УДК 511.5

ПИФАГОРОВЫ И ФИБОНАЧЧЕВЫ ТРОЙКИ

А.В. Лаптев

Владимирский Государственный университет, пр. Строителей, 11, Владимир, 600024, Россия, e-mail: Oxoron30189@yandex.ru

Аннотация. Для кругового умножения Фибоначчи исследуется аналог уравнений Пифагора, найдены два бесконечных семейства решений.

Ключевые слова: Умножение Фибоначчи, фибоначчевы тройки, δ -функция.

1. Введение

Матиясевич Ю.В. [1] и, независимо, Кнут Д. [2], ввели новую операцию умножения $A \circ$ В на множестве натуральных чисел. Матиясевич использовал её в ходе доказательства 10й проблемы Гильберта, Кнут – в связи с задачами программирования. Операция кругового умножения оказалась полезна в других задачах теории чисел. Журавлевым В.Г. ([3], [4]) были рассмотрены диофантовы уравнения второй степени с круговым умножением. В настоящей работе исследуется круговой аналог

$$A^{\bigcirc} + B^{\bigcirc} = C^{\bigcirc} \tag{1}$$

уравнения Пифагора

$$A^2 + B^2 = C^2. (2)$$

2. Операция кругового умножения

Последовательность Фибоначчи задается следующим образом $F_1 = 1, F_2 = 2, F_n = F_{n-1} + 1$ $F_{n-2} \ \forall n > 2$. Пусть даны числа $A, B \in \mathbb{N}$. Разложим их по жадному алгоритму

$$A = \sum_{i} arepsilon_{i} F_{i} \,, \quad B = \sum_{j} arepsilon_{j}^{'} F_{j} \,, \qquad arepsilon_{i}, arepsilon_{j}^{'} = 0, 1 \,.$$

Тогда для A и B можно задать операцию кругового умножения Фибоначчи [1]

$$A \circ B = \sum_{i,j} \varepsilon_i \varepsilon_j' F_{i+j}. \tag{3}$$

Из определения (3) следует, что операция $A \circ B$ коммутативна, однако она не является ассоциативной. Например, $4 \circ (4 \circ 2) \neq (4 \circ 4) \circ 2$. Условия для выполнения ассоциативности будут рассмотрены в п. 3.

Для операции (3) существует другое представление [3]:

$$A \circ B = AB + [(A+1)\tau][(B+1)\tau],$$
 (4)

где $\tau = (\sqrt{5} - 1)/2$ – золотое сечение, [x] – целая часть x.

о-квадратом натурального А станем называть выражение

$$A^{\mathfrak{D}} = A \circ A. \tag{5}$$

Аналогично тройкам Пифагора (2) будем говорить, что числа (A, B, C) образуют фибоначчеву тройку, если справедливо равенство (1).

Теорема 1. Количество фибоначчевых троек бесконечно.

□ Рассмотрим выражение

$$(F_n)^{\textcircled{2}} + (F_{n-2} + F_{n+1})^{\textcircled{2}} = F_{2n} + F_{2n-4} + F_{2n-1} + F_{2n-1} + F_{2n-2} = F_{2n-2} + F_{2n-2} + F_{2n-3}.$$

С другой стороны,

$$(F_{n-1}+F_{n+1})^{\textcircled{2}}=F_{2n-2}+F_{2n}+F_{2n}+F_{2n+2}=F_{2n-2}+F_{2n-2}+F_{2n-3}$$
.

Отсюда делаем вывод, что

$$(F_n)^{\textcircled{2}} + (F_{n-2} + F_{n+1})^{\textcircled{2}} = (F_{n-1} + F_{n+1})^{\textcircled{2}}, \quad \forall n > 2,$$

что дает нам бесконечное количество фибоначчевых троек.

3. δ **-**функция

В дальнейшем нам потребуется специальная функция [3]

$$\delta(x) = x - [(x+1)\tau]\widetilde{\tau}, \qquad \widetilde{\tau} = \frac{\sqrt{5}+1}{2}. \tag{6}$$

Эта функция периодична, период равен $\tilde{\tau}$. Разобьем числовую ось на полуинтервалы $[k\tilde{\tau}-1,k\tilde{\tau}+\tau)$. Для каждого x величина $[(x+1)\tau]$ характеризует интервал k, в котором находится x. Сама фунцкия описывает отклонение аргумента от точки $k\tilde{\tau}$, и строго возрастает на каждом полуинтервале. Легко видеть, что

$$\delta(x) \in [-1, \tau) \,. \tag{7}$$

Свойство 1. Если $\delta(x) < \tau - 1$, то $\delta(x+1) = 1 + \delta(x)$. В противном случае $\delta(x+1) = \delta(x) - \tau$. \square Если $\delta(x) < \tau - 1$, точка 1 + x будет находится в том же полуинтервале, что и x: $[(x+1)\tau] = [(x+2)\tau]$. Воспользовавшись (6) получаем

$$\delta(x+1) - \delta(x) = x + 1 - [(x+2)\tau] - x + [(x+1)\tau] = 1.$$

Второй случай доказывается аналогично.

Прямым следствием свойства 1 является тот факт, что для любого натурального n

$$\delta(n) = a - b\tau, \quad n = a + b; \quad a, b \in \mathbb{N}.$$
 (8)

Однозначность такого представления вытекает из (7). Для доказательства достаточно заметить, что $\delta(1) = -\tau$.

Нетрудно проверить следующие два свойства.

Свойство 2. $n_1=n_2$ тогда и только тогда, когда $\delta(n_1)=\delta(n_2).$

Свойство 3. $\delta(x) + \delta(y) \equiv \delta(x+y) \bmod \tilde{\tau}$.

Докажем, что имеет место

Свойство 4. Для любого натурального n выиолняется равенство

$$\delta(F_n) = (-\tau)^n \,. \tag{9}$$

 \square Доказательство будем проводить по индукции. $\delta(F_1)=1-\widetilde{\tau}=\tau$. $\delta(F_2)=2-\widetilde{\tau}=1-\tau=\tau^2$ (тут мы применили тот факт, что $\tau^2+\tau-1=0$). Предположим наше свойство справедливым при n=k, n=k+1. Тогда: $\delta(F_{k+2})=\delta(F_{k+1}+F_k)\equiv(\delta(F_{k+1})+\delta(F_k))$ mod $\widetilde{\tau}$. $|\delta(F_{k+1})|, |\delta(F_k)|<\tau$, δ -функция принимает в точках F_{k-1} , F_k значения разных знаков, что ведет за собой $\delta(F_{k+2})=\delta(F_{k+1})+\delta(F_k)=(-\tau)^{k+1}+(-\tau)^k=(-\tau)^k(1-\tau)=(-\tau)^k(-\tau)^2=(-\tau)^{k+2}$. Итак, наше свойство справедливо при n=k+2, что и завершает доказательство. \blacksquare

Лемма 1. Пусть
$$A=\sum_i arepsilon_i F_i,\ arepsilon_i=0,1.$$
 Тогда $\delta(A)=\sum_i \delta(F_i)arepsilon_i.$

 \square Согласно третьему свойству $\delta(A) \equiv \left(\sum_i \delta(F_i)\varepsilon_i\right) \mod \widetilde{\tau}$. Таким образом, остается лишь доказать, что $\sum_i \delta(F_i)\varepsilon_i \in [-1,\tau)$. Для этого рассмотрим сумму всех членов последовательности Фибоначии с нечетными номерами. $\sum_i \delta(F_{2i+1}) = (-\tau) + (-\tau)^3 + (\tau)^5 + \dots = -\tau/(1-\tau^2) = -1$. Добавление других слагаемых может лишь увеличить значение нашей суммы, следовательно, любая сумма $\sum_i \delta(F_i)\varepsilon_i > -1$. Аналогично рассматривается случай для верхней границы. \blacksquare

Теорема 2. Круговое и обычное умножения связаны следующей формулой:

$$\delta(A \circ B) = \begin{cases} \delta(A)\delta(B) & \text{при } \delta(A)\delta(B) \in [-1,\tau), \\ \delta(A)\delta(B) - \widetilde{\tau} & \text{при } \delta(A)\delta(B) \in [\tau,1] \,. \end{cases}$$

$$\square$$
 Пусть $A=F_{a_1}+F_{a_2}+\ldots+F_{a_k},\,B=F_{b_1}+F_{b_2}+\ldots+F_{b_l}.$ Тогда
$$A\circ B=(F_{a_1+b_1}+F_{a_1+b_2}+\ldots+F_{a_1+b_l})+\ldots+(F_{a_k+b_1}+F_{a_k+b_2}+\ldots+F_{a_k+b_l})\,.$$

Согласно лемме

$$\delta(A \circ B) \equiv \sum_{i=1}^k \sum_{j=1}^l (-\tau)^{a_i + b_j} = \left(\sum_{i=1}^k (-\tau)^{a_i}\right) \left(\sum_{j=1}^l (-\tau)^{b_j}\right) \equiv \delta(A)\delta(B) \bmod \widetilde{\tau}.$$

В силу (7), $\delta(A)\delta(B) \in [-1,1]$. Очевидно, в случае $\delta(A)\delta(B) \in [-1,\tau)$ справедливо равенство $\delta(A \circ B) = \delta(A)\delta(B)$, иначе верно $\delta(A \circ B) = \delta(A)\delta(B) - \widetilde{\tau}$.

Интерпретируем Теорему 2, используя представление (8). Пусть $x,y\in\mathbb{N}, \delta(x)=a-b\tau, \delta(y)=c-d\tau.$ Тогда по Теореме 2, имеем

$$\delta(x \circ y) = \begin{cases} (ac + bd) - (ad + bc + bd)\tau & \text{при } \delta(x)\delta(y) \in [-1, \tau); \\ (ac + bd - 1) - (ad + bc + bd + 1)\tau & \text{при } \delta(x)\delta(y) \in [\tau, 1]. \end{cases}$$
(10)

Полученная формула (10) объясняет неассоциативность умножения Фибоначчи: в зависимости от порядка операций могут использоваться разные варианты (10). Кроме того, можно указать условие, при котором порядок операций не повлияет на конечный результат. Достаточно, чтобы δ -функция любого из множителей принимала значения от $-\sqrt{\tau}$ до $\sqrt{\tau}$.

4. Семейства фибоначчевых троек

Согласно теореме 2 все фибоначчевы тройки (A,B,C) можно разделить на два семейства, для которых соответственно, выполняются соотношения

$$\delta^2(A) + \delta^2(B) = \delta^2(C), \tag{11}$$

$$\delta^2(A) + \delta^2(B) = \delta^2(C) + \widetilde{\tau}. \tag{12}$$

Равенство (11) дает нам возможность размножать тройки, исходя из одной начальной.

Теорема 3. Пусть тройка (A, B, C) удовлетворяет условию (11). Тогда тройка (kA, kB, kC) также образует фибоначчеву тройку ири любом k, удовлетворяющем условиям $k\delta(A), k\delta(B), k\delta(C) \in [-1, \tau), k \in \mathbb{N}$.

Для доказательства достаточно заметить, что $(k\delta(A))^2 + (k\delta(B))^2 = (k\delta(C))^2$.

Теорема 4. Пусть тройка (A, B, C) удовлетворяет условию (11). Тогда тройка $(D \circ A, D \circ B, D \circ C)$ также образует фибоначчеву тройку ири любом D, удовлетворяющем условиям $\delta(D)\delta(A), \delta(D)\delta(B), \delta(D)\delta(C) \in [-1, \tau), D \in \mathbb{N}$.

Доказательство аналогично теореме 3.

В результате, взяв некоторую начальную тройку (A, B, C), мы можем получить бесконечное семейство троек вида $(k(A \circ D), k(B \circ D), k(C \circ D))$.

Теорема 5. Множество троек, удовлетворяющих условию (12), бесконечно.

 \square Рассмотрим уравнение вида $X^{\textcircled{2}} + Y^{\textcircled{2}} = (Y+1)^{\textcircled{2}}$. Согласно (4) имеем

$$X^{\textcircled{2}} + [(Y+1)\tau]^2 = 2Y + 1 + [(Y+2)\tau]^2$$
.

Заметим, что $[(Y+2)\tau] = [(Y+1)\tau]$ при $\delta(Y) < -\tau^2$. Отсюда

$$Y = \frac{X^{\bigcirc} - 1}{2}$$
 при $\delta(Y) < -\tau^2$. (13)

Осталось лишь решить сравнение $X^{\textcircled{2}} \equiv 1 \mod 2$. Легко видеть, что $F_n \equiv 0 \mod 2 \Leftrightarrow n \equiv 2 \mod 3$, откуда

$$F_{2n} \equiv 1 \mod 2 \Leftrightarrow \begin{cases} n \equiv 0 \mod 3; \\ n \equiv 2 \mod 3. \end{cases}$$
 (14)

Обратим внимание, что тройка (4,12,13) принадлежит семейству (13). Заметим, что $(4+F_n)^{\textcircled{2}}=4^{\textcircled{2}}+F_{2n}+2F_{n+1}+2F_{n+3}$ и $4^{\textcircled{2}}+F_{2n}+2F_{n+1}+2F_{n+3}\equiv 1+F_{2n}$ том 2. Нетрудно показать, что при достаточно больших $n\equiv 1$ том 3 получаем фибоначчевы тройки вида (13)

$$(4+F_n)^{2} + \frac{(4+F_n)^{2} - 1}{2} = \frac{(4+F_n)^{2} + 1}{2}.$$

5. Заключение

Хорошо известно, что тройки Пифагора (2) допускают параметризацию

$$A = rac{U^2 - V^2}{2} \; , \qquad B = UV \, , \qquad C = rac{U^2 + V^2}{2} \; ,$$

где $U,V\in\mathbb{Z},\ U\equiv V$ mod 2. Фибоначчевы тройки из семейства (11) также можно параметризовать аналогичным образом. Возникает задача поиска минимального слагаемого F_k в разложениях параметров U и V, при котором параметризация

$$A = \frac{U^{\textcircled{2}} - V^{\textcircled{2}}}{2} \;, \qquad B = U \circ V \,, \qquad C = \frac{U^{\textcircled{2}} + V^{\textcircled{2}}}{2} \;,$$

где $U, V \in \mathbb{N}, U > V, U^{\textcircled{2}} \equiv V^{\textcircled{2}} \mod 2$, будет порождать фибоначчевы тройки (1).

Изложенные в статье методы приводят к необходимости исследования диофантова уравнения $x^2 + y^2 - z^2 = 0$ над квадратичным кольцом Фибоначчи $\mathbb{Z}[\tau]$. Для этого можно воспользоваться хорошо разработанной арифметической теорией квадратичных форм [5].

Литература

- 1. Матиясевич Ю.В. Связь систем уравнений в словах и длинах с 10-й проблемой Гильберта // Зап. науч. семин. ЛОМИ. 1968. 8. С.132-144.
- 2. Knuth D.E. Fibonacci multiplication // Appl. Math. Lett. 1988. 1. C.57-60.
- 3. Журавлев В.Г. Суммы квадратов над о-кольцом Фибоначчи // Записки научных семинаров ПОМИ. $-2006.-337.-\mathrm{C}.165-190.$
- 4. Журавлев В.Г. Уравнение Пелля над о-кольцом Фибоначчи // Записки научных семинаров ПОМИ. 2007. 350. С.139-159.
- 5. Касселс Дж. Рациональные квадратичные формы / М.: Мир, 1982.

PYTHAGOREAN AND FIBONACCI'S TRIPLES

A.V. Laptev

Vladimir State University, Stroiteley Av., 11, Vladimir, 600024, Russia, e-mail: Oxoron30189@yandex.ru

Abstract. The analog of Pythagorean's triples for Fibonacci's o-multiplication is under consideration and two infinite sets of the solutions are found.

Key words: Fibonacci's multiplication, Fibonacci's triples, δ -function.