

Серия: Математика. Физика. 2013. №26(169). Вып. 33 51

МАТЕМАТИЧЕСКАЯ ФИЗИКА, МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

MSC 78A45

ДИФФРАКЦИОННОЕ ИЗЛУЧЕНИЕ НЕРЕЛЯТИВИСТСКОЙ ЗАРЯЖЕННОЙ ЧАСТИЦЫ НА ИДЕАЛЬНО ПРОВОДЯЩЕЙ СФЕРЕ

В.В. Сыщенко, Э.А. Ларикова

Белгородский государственный университет, ул. Студенческая, 14, Белгород, 308007, Россия

Аннотация. В статье рассматривается излучение, возникающее при взаимодействии равномерно движущейся нерелятивистской заряженной частицы с идеально проводящей сферой. При решении данной задачи использован известный из электростатики метод отражений. Получена формула, описывающая спектрально-угловую плотность дифракционного излучения, возникающего при движении частицы с прицельным параметром, превышающим радиус сферы.

Ключевые слова: диффракционное излучение, метод отражений.

Введение. Со времени своего открытия, явление дифракционного излучения [1] привлекает неослабевающее внимание исследователей во всем мире. Такой интерес к данной проблематике связан как с красотой физического явления, так и многообразными возможностями практических применений, связанных с детектированием частиц, мониторингом пучков, а также при создании новых источников излучения. В последние годы было показано, что характеристики дифракционного (и родственного ему переходного) излучения могут существенно зависеть от деталей геометрии мишени.

Методика и результаты. Спектрально-угловая плотность излучения заряженной частицы описывается формулой [2]

$$\frac{d\mathcal{E}}{d\omega d\Omega} = \frac{1}{4\pi^2 c} \left| \left[\mathbf{k}, \mathbf{I} \right] \right|^2,\tag{1}$$

где \mathbf{k} — волновой вектор излученной волны, c — скорость света в вакууме

$$\mathbf{I} = \int_{-\infty}^{\infty} e_0 \, \mathbf{v}(t) \, e^{i(\omega t - \mathbf{kr}(t))} \, dt \,, \tag{2}$$

 e_0 — заряд частицы, $\mathbf{r}(t)$ — её траектория,

$$\mathbf{v}(t) = rac{d\mathbf{r}}{dt}$$
 .

Рассмотрим излучение, возникающее при прямолинейном равномерном движении нерелятивистской заряженной частицы вблизи идеально проводящей сферы, при условии, что прицельный параметр траектории частицы больше радиуса сферы, b > R,

52 НАУЧНЫЕ ВЕДОМОСТИ

так что траектория частицы не пересекает поверхность сферы. Возникающее в таком случае излучение принято называть *дифракционным*.

На первый взгляд, излучение в такой ситуации должно отсутствовать, поскольку для частицы, движущейся с постоянной скоростью, интеграл (2) будет равен нулю.

Причиной возникновения дифракционного излучения (как и родственного ему переходного) является неоднородность среды, сквозь которую движется частица, в данном случае — наличие вблизи траектории частицы проводящей сферы. Оказывается, что в этом случае удовлетворить условиям для электрического поля на границе сферы невозможно, если не добавить в общее решение уравнений Максвелла решение свободных уравнений, то есть электромагнитные волны, составляющие поле излучения.

Найти решение уравнений ноля, удовлетворяющих граничным условиям на сфере, можно с помощью следующего формального приёма, основанного на теореме единственности [3].

Рис. 1. К методу отражений: положения реального заряда *e*₀ и его «отражения» *e* относительно заземленной проводящей сферы радиуса *R*.

Электрическое поле, создаваемое точечным зарядом e_0 , помещенным на расстоянии r_0 от центра идеально проводящей заземленной сферы радиуса R оказывается (в наружной области сферы) эквивалентным суперпозиции кулоновских полей заряда e_0 и фиктивного заряда e, помещенного на прямой, соединяющей реальный заряд e_0 и центр сферы, на расстоянии r от центра сферы (рис. 1), причем

$$r = \frac{R^2}{r_0}$$
, $e = -e_0 \sqrt{\frac{r}{r_0}} = -e_0 \frac{R}{r_0}$. (3)

Легко проверить, что в этом случае потенциал, создаваемый двумя зарядами на поверхности сферы, будет равен нулю. В случае не заземленной, а изолированной сферы следует добавить еще фиктивный заряд величиной -e в центр сферы. Если заряд e_0 будет двигаться с постоянной скоростью, то фиктивный заряд e (величина которого будет теперь зависеть от времени) будет совершать ускоренное движение.

Наш подход к описанию дифракционного излучения заключается в том, чтобы трактовать его как излучение ускоренно движущегося фиктивного заряда также, что величина фиктивного заряда меняется со временем. Легко показать, что описывающие излучение формулы (1) и (2) остаются справедливыми и для заряда переменной величины. НАУЧНЫЕ ВЕДОМОСТИ 🧩 Серия: Математика. Физика. 2013. №26(169). Вып. 33 53

Рис. 2. Заряд *e*₀, пролетающий мимо сферы под прицельным параметром *b*, и его «отражение».

Введем систему координат, в которой начало координат совпадает с центром сферы, ось z направлена вдоль скорости налетающей частицы \mathbf{v}_0 , а ось x лежит в плоскости, содержащей траекторию налетающей частицы и центр сферы (рис. 2), так что расстояние между пролетающей частицей и центром сферы будет равно

$$r=\sqrt{b^2+v_0^2t^2}\;,$$

где момент времени t = 0 соответствует наибольшему сближению частицы с центром сферы. Тогда, согласно (3), величина и координаты фиктивного заряда будут определяться соотношениями

$$e(t) = -e_0 \frac{R}{\sqrt{b^2 + v_0^2 t^2}}, \quad x(t) = \frac{R^2 b}{b^2 + v_0^2 t^2}, \quad z(t) = \frac{R^2 v_0 t}{b^2 + v_0^2 t^2}.$$
 (4)

Компоненты скорости фиктивного заряда, согласно (4), будут равны

$$v_x = \frac{dx}{dt} = -\frac{2R^2 b v_0^2 t}{(b^2 + v_0^2 t^2)^2} , \quad v_z = \frac{dz}{dt} = \frac{R^2 v_0 (b^2 + v_0^2 t^2)}{(b^2 + v_0^2 t^2)^2} .$$
(5)

Подстановка формул (4) и (5) в (2) даёт следующие выражения для компонент вектора I:

$$I_x = 2e_0 b R^3 v_0^2 \int_{-\infty}^{\infty} \frac{t}{(b^2 + v_0^2 t^2)^{5/2}} \exp\left\{i \left[\omega t - \frac{k_x R^2 b}{b^2 + v_0^2 t^2} - \frac{k_z R^2 v_0 t}{b^2 + v_0^2 t^2}\right]\right\} dt, \qquad (6)$$

$$I_z = -e_0 R^3 v_0 \int_{-\infty}^{\infty} \frac{b^2 - v_0^2 t^2}{(b^2 + v_0^2 t^2)^{5/2}} \exp\left\{i \left[\omega t - \frac{k_x R^2 b}{b^2 + v_0^2 t^2} - \frac{k_z R^2 v_0 t}{b^2 + v_0^2 t^2}\right]\right\} dt.$$
 (7)

54 НАУЧНЫЕ ВЕДОМОСТИ

Учитывая, что $|\mathbf{k}| = \omega/c$, для нерелятивистского заряда мы можем пренебречь третьим слагаемым в показателе экспоненты но сравнению с первым. Тогда остается:

$$I_x = 2e_0 b R^3 v_0^2 \int_{-\infty}^{\infty} \frac{t}{(b^2 + v_0^2 t^2)^{5/2}} \exp\left\{i \left[\omega t - \frac{k_x R^2 b}{b^2 + v_0^2 t^2}\right]\right\} dt,$$
(8)

Серия: Математика. Физика. 2013. №26(169). Вып. 33

$$I_z = -e_0 R^3 v_0 \int_{-\infty}^{\infty} \frac{b^2 - v_0^2 t^2}{(b^2 + v_0^2 t^2)^{5/2}} \exp\left\{i\left[\omega t - \frac{k_x R^2 b}{b^2 + v_0^2 t^2}\right]\right\} dt.$$
 (9)

Для облегчения вычисления интегралов пренебрежём также вторым слагаемым в показателях экспонент (7) и (8). Полученные при этом формулы будут точно описывать излучение в плоскости (y, z), когда $k_z = 0$, и приближённо в остальных случаях. Справедливость такого приближения будет ограничена областью малых частот или больших длин волн $(\lambda \gg R)$.

Действительно, первое слагаемое в показателе экспоненты, ωt , стремится к нулю при

 $t \to 0$, в то время как второе слагаемое стремится к отличной от нуля константе. Эта константа должна быть много меньше единицы всюду, особенно там, где $|\omega t| \ll 1$. Поэтому самое сильное ограничение будет возникать при t = 0 (при $t \neq 0$ наше второе слагаемое будет меньше значения в нуле). Таким образом, мы имеем следующее требование:

$$\lambda = \frac{2\pi c}{w} \gg \frac{2\pi R^2}{b} \; .$$

Вычисление интегралов (см. [4] стр. 443, № 3.773.3 и № 3.773.6) даёт

$$I_x = \frac{4}{3} e_0 R^3 \frac{\omega^2}{v_0^2} i K_1 \left(\frac{\omega}{v_0} b\right) , \qquad (10)$$

$$I_{z} = -\frac{4}{3} e_{0} R^{3} \frac{\omega^{2}}{v_{0}^{2}} K_{0} \left(\frac{\omega}{v_{0}}b\right) - \frac{2}{3} e_{0} R^{3} \frac{\omega}{v_{0}b} K_{1} \left(\frac{\omega}{v_{0}}b\right) , \qquad (11)$$

где $K_0(x)$ и $K_1(x)$ — модифицированные функции Бесселя третьего рода (функции Макдональда). Подстановка в (1) даёт:

$$\frac{d\mathcal{E}}{d\omega d\Omega} = \frac{4}{9\pi^2} \frac{e_0^2 R^6 \omega^6}{c^3 v_0^4} \left\{ \left(1 - \varkappa_x^2\right) K_1^2 \left(\frac{\omega}{v_0}b\right) + \varkappa_\perp^2 \left(\frac{v_0}{2\omega b}\right)^2 \left[K_1 \left(\frac{\omega}{v_0}b\right) + 2\frac{\omega}{v_0} b K_0 \left(\frac{\omega}{v_0}b\right)\right]_{(12)}^2\right\}.$$

График углового распределения (12) представлен на рис. 3.

Интегрируя (12) но углам, получаем искомое выражение для спектрально-угловой плотности дифракционного излучения

$$\frac{d\mathcal{E}}{d\omega} = \frac{32}{27\pi} \frac{e_0^2 R^6 \omega^6}{c^3 v_0^4} \left\{ K_1^2 \left(\frac{\omega}{v_0} b\right) + \left[\frac{v_0}{2\omega b} K_1 \left(\frac{\omega}{v_0} b\right) + K_0 \left(\frac{\omega}{v_0} b\right)\right]^2 \right\}.$$
(13)

Рис. 3. Угловое распределение дифракционного излучения $(d\mathcal{E}/d\omega d\Omega)(c^3 v_0^4/e_0^2 R^6 \omega^6)$, рассчитанное по формуле (12), для случая $v_0 = 0.0001c$, $b/\rho_{eff} = 2.1$. На левом рисунке распределение представлено в виде графика зависимости от углов излучения θ и ϕ , на правом — в виде диаграммы направленности.

0 0

Формула (13) показывает, что характерная область частот определяется неравенством

$$b \lesssim \frac{v_0}{\omega} \equiv \rho_{eff},$$

где ρ_{eff} — характерные поперечные размеры кулоновского поля движущейся частицы (а точнее, его фурье-компоненты, соответствующей частоте ω) и не зависит от радиуса сферы R.

Заключение. В статье рассмотрено излучение, возникающее при равномерном и прямолинейном движении нерелятивистской заряженной частицы вблизи идеально проводящей сферы. Найдены формулы, описывающие спектрально-угловую и спектральную плотности дифракционного излучения в области малых частот излучения (или больших длин волн $\lambda \gg R$). Полученные результаты могут быть использованы при разработке новых методов мониторинга пучков заряженных частиц.

Литература

- 1. Болотовский Б.М., Воскресенский Г.В. Дифракционное излучение // УФН. 1966. 88. С.209-251.
- Ахиезер А.И., Шульга Н.Ф. Электродинамика высоких энергий в веществе / М.: Наука, 1993. – 344 с.
- 3. Левич В.Г. Курс теоретической физики. Том 1 / М.: Наука, 1969. 912 с.
- 4. Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений / М.: Наука, 1971. 1108 с.

56 НАУЧНЫЕ ВЕДОМОСТИ

Серия: Математика. Физика. 2013. №26(169). Вып. 33

DIFFRACTION IRRADIATION OF NONRELATIVISTIC CHARGED PARTICLE ON IDEALLY CONDUCTING SPHERE

V.V. Syshchenko, E.A. Larikova

Belgorod State National Research University, Studencheskya St., 14, Belgorod, 308007, Russia

Abstract. Article deals with the radiation produced by the interaction of uniformly moving relativistic charged particle with perfectly conducting sphere. This problem is solved by the reflection method being well-known in electrostatics. The formula describing the spectral-angular density of diffraction radiation generated by the motion of particles with the impact parameter greater than the sphere radius.

Key words: diffraction radiation, reflection method.