>Мин.</u> , нм
$\mathrm{C}_{60}~(I_h)$	2.03	7.62	7.00	10.03	0.34	$\frac{0.14}{0.149}$
$\mathrm{C}_{540}(I_h)$	0.90	6.84	7.17	5.97	1.01	$\frac{0.14}{0.147}$

4. Топология поверхности энергии взаимодействия слоев наночастицы. Три ориентации фуллерена C_{60} в ноле удерживающего потенциала оболочки C_{540} , соответствующие энергиям взаимодействия E_1 , E_2 и E_3 между слоями нанокластера C_{60} @ C_{540} , представлены на рис. 1. В равновесном состоянии наночастицы C_{60} @ C_{540} фуллерен C_{60} находится вблизи центра одного из 12 правильных пентагонов фуллерена C_{540} (рис. 1а). Для структуры C_{60} @ C_{540} существует 30 потенциальных ям с большей энергией E_2 вблизи середины ребер икосаэдра (рис. 16), и 20 одинаковых потенциальных ям с еще большей энергией E_3 вблизи центра граней икосаэдра (рис. 1в).

Рис. 1. Расположение C₆₀ в поле удерживающего потенциала C₅₄₀: а) для энергии взаимодействия E₁ между слоями наночастиц, б) для энергии E₂, в) для энергии E₃.

НАУЧНЫЕ ВЕДОМОСТИ

Рельеф поверхности энергии взаимодействия между слоями нанокластера $C_{60} @ C_{540}$ показан на рис. 2. Некоторые энергетические и геометрические параметры нанокластера $C_{60} @ C_{540}$ представлены в табл. 2.

Рис. 2. Рельеф поверхности энергии взаимодействия Ван-дер-Ваальса для слоев наночастицы $C_{60} @ C_{540}$ при различных вариантах туннелирования фуллерена C_{60} : а) 1 — из ямы с энергией E_1 в ту же яму; 2 — из ямы с энергией E_1 в яму с энергией E_2 ; 3 — из ямы с энергией E_1 в яму с энергией E_2 ; б) из ямы с энергией E_2 в яму с энергией E_3 .

Таблица 2

ΔH , ккал/(моль $ imes$ атом)		6.79
$\Delta H_{reaction}(C_m + C_n \rightarrow C_n @C_m)$, ккал/моль		-2.00
	d_1 , нм	0.404
Вершины икосаэдра	d_2 , HM	0.425
	E_1 , эВ	-1.972
	d_1 , HM	0.371
Центры ребер икосаэдра	d_2 , HM	0.274
	E_2 , эВ	-1.691
	d_1 , hm	0.367
Центры	d_2 , нм	0.262
	E_3 , эВ	-1.643

Энергетические и геометрические параметры нанокластера С $_{60}$ @ С $_{540}$

Воспользовавшись правилом записи энергии в температурных единицах (1 эВ соответствует 11 604 K), из табл. 2 можно найти значение температуры T=3261.3 K, соответствующее переходу из E_2 и E_1 , $E_2 - E_1 = 0.275$ эВ, и температуру T=3818.4 K, соответствующую переходу из E_3 в E_1 , $E_3 - E_1 = 0.329$ эВ. Температурный интервал 557.1 K соответствует потенциальному барьеру между минимумами энергий E_2 и E_3 . Известно, что разрушение углеродных наноструктур наступает при достижении температуры свыше 2000 K. Таким образом, можно сделать вывод, что единственный возможный вариант для туннелирования между ямами будет достижим, если фуллерен C₆₀ изначально будет находиться в потенциальной яме с энергией E_2 . Тогда при повышении температуры до 558 K и выше C₆₀ сможет туннелировать между позициями с энергий E_2 и E_3 . Помещение C_{60} изначально в яму с энергией E_2 возможно при определенных условиях синтеза наночастицы $C_{60} @ C_{540}$.

5. Заключение. Рассмотрена модель двухоболочечного фуллерена C₆₀ @ C₅₄₀. Нами определена топология взаимного расположения фуллеренов в наночастице, а также на основании анализа рельефа энергетической поверхности взаимодействия фуллеренов составлен прогноз туннелирования внутреннего объекта между потенциальными ямами и закономерности этого туннелирования. Для проверки прогноза о туннелировании проведен был численный эксперимент движения C₆₀ в ноле C₅₄₀.

Литература

- Krishnamurthy S., Butenko Yu.V., Dhanak V.R., Hunt M.R.C., Siller L. In situ formation of onion-like carbon from the evaporation of ultra-dispersed nanodiamonds // Carbon. — 2013. — 52. — P.145–149.
- 2. Inoue A., Seto T., Otani Y. Onion-like carbon nanoparticles generated by multiple laser irradiations on laser-ablated particles // Carbon. 2012. 50;3. P.1116-1122.
- 3. Chen L., Wang C. Low temperature large scale CVD synthesis of nano onion-like fullerenes // Advanced Materials Research. 2012. 490-495. P.3211-3214.
- 4. Zou Q., Wang M.Z., Li Y.G. Onion-like carbon synthesis by annealing nanodiamond at lower temperature and vacuum // Journal of Experimental Nanoscience. 2010. 5;5. P.375-382.
- Baowan D., Bunkluarb T. Duangkamon baowan and noraphon bunkluarb van der waals interaction for two layers of goldberg type i fullerenes // American Journal of Applied Mathematics. – 2012. – 1;1. – P.1–7.
- 6. Глухова О.Е. Функциональные наноустройства на основе наночастицы С₆₀ @ C₄₅₀ // Нано- и микроситемная техника. 2007. №3. С.52-57.
- McCune M.A., De R., Madjet M.E., Chakraborty H.S., Manson S.T.J. Plasmon-plasmon coupling in nested fullerenes: photoexcitation of interlayer plasmonic cross modes // J. Phys. B: At. Mol. Opt. Phys. - 2011. - 44;241002. - P.1-5.
- Zope R.R. Electronic structure and static dipole polarizability of C₆₀ @ C₂₄₀ // J. Phys. B: At. Mol. Opt. Phys. - 2008. - 41;085101. - P.1-4.
- 9. Глухова О.Е., Жбанов А.И., Резков А.Г. Исследование вращения внутренней оболочки наночастицы С₂₀ @ С₈₀ // Физика твердого тела. 2005. 2. С.376-382.
- Krause M., Hulman M., Kuzmany H., Dubay O., Kresse G., Vietze K., Seifert G., Wang C., Shinohara H. Fullerene quantum gyroscope // Phys Rev Lett. – 2004. – 93;13. – P.137403-1-137403-4.
- 11. Brenner D.W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films // Phys. Rev. B. 1990. 42. P.9458-9471.
- 12. Stuart S.J., Tutein A.B., Harrison J.A. A reactive potential for hydrocarbons with intermolecular interactions // J. Chem. Phys. 2000. 112. P.6472-6476.
- 13. Wang Y., Tomanek D., Bertsh G.F. Stiffness of a solid composed of C₆₀ clusters // Phys. Rev. B. 1991. 44. P.6562-6565.
- 14. Ruoff R.S., Qian D., Liu W.K. Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements // C.R. Physique. 2003. 4. P.993-1008.
- 15. Basconi J.E., Shirts M.R. Effects of Temperature Control Algorithms on Transport Properties and Kinetics in Molecular Dynamics Simulations // J. Chem. Theory Comput. 2013. 9;7. P.2887–2899.

Работа выполнена при финансовой поддержке РФФИ (проект 12-01-31036, 12-02-00807, 13-08-00986) и Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009–2013 годы, XLI очередь мероприятие 1.2.1, технические науки, номер соглашение «14.В37.21.1094», Президентской стипендии 2013-2016 (проект СП-2302.2013.1).

MOLECULAR DYNAMIC MODELING OF FULLERENE C₆₀ BEHAVIOR INSIDE ICOSAHEDRAL OUTER SHELL OF C₅₄₀

O.E. Glukhova, I.N. Saliy, A.S. Kolesnikova, M.M. Slepchenkov, V.V. Shunaev

Saratov State University, Astrahanskaya St., 83, Saratov, 410012, Russia, e-mail: graphene@yandex.ru, sin@sgu.ru

Abstract. Results of theoretical study of the two-shell fullerene C_{60} @ C_{540} are presented. In order to reveal some regularities of the internal fullerene movement in the keeping potential of the external shell. The multi-well interaction potential between fullerenes C_{60} and C_{540} has been calculated. Possible variants of the fullerene C_{60} tunneling between potential wells are predicted that is based on topological data of two-shell fullerene structure and analysis of the interaction energy surface relief of fullerenes. The formulated prediction is confirmed by numerical experiment data of the fullerene C_{60} movement in field of the molecular C_{540} .

Key words: two-shell fullerene, multi-well potential, potential wells, topology, interaction energy surface, tunneling.