

Серия: Математика. Физика. 2013. №12(155). Вып. 31

КРАТКИЕ СООБЩЕНИЯ

УДК 537.62 + 538.97

ТОПОЛОГИЧЕСКИЕ И ХИМИЧЕСКИЕ ОСОБЕННОСТИ НАНОСТРУКТУРНЫХ САМООРГАНИЗОВАННЫХ ФРАКТАЛЬНЫХ ОБРАЗОВАНИЙ В КОЛЛОИДНЫХ СИСТЕМАХ, ПЕРСПЕКТИВНЫХ ДЛЯ МИКРО- И НАНОЭЛЕКТРОНИКИ

*А.П. Кузьменко, **В.В. Чаков, *Чан Ньен Аунг

* Региональный центр нанотехнологий
Юго-Западный государственный университет,
ул. 50 лет Октября, 94, Курск, 305040, Россия
** Институт водных и экологических проблем
Дальневосточного отделения Российской академии наук,
ул. Ким-Ю-Чена, 65, Хабаровск, 680000, Россия

Аннотация. Методами растровой электронной, атомно-силовой и конфокальной микроскопии, комбинационного рассеяния света ИК-Фурье спектроскопии, малоуглового рентгеновского рассеяния изучена топология и химическая структура фрактальных образований из водно-спиртового раствора природного торфа. Для возникающей фрактальной структуры обнаружен ряд характеристических плоскостных и внеплоскостных деформационных колебаний.

Ключевые слова: фрактальная структура, коллоидный раствор, комбинационное (рамановское) рассеяние света, инфракрасная спектроскопия, деформационные колебания.

1. Введение. Смещение размеров электронной элементной базы в наноразмерную область – формирование наноэлектроники, основанное на последних достижениях физики твердого тела, квантовой электроники, физической химии, также как стремительное развитие полупроводниковых технологий актуализируют такие проблемы, как их энергообеспечения и функционирования [1-7]. Использование процессов, основных на принципах, действующих при самоорганизации, безальтернативно выступает в качестве наиболее заманчивого и многообещающего тренда технологического прорыва в микро- и наносхемотехнике [8-10], так как нанолитография с использованием даже наноинструментария, включая туннельную и силовую зондовую микроскопию не оправдана и не эффективна. Эти объясняется нарастающий интерес к процессам самосборки в наносистемах, изучению общих закономерностей консервативной и диссипативной самоорганизации в пространственно-организованных системах во внешних градиентных полях.

2. Детали эксперимента. Изучению микро- и наносистемной самосборки упорядоченных и ориентированных структур из коллоидных частиц [11], выявлению особенностей и закономерностей их формообразования на твердофазных поверхностях с разными условиями, в качестве модельного материала для микро- и наносхемотехники, посвящена настоящая работа.

В качестве материала для формирования структур и элементов, соединяющих отдельные микро- и наноэлектронные элементы, было взято коллоидное естественно-природное углеродсодержащее соединение типа торфа, что позволило изучать закономерности процессов самосборки в диффузионно-ограниченных условиях [12], когда выполняется неравенство [11]: $E_b >$ $E_{inter} \ge E_{kin} > E_d$, то есть энергия связи частиц с подложкой E_b превышает энергию межмолекулярного взаимодействия E_{inter} , кинетическую энергию E_{kin} , а также энергию их диффузии E_d .

Исходные высокоупорядоченные массивы наночастиц из торфа высокомолекулярной, достаточно устойчивой многокомпонентной микро- и макроструктуры, в виде гидрофильнолипофильной системы, экстрадировались органическими растворителями с разной полярностью [11]. Для исследований вновь создаваемых растворов и осаждаемых пленок были использованы методы атомно-силовой (ACM) и конфокальной микроскопии (KM) (SmartSPM и OmegaScope, AIST-NT, г. Зеленоград), комбинационного рассеяния света (КРС на основе ОтедаScope), растровой электронной микроскопии (РЭМ) (JSM 6610 - LV, JEOL, Япония), ИК-Фурье спектроскопии (ИК) (Nicolet iS50, Thermo Fisher Scientific, США), малоуглового рентгеновского рассеяния (MPP) (SAXSees mc², Anton Paar, Австрия), которыми располагает Региональный центр нанотехнологий при Юго-Западном государственном университете. Как показано в [13], процессы структурообразования из торфа при растворении в растворителях разной полярности обусловлены взаимодействием многообразных поверхностно развитых функциональных групп, как органического, так и неорганического происхождения. Ассоциативные взаимодействия в торфе проявляются наиболее активно в воде, которая выступает не только средством транспорта в процессах диффузионного массопереноса частиц, но и способна активно участвовать в образовании надмолекулярных структур торфа, в том числе, и ассоциативного характера за счет проявления водородных связей и сил Ван-дер-Ваальса.

Нами исследован раствор торфа в деионизированной воде с 5 % концентрацией. При подготовке образцов исследуемые коллоидные растворы наносились методом из капли на покровное стекло. Методами ACM, KM и РЭМ после испарения жидкой фазы при естественных нормальных условиях были обнаружены микроформирования в виде фрактальных структур (Рис. 1, a, b, c).

Рис. 1. Микрофазное расслоение в виде фрактальных структур по данным: a) – ACM, b) – KM, c) – РЭМ.

Изменения ИК-Фурье спектров, обусловленные формированием фракталов в водно-спиртовом коллоидном растворе торфа, продемонстрированы на рис. 2, а на рис. 1 приведены изображения фракталов, полученные посредством: а) – ACM, b) – KM, с) – РЭМ. Верхний ИК-спектр соответствует колебаниям характерным для фрактальной структуры, а нижний - без нее.

Результаты расчётов циклотронной эффективной массы m_c приведены на рис. 3.

3. Результаты и их обсуждение. С учетом данных, представленных в [14], в ИК-Фурье спектрах можно выделить 7 характерных диапазонов (I – $3000\div3600$, II – $2800\div3000$, III – $2400\div2800$, IV – $1500\div2000$, – $1200\div1500$, VI – $800\div1200$, VII – $600\div800$ см⁻¹) следующих изменений наблюдаемых линий поглощения. В диапазоне I представлены валентные колебания гидроксильных групп – OH (линии $3300\div3500$ см⁻¹), длинноволновая часть этой области образована за счет валентных колебаний аминовых структур (N-H) – $3200\div3250$ см⁻¹. Из анализа ИК-спектра следует, что валентные колебания структур N-H после фрактализации фактически не возникают, что может свидетельствовать о возможной замене валентных водородных связей, характерных в этой области для гуаминовых кислот, на межмолекулярные аминовые связи. В диапазоне II ИК-поглощения, соответствующей валентным колебаниям CH₃ групп (метиленовая группа) с характерными линиями 2853, 2924 см⁻¹, произошло увеличение их интенсивности более, чем в 5 раз. Наиболее существенными являются сдвиги всех отмеченных ИК-линий поглощения, что свидетельствует об изменениях энергий, соответствующих колебаний. К примеру, величина этого сдвига для первой линии из области I достигает 15 см⁻¹. Соответствующие сдвиги для линий 2853, 2924 см⁻¹ в области I послощения соответствующие соответствующих колебания струппа.

Рис. 2. ИК-Фурье спектры для фрактальной (верхний спектр) и без фрактальной (нижний спектр) структур из торфа.

В области III ИК-спектра не наблюдается изменений интенсивности ИК-линии 2642 см⁻¹, вызванных фрактализацией, имеет место сдвиг линии 2458 см⁻¹ с фрактальной структурой на 5 см⁻¹. В этой же области линии 2492 и 2358 см⁻¹ практически исчезают при образовании фракталов. Эти линии характеризуют валентные колебания димерных образований карбоновых кислот. Этот факт указывает на существенные структурные перестройки именно этих соединений – составляющих торфа, вызванные формированием фракталов. Аналогичные колебания этих же соединений карбоновых возникают в области IV – 1500÷2000 см⁻¹. Для

фрактальной структуры отмечается отчетливое поглощение на 1744, 1654, 1647 и 1560 см⁻¹. Первая из них вообще не обнаруживается в исходных образцах торфа, а остальные обладают галообразовании следующих валентных связей: $C=O - 1744 \text{ см}^{-1}$, а также возбуждение плоскостных колебаний C=C – от 1600 до 1654 см⁻¹. Распадающееся поглощение в окрестности 1560 см⁻¹, возможно, соответствует возбуждению плоскостных колебаний аминовых групп – NH₂. В диапазоне V для валентных колебаний CH₃ групп отмечается возрастание в несколько раз интенсивности деформационных колебаний на линии 1457 см⁻¹, без всякого сдвига. В то же время в образце с фрактальной структурой линии 1340÷1370 см⁻¹, характерные для естественного расщепления колебательных мод метиловых и метиленовых групп – CH₂ и CH₃, сопровождающееся образованием разветвленных углеводородных цепочек с очень сильным сдвигом до 55 см⁻¹. Отметим, что такое расщепление не возникает в образцах торфа без фрактальной структуры.

В диапазоне VI (800÷1200 см⁻¹) линии обнаруживаются либо разные спиртовые колебания (С–О связей), либо связи простых эфиров (С–О–С связей). В нашем случае изучался коллоидный водно-спиртовой раствор торфа, то есть, действительно, имело место поглощение связями С–О. В пользу этого вывода говорит также отсутствие этих линий для фрактализованной структуры (Рис. 2, а – с), которая изучалась после испарения раствора.

Рис. 3. Флуоресцентное изображение в области 40×40 мкм – а.

В диапазоне VII – 600÷800 см⁻¹ внеплоскостные колебания деформационные колебания связей С–Н приводят к поглощению на линиях 638, 674, 695, 762 см⁻¹, которые возникают только при наличии фрактальной структуры. Далее на образце была выбрана область с размерами 40×40 мкм и проведен ее флуоресцентный анализ при возбуждении на длине волны

785 нм, когда интенсивность флуоресценции была минимальной. Полученное флуоресцентное изображение представлено на рис. 3 а. Видно, что все сформированные структуры имеют флуоресцентно ярко выраженную часть, которая отвечает за гуминовые кислоты, составляющие органическую основу торфа.

Изображение же области из Рис. 1 а с размерами 50×50 мкм, построенное с гиперспектральным распределениям КРС на наиболее интенсивной линии 581.1 нм приведено на рис. 3 b. Представляло интерес изучить влияние фрактальных структур на формирование этих изображений. С этой целью были выбраны три точки, обозначенные на рис. 3 b цифрами «1, 2, 3», в которых проведен КРС анализ. Точки для КРС анализа выбирались в областях с развитыми фрактальными структурами – «1», менее выраженными – «2» и без видимых их проявлений – «3». Ранее в результате исследований КРС на торфяных коллоидных системах были, впервые, обнаружены вращательные колебания [11], однако не была установлено их взаимосвязь с фрактальными образованиями.

В настоящей работе для возбуждения использовался лазерный источник с длиной волны излучения 785 нм, дающий наименьшую флуоресценцию. Так как в этом случае энергия квантов незначительна, это позволило установить влияние фрактальных структур на амплитуду возбуждаемых вращательных колебаний (Рис. 3 с). На рисунке отмечается изменение этой амплитуды в 4 раза между точками «1» и «3». Присутствие в точке «3» вращательных колебаний, возможно, свидетельствует о наличии не визуализируемых аппаратно, в наших условиях, фрактальных структур.

По наблюдаемым периодам вращательных колебаний в спектрах КРС, которые обозначим через $\Delta\lambda$ ($\Delta\lambda \sim 45 \text{ cm}^{-1}$) с учетом их взаимосвязи с длинами возбуждающего излучения ($\Delta\lambda/\lambda = \Delta\nu/\nu$) могут быть рассчитаны соответствующие частоты таких колебаний: $\Delta\nu = C\Delta\lambda/\lambda^2$. К примеру, для используемой длины волны возбуждения $\lambda = 785$ нм соответствующая частота составляет 4.3×10^{14} Гц, а частота вращательных колебаний составит 1.48×10^{12} Гц ($\Delta\lambda = 6$ нм). То есть амплитуда вращательных движений 6 нм оказывается сопоставимой с минимальным размером наночастиц торфа (7 нм).

Детальное изучение ансамблей наночастиц методами МРР, АСМ и РЭМ позволило определить их размеры. Диаметр частиц изменялся от 5 до 500 нм (Рис. 4 a, b, c). Полученные разными методами изображения демонстрируют, также как и ранее в [13], микрофазное расслоение структур в достаточно широком диапазоне по размерам. Помимо выделенных на рис. 4с образований в сотни нанометров, здесь наблюдаются структуры с размерами вплоть до нескольких нанометров. Атомно-силовое изображение (с поле 200×200 нм), представленное на рис. 4b иллюстрирует размер наночастицы торфа около 50 нм. Учитывая траекторию сканирования зонда кантилевера при построении АСМ-изображений по этой величине может быть определен физический размер наночастицы торфа: $r = r_c/(2R)^{1/2}$. Таким образом, рассчитанные с учетом параметров используемых зондов кантилевера (радиус R = 5 - 25 нм) размеры наночастиц торфа по полученным ACM-радиусам – r_c оказались равными $\sim 7 \div 12$ нм, что согласуется с данными МРР на Рис. 4а. При этом исследования парных распределений интенсивностей МРР позволили установить сферообразную форму этих частиц. Обнаруженное в ИК-спектрах поглощение в диапазонах IV и VII только на образцах с фрактальной структурой также подтверждаются линиями плоскостных колебаний C=C от 1600 до 1654 см⁻¹ и внеплоскостных деформационных колебаний С-Н 638, 674, 695, 762 см⁻¹. Их возникновение именно в этом диапазоне соответствует вращательным оптическим возбуждениям, обнаруженным по данным рамановского рассеяния света.

Рис. 4. Размеры наночастиц торфа: а – данные МРР, b – АСМ, с – РЭМ.

4. Заключение. Таким образом, доказано, что формирование самоорганизованных фрактальных структур в наноразмерном масштабе характеризуется целым рядом отличительных особенностей, топология которых может быть изучена микроскопическими методами и методом малоуглового рентгеновского рассеяния (Рис. 1 и Рис.4), а их химическая структура определяется методами ИК-Фурье и рамановской спектроскопи (Рис. 2 и Рис. 3).

Литература

- 1. Сейсян Р.П. Нанолитография в микроэлектронике // ЖТФ. 2011. 81;В.8. С.1-14.
- 2. Асеев А.Л. Нанотехнологии в полупроводниковой электронике // Вестник Российской Академии Наук. 2006. 76;7. С.603-611.

- 3. Mrunal A. Khaderbad, Arindam Kushagra, Ravikanth M., Ramgopal Rao V. "Bottom-up" approaches for nanoelectronics // Cutting Edge Nanotechnology. 2010. ISBN 978-953-7619-93-0. C.137-166.
- 4. Cavin R.K., Zhirnov V.V., Herr D.J.C., Alba Avila, Hutchby J. Research directions and challenges in nanoelectronics // Journal of Nanoparticle Research. 2006. 8. C.841-858.
- 5. Hasegawa H. Recent Progress and Surface-Related Key Issues in III-V Semiconductor Nanoelectronics // Journal of the Korean Physical Society. – 2007. – 50;No.3. – P.543-551.
- 6. Mendes P.M., Flood A.H., Stoddart J.F. Nanoelectronic devices from self-organized molecular switches // Appl. Phys. A. 2005. 80. P.1197-1209.
- Burghard M., Klauk H., Kern K. Carbon-Based Field-Effect Transistors for Nanoelectronics // Adv. Mater. - 2009. - 21. - P.2586-2600.
- 8. Dutta J., Sugunan A. Colloidal Self-Organization for Nanoelectronics // Proc. IEEE Int. Conf. on Semiconductor electronics. ICSE-2004. Kuala-Lumpur. Dec.7-9. 2004. P.1-6.
- Yi Li, Kyoung-sik (Jack) Moon, Wong C.P. Nano-conductive Adhesives for Nano-electronics Interconnection // Nano-Bio- Electronic, Photonic and MEMS Packaging. – 2010. – DOI 10.1007/978-1-4419-0040-1_2. – P.19-46.
- 10. Kutuzov S., He J., Tangirala R., Emrick T., Russell T.P., Boker A. On the kinetics of nanoparticle self-assembly at liquid/liquid interfaces // Phys. Chem. Chem. Phys. 2007. 9. P.6351-6358.
- Кузьменко А.П., Добрица В.П., Чан Ньен Аунг, Абакумов П.В., Тимаков Д.И. Процессы формирования фракталов в диффузионно-ограниченных условиях на примере торфов // Известия Юго-Западного государственного университета. – 2011. – №6(39). – Ч.2. – С.17-24.
- 12. Ролдугин В.И. Самоорганизация наночастиц на межфазных поверхностях // Успехи химии. 2004. 73,№2. С.123-156.
- Федотов Г.Н., Добровольский Г.В., Шоба С.А., Рудометкина Т.Ф., Черич М.С., Шалаев В.С. Микрофазное расслоение в гумусовых системах // Доклады Академии Наук РФ. – 2009. – 429; №3. – С.336-338.
- 14. Орлов Д.С., Осипова Н.Н. Инфракрасные спектры почв и почвенных компонентов / М.: МГУ, 1988. 90 с.

TOPOLOGICAL AND CHEMICAL FEATURES OF NANOSTRUCTURAL FRACTAL SELF-ORGANIZED FORMATIONS IN COLLOIDAL SYSTEMS PROMISING FOR MICRO- AND NANOELECTRONICS *A.P. Kuzmenko, **V.V. Chakov, *Chan Nien Aung

* Regionalny Nanotechnology Center of Southwest State University,

October 50 St., 94, Kursk, 305040, Russia

** Institute of Water and Ecological Problems,

Far Eastern Branch of Russian Academy of Sciences,

Kim Yu Chen St., 65, Khabarovsk, 680000, Russia

Abstract. By scanning electron, atomic force and confocal microscopy and also by the Raman and IR scattering, the small-angle X-ray scattering the topology and chemical structure of fractal formations of aqueous-alcoholic solution of natural peat is studied. For the emerging fractal structure revealed some characteristic planar and nonplanar deformation vibrations.

Key words: fractal structure, colloidal solution, Raman scattering, IR spectroscopy, bending vibrations.