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1. Introduction

The classical Black — Scholes model [1,2] of the option pricing dynamics are based
on the perfect market hypothesis. Under this hypothesis, there are no execution costs
and market participants use only the prevailing market prices and cannot influence the
prices by their operations. The Black — Scholes model gives useful results when the
underlying asset is liquid and the transaction amount is not too large for the market.
However, the perfect market hypothesis contradicts to the market practice in many
aspects, what makes the classical model too limited in application.

Last decades many researchers actively studied changes in the classical Black —
Scholes model, which would take into account the market illiquidity and the impact of
transactions on prices. See works of Magill and Constantinides [3], Kyle [4], Leland [5],
Cvitani¢ and Karatzas [6], Barles and Soner [7], Grossman [8], Platen and Schweizer [9],
Sircar and Papanicolaou [10], Schonbucher and Wilmott [11], Bank and Baum [12], Cetin,
Jarrow and Protter [13, Section 4], Cetin and Rogers [14, Section 6], Rogers and Singh
[15]. New models proposed in these works have been investigated by many researchers
both numerically and analytically. The work of Ibragimov and Gazizov [16] contains
the first analytical investigation of the Black — Scholes equation by the group analysis
methods [17,18]. Note the works of Bordag [19,20], of Dyshaev and Fedorov [21-27],
where group properties of various nonlinear Black — Scholes type models were studied,
their invariant solutions and submodels were calculated. In papers of Dyshaev and
Fedorov group classifications for various classes of nonlinear Black — Scholes type
models were obtained.

Guéant and Pu in [28,29] carried out the analysis of options pricing taking into
account transaction costs and the impact of operations on the market under the next
assumptions:

(1) the risk-free rate r, the absolute risk aversion parameter  and the volatility o
are constant;
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(2) the process of market trading volume V; is deterministic, non-negative, and
bounded;

(3) there exists a maximum degree of participation py,, i. e. processes v are such that
|ve| < pm Vi almost everywhere;

(4) the number of shares in the hedged portfolio is g; = g9 + fot Vsds;

(5) the price process is modeled by the stochastic differential equation dS; = pdt +
cdW;, where y is the expected return of the underlying asset;

(6) to model execution costs a continuous, non-negative, even, strictly convex
function L : R — R is used, which is increasing on R, L(0) = 0, and coercive, i.e.
lim, 400 L(p)/p = H00;

(7) the dynamics of the account X is described by the equation dX; = rX;dt —
14 Spdt — VtL(Vt/Vt)dt.

As result, Guéant and Pu derived a differential equation

1 1 -
6 = 10+ (4 = rS)q — b — 507655 — o e T (05 —q)* + ViH(8p), (1)

where H(p) = sup [pp — L(p)]. It is a model of the dynamics of the indifference price

lo|<om
6(t,S,q) for a call option.

In [30], the group classification of the Guéant — Pu model (1) with a constant
market trading volume V; is obtained, and for all specifications of the free element
H from the classification optimal systems of subalgebras of the Lie algebra is found,
invariant solutions and submodels for subalgebras from the optimal systems are derived.

In the present paper the Guéant — Pu model

1 1 _
6 =8+ (4 —rS)q — s — 50%0ss — 5707 "V (0s —q)* + F(t,6y)  (2)

is investigated. Here a free element F depends on t and 6,, i.e. the market trading
volume V; may depend on ¢, in contrast to the model, which is considered in [30]. In
the second section the continuous group of equivalence transformations of equation (2)
is calculated. It correponds to an infinite-dimensional Lie algebra of the equation with
three-dimensional finite part and with two basis operators, which coefficients are defined
by two arbitrary functions of t and their derivatives. In the third section the search of the
symmetry groups for general equation (2) started. The equivalence transformations are
used in the fourth section for the search of the specifications of the free element F, such
that ngeq # 0, which corresponds to equations of form (2) with different Lie algebras.
The obtained theorem on group classification is formulated in the fifth section. In the last
section optimal systems of subalgebras are found for the Lie algebra of model (2) with
a general function F(t,6,) and with a specification F = ¢"'®(6,), which were obtained
in the group classification. For every subalgebra from the optimal system the invariant
submodel of the Guéant — Pu model is calculated, if it exists.

2. Continuous Groups of Equivalence Transformations

Consider the Gueant — Pu equation
1 1 _
6 = 10+ (jt = rS)q — s — 50705 — o7 T (05 —q)* + F(1,6;), ()

where 0 = 0(t,S,q), F(t,0;) is a free element. Assume that ryou #0, T > 0.

For the search of continouos equivalence transformations groups of equation (3) we
will consider the function F and all its derivatives as additional variables. Generators of
such groups have a form

Y = 70 + {ds + ady + 79 + O,
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where 7, ¢, «, 17 depend on t, S, g, 6, and { dependson't, S, q, 0, F, 64, 05, 6,. Hereafter
dp = % is the partial derivative with respect to a variable 8. Equation (3) we will
consider in the system with additional equations

Fs=0, F=0, F=0, F, =0, F =0, (4)

which show the dependence of F on t and 6, only. System (3), (4) is considered as a
manifold M in the expanded space of the corresponding variables. Let us act by the
prolongated operator

Y=Y+ 19, + 11°0g; + 1799, +11°°ggs + C'3r, + {50k + C70F, + (%0F,+
+C%0g, +%0g, +Mop,

on the both sides of equation (3). After restricting the result on the manifold M, we
obtain the equation

_ r
1 = — (= rS)a+ 198 + un® + 0% T (65 — ) (n° —« = 5(65 —9)7) =
1 .
zeta-+ 20255 g = 1 — v+ rSac4 1ag + (4902 T (05— )1 —0)— 6)
r T 1
L2 T (6 — g~ 4+ SoS g =0,

The coefficients of the prolongated operator 12/ are calculated using the total deriva-

tives operators

0 0 0 0 0 0 d
Dt—a"’et%“‘, DS_£+95£+9557BGS+’ Dq-%"’eq%‘i‘,
. d ) ~ d 0 ~ 0 )
. d d ~ 0 0 ~ ) 0

and the prolongation formulas
i' = Dijj — 6;DiT — 6sDi§ — gDtat,  17° = Ds1j — 6:DsT — 0sDsg — 03 Dsa,

11 = Dy — 0;DyT — 05Dy — 0,Dgt,  11°° = Dgn® — 05;DsT — 035 Ds& — 05, Dsar,
{° = Ds{ — F;Dst — FsDg& — F;Dsa — FyDsy — Fy, Dsn' — Fo, Dsy® — Fy, Dsn",
{7 = Dyl — FtDyT — FsDgg — FyDga — FyDgny — Fo, Dy — Fo, Dgny® — Fo, Dyyp,
¢ = Dol — Dyt — FsDpg — FyDga — FyDgry — Fo, Don' — FoDor® — Fy, Dot

" = Dg,§ — FiDy, T — FsDy,& — FyDg,x — FyDy, 1 — Fy, Dy, " — Fo, Dy, y° — Fo, Dy, 11",

7% = Dy, ¢ — FiDy, T — FsDyg,& — FyDg,a — FgDy 17 — Fy, Doy — Fo,Dogy® — Fy Doy,
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The result of the action of 12/ on equations (4) after restricting on the manifold M gives

¢°|m = s — Fits — FeanIM = {s — Fits — Fy, (1754 + Oq1150 — 01 (Tsq + 04Ts0) —
—05(8sq + 05Cs0) — Og(asy + Og056) )| Mg = O,
0 m = Gg — Frrg — Fo | v = Gg — Frtg — Fo, (g + 0q11q0 — 0+ (Tgq + 05 750) —
—05(Cqq + 04840) — 0q(agq + Oqe49)) |11 = 0, (6)
| m = o — Frto — Fo gl v = o — Fito — Fo, (10 + 047700 — 01 (Tg0 + 0 T00)—
—05(8q0 + 04890) — Og(agp + Ogage) )1 = O
2% v = Go, — Fo, g | m = Co, + Fo, (1 +649) | = 0,
g% = Gos — Fo | v = Gog + Fo, (Gg + 6480) | v = 0.

7 The transition on the manifold M means the substitution for 6; the right-hand side of (3)
72 and vanishing of variables Fs, F;, Fy, Fy,, Fy,. It does not change the form of the last two
73 equations in (6). Therefore, the separation of variables ng and 6, gives (y, = 0, Jp, =0,
74 TqZO,TQIO,quO,CQIO.
We substitute the prolongation formulas into equation (5) and after the transition to
M obtain

e — 058t — g — 1y + 1S+ rq8 — g'yaze’(T*t)(Gs —q)*t -+
+(u+ 0% T (05 — q)) (s + 05119 — B85 — Oy (s + Osxg) — &)+
+%02(7755 + 2051150 + 031700 — 205¢Ts + 055 (179 — Ogtg — 285) —
—20s, (a5 + Osag) — Os&ss — O (ass + 205mse + O3gg) )+ @)

+ <r9 + (u—1rS)g — ubs — %(72955 - %'yaze’(T*t)(Gs —q)*+ F) X
2 r(T—t) o
X(Ue—n—Gq“e— (n+yo=e™ "V (0s —q))Ts — 2T55> =0.
The differentiation of equation (7) by 85, 05, gives s = 0, a5 = 0, g = 0. Thus,
T5=O, TqZO, TQZO, quo, 6920, tXS:O, 06920, ggt =0, C95 =0. (8)
The first 3 equations in (6) now have the form

2°|m = s — Fo, (nsq + 0qms0) =0, 7| ng = Gq — Fo, (Mg + Og11g0 — Bqtgq) =0,
;= Go — Fo, (140 + 047700) = 0.

The separation of the variables Fy and 6 here gives

)
{s=0, {;=0, Cp=0, Zp=0, gp, =0.

By substitution into equation (7) equalities (8) and (9) we get
e = 058 — g — 1y + rSa+ 1l + (s + 02T (65 — 0)) (15 + 05710 — 0585 — ) -
r _ 1
*EWUzer(T D(0s —g)*t =G+ 50 (s + Oss (e — 26s) — Os8ss)+

1 1 _
+(19 — 1) (re + (1 = 15)q — pbs — 507655 — Sy T (65 — )% + F) =0.



Version August 14, 2022 submitted to Symmetry 50f17

We separate this equation by the variables 0sg, 05, since { does not depend on them in
view of (9), and after a reduction we obtain

Oss:28s =T, 05:19—28s—rT+ 1 =0, (10)

2
_ o
%3%#ﬂT”UW+@%—“+U9—Wﬂ—V%+Vﬂ—§r“§%s:Q (11)

(T—t) H(T—t) 2

;
1 —Oq0r — 1y + 1S+ 1qG 4 (4 — 'yaze’ q)(ns —a) — 5’)/(726 g T—

2 (12)

1
—C+ %1755 + (19 — ) (r@ +(u—rS)g— E7(72e’(T’t)qz + F) =0.
From 2¢s = 7; in (10) in view of 75 = 0 due to (8) we get {ss = 0. Substitution 2{s = 7
from the first equation to the second one in (10) yields 19 = 7. Now we differentiate
(11) by q and using (8), (9) we get rT + {5 — &y — Tt = 0. Substitute {s = 7;/2 from (10),
then ay = r7 — 7;/2. Next, by differentiating (11) by S and using (8) and (9), we obtain

yo2e" T ygs — &5 = 0, or yo2e(T-yss = 144 /2. Therefore, 55 = 0. Thus,
T e (t=T)
Gss =0, ag=r7— bX Mg =717, Mss = Z'YTT”, f1sss = 0. (13)

The differentiation of equation (12) by S twice with the substitution of the vanishing
functions from (8), (9) and (13) gives 1;5s — 1755 = 0. The substitution of 7755 from (13)
here leads to 74+ = 0. By the differentiation of equation (12) by 6, we obtain a + ng =0.
The differentiation by g gives atg = 0,1i.e. due to (13) r; — T4+/2 = 0. Since r # 0, this
differential equation implies the equality 74 = 0, hence 7; = 0. Then due to (10), (13)

=0, ag=r7, ¢s=0, nss=0. (14)

From (8), (9), (14) it follows that T is a constant, § = §(t), « = rtq + A(t). Substituting
these equalities into (11) we get 02" T (yg — A(t)) — & = 0. Therefore, due to (9),
(13), (14) 7 = 170 + B(t)q + (A(t) + =D& (£) / (v0?))S + C(t). So,

F=2), w=rr - sl
= p =riq+ A(t), n=rt0+B(t)g+ | A(t) + o2 S+ C(t). (15)

Substituting these expressions into (12) and shortening we obtain

M -T
(B —rB+rE—&)g+C —rC+ Wer(t )&+

r(t—T) (16)

(
+<A’+e 5
Y0

C")S—A'Gq —{+rtF =0.
The differentiation by g of equation (16) implies that B’ — rB 4+ r — ¢’ = 0, hence

B(t) = &(t) + De''. Next, differentiate by S equation (16) and obtain

—rT
B=¢+De', A=-°

/ LS e (s)ds -+ c. (17)

02 iy
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We substitute (17) into (16) and (15) and get

e_rT t rs <!l
E=¢(), a=rtq— e /t e”*¢"(s)ds +c,
0

—rT t
n =r70+ (&(t) + De)qg + 677 (e”é’(t) - /to e“é"(s)ds)s +cS+C(t),

o (t=T)

g =C(t)—rC(t) + %e’(t’né’(t) + & ()0, + rTF.

o2
Thus, we prove the next assertion.

Theorem 1. The Lie algebra of continuous equivalence transformations for equation (3) is
generated by the operators

Y = e”qag, Y, = aq + S99, Yz =0+ anq + 100y + rFoE,

—rT t
Yy = ¢(£)0g + (¢'(t) —rp(£))op, Yy = p()ds — ¢ /to ey (s)dso,+

o2

+ <¢(t)q + 2—; <e”1p’(t) - /t: e’ ”(s)ds) S) dg+

r(t—T)

o2

Solving the Lie equations for the obtained Lie algebras and taking the projections
on the variables t, 6, F we get

Yi:0,=0,+me"; Ys:f=t+a3, F=e"F

Yo : F=F—rp(t)+¢'(t); Yy:0;=06,+p(t), (18)
F=F [ r(t=T) 1/ T’(t T) "(t T) I
=F+ @y + 02¢(>¢<)+7¢(>

Remark 1. A Lie algebra is called principal [17] for equation (3), if it is admissible for (3
with any specification of F. From (18) it follows that the principal Lie algebra of equation (3) is
generated by Yo and by Yy at p(t) = ™. Indeed, for such ¢ the group of transformations, which
is generated by Yy, does not change t, 8, and F.

Remark 2. We see that the Lie algebra of continuous equivalence transformations for equation
(3) is infinite-dimensional, since its operators depend on arbitrary functions ¢ and 1. Note
that such equation with a function F depending on 0, only has a 5-dimensional Lie algebra of
continuous equivalence transformations (see [30]). It generated by Y, Y3, Yy for ¢p(t) =1, Yy

for p(t) = et and Yy at p(t) =1

3. Calculation of the Symmetry Groups in General Case

Our purpose is to obtain the so-called group classification [17] for equation

2 1
0 = 10+ (4 —rS)g — ps — =055 — 570%"T (05 — g2 + F(t,0,).  (19)

For this aim, firstly we will search generators of the symmetry groups for the equation
under general assumptions.
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On equation (19) we act by the second prolongation }2( = X+ 1799, + 1759, +

1'0g, + 17558955 for a generator X = 7d; + {ds + ad; + 170dg of a continuous group of
transformations, where functions 7, ¢, «, 7 depend on ¢, S, g, 6. So,

n' =+ rSa+ g + (+vo%e T (05 — ) (4 — ) -
T 2 r(T—t) 2 o ss (20)
—E'yae (95—!]) T—Q—?U —FtT—ngﬂqlM =0.

After the substitution into (20) of the prolongation formulas and the restriction on the
manifold M, using the equation (19) for 6, we obtain

o2 1 _
(rf) + (u—1rS)g — ubs — ?955 - E'yaze’(T (05 — q)> + F) X
X (’79 —7p — 038p — Ogag — (p + v T (05 — q)) (15 + 0579) +

+ Fy, (13 + 6479) — %2(65579 + 05Tss + 205759 + 9§r99)> -
- (r@ + (u—7S)q — pbs — %2955 - %702@7@4)(95 —q)*+ F> 2T9+
+1t — 058t — Ogay — 117 + rSe + rq¢+
(1 + 902" T (05 — q)) (75 + 05179 — 05 (Es + 0sZ0) — Oy (s + Osaxg) — ) —
—%Vﬂzer(T%) (65 — 9)>T — Fr — Fy, (11q + 4776 — 05(Eq + 6486) — 64(erg + 649))+
+%2(7755 + 2057759 + 637760 — 2615 (Ts + 05Ty) + O (16 — Ogte — 265 — 30586) —

—20s, (s + Osag) — O (Zss + 20s8sp + 03C00) — 0g(wss + 20sasp + O3age)) = 0.

(21)

ss The differentiation of this equation by the variables 65, and ;5 leads to the equations
e Ts=0,179=00a5=0a9=0.
Equating the coefficient at fsg in (21) to zero, obtain {yp = 0, T; — 2¢s — ng 7 =0,
and using the equality 7 = 0 we get {ss = 0. Therefore,
TSIO, To :O, 0(520, 069:0, (’:9:0, {;(55:0, Tt—zgs—quTqZO. (22)

Applying these equalities in (21) we obtain the equality

1 _
(1’0 + (p—rS)qg — ubs — E'yazer(T D(0s —q)2+F) (e — 1 + ngTq> + 11—

—05&; — Ogar — 1y + (p + y02e" T (05 — 9)) (75 + Ost7p — 0585 — a)+
r _
+rSa + rgg — E'yazer(T D(6g — 7)°t — BT — Fo, (119 + 64176 — 05Gq — Oqg)+

1
+§‘72(7755 + 205159 + 9%’799) =0.
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We separate this equation by the variable 05 taking into account the last equation from
(22) and get the equations

0% 'ye’(T*t)(iyg —rT) + 199 =0, (23)
05 : 702" T (—q&s + s — a + 1qT) + Fo &g + 0P ysg — & +2us =0, (24)
2
1: (rG +(u—rS)g— %er(T*t)qz + F> (ng — T + Fo, Tq) + 11t — Ogaer — 1+

+rSa + g€ + (p — yo2e" T g) (ys — a) — %’yazer(T*t)qZT — Ft— (25)

2
o
—Fy, (115 + Oq19 — Oq0g) + 5 lIss = 0.

From (22) it follows that § = A(t,q)S + B(t,q), equation (23) implies that 7y = r7 +
Co(t, S, q)e’w(P%. Therefore,

&= A(t,q)S+B(t,q), n=rot+C(t, S,q)e_WY(T_t)G +D(t,S,9). (26)
Substitute these equalities into (24), (25) and get
yo2e T (—qA + Ds — a + rqT) — A)S — By + Fy (AgS + By) +2uA =0,  (27)
2
(7’9 +(u—1S)g— %e’(Tft)qz + F) (rt— 7er(T*t)Ce*7€r(T7t)9 —2A)+

(T

+7107; + Cre ™7 e + ryer(T*t)GCe*7ey(T7t)9 + Dy — 1?07 — rCe " _yp_

—0,at + rSa + rq(AS + B) + (4 — 702 T Dg) (Coe ™" "0 4 Dg — w)—
2
r o T
_E,YUZer(Tft)qZT —Ft+ 7(C55677€ (T-t)g + DSS)_

(T

—F, (1075 + qu_wr ey Dy +6,(rT — 'ye’(T_t)Ce_Wr(Tft)e) —0405) = 0.

In the last equation the variable 6 is present explicitly, after the reduction of similar terms
the equation has a form a + be? = 0, g # 0. Hence a = b = 0 and we have the equations

’70'2 r(T—t) 2
a= (y—rS)q—Te g+ F |(rt —2A)+ Dy —rD—

—0gs + rSa+ 1q(AS + B) + (u — vy TDg)(Ds — a) — (28)
2
r _ o
—E'ya%r(T Dg?t — B + EDSS — Fy,(Dg + 1057 — 64a9) =0,

2
b=— ((y —rS)g — %e’w_t)q2 + P) ye'T=DC 4 ¢, — rC+
(29)

2
_ o _
(= 707 T g)Cs + 5 Css — Fy, (Cg — 7" =C6y) = 0.

o0 4. Calculation of the Group Classification in the Case F 164 #0
Let us continue the calculations using the assumption Fy g, # 0. Differentiating the
last equation in (22), (27) and (29) by 6,, we obtain that 7, = 0, A; = 0, B; = 0,C = 0.
Taking into account form (26) of ¢, we get A = 7;/2. Hence

Tt
=0, A;=0, A:E’ B; =0, C=0. (30)
o1 Differentiate (27) by S and due to (30) obtain the equality 'y(fzer(T’t)D ss = T#/2, hence
2 Dgss = 0 and Dss,; = 0. Therefore, the differentiation of equation (28) twice by S gives
0s  —tDgg + Diss = 0 and substituting the expression for Dgg we get Tyt = 0.
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94

95

926

97

98

29

Next, differentiating equation (27) by g and equation (28) by 6, and S we obtain

_k
2

Tt
D - == 0, D == 0, == e
+ Sq &g + 717 Sq &g rt >

Differentiate (28) by S and g and get

T—t)

—r(rt — 1) +rag +rA— 'yazer( Dss =rt — /2 = 0.

From this equation and the equality 7y = 0 it follows that 7; = 0.
Therefore, T is a constant, g =717, 0 =71qT + E(t). Substitute it in equation (27)

and obtain yo2e"(T—t) (Dg — E) — B; = 0. Hence,

E=B(t), a=rqgu+E(), D=G(tq)+E(t)S+ er’;tng) B'(t)S. (31)

Substituting (31) into (28) and reducing we get

r(t—T) e (t=T)

(
ewz B"S — E'f, — rG+rBq + u

rTF + Gy + E'S + B’—B’q—TFt—Gngqzo.

(32)

v0?

Differentiate (32) by 6, and q and get Gy; = 0. Then G = H(t)q + J(t) and the separation
of equation (32) by g and S gives

r(t—T)
G ZH(t)q—i—](t), E + ’)/(72 B" =0, H —rH+rB—B =0,

r(t—T) (33)

rTF+I’—E’9q—r]+ye B’ — tF; — HFy, = 0.

yo?

The third equation in (33) implies that B = H + Ke'. Substitute this equality into the
second equation in (33), then

t or(s=T)
B(t) = H(t) + Ke", E(t) :—/t o (H(5) + PKe)ds £ L. (34)
0

Now equalities (31) implies that

_ rt _ o ! er(sz) " 2 1/ 1S
E=H(t)+Ke", a=rgT o (H"(s) +r°Ke"™)ds + L,
to
ters—T) 1 2 1 7S
7= 10T + —/t o () + PKe)ds £ L | St (35)
0
e (t=T)

+

o2 (H'(t) +rKe™)S + H(t)g + ] (t).

Substituting (34) into the last equation in (33) we get

r(t—T)
v0?

r(t—T)

e e

(H' +rKe™) =0. (36)

rtF —tF — HFy + ] — 1] + (H" +r*Ke'™ )0y +

70?
This equation has the form rtF — tF — H(t)Fy, + u(t)0; + v(t) = 0. Consider possible

situations.

4.1. Thecaset =0, H=0

Ift=0,H=0,thenK=0,] —r] =0, ] = Joe'". Due to (35) we get the generators
of symmetry groups X; = "9y, X, = 9, + S0y for arbitrary F, such that Fy,9, # 0.
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100

4.2. Thecaset #0,H=0

If T #0,H =0, then F = ®1(6,)e’" + b(t)6, + c(t). Using the equivalence transfor-
mation of the group, which is generated by Y (18) with ¢, such that ¢’ — r¢ + ¢ = 0, we
obtain F = ®1(6;)e"" 4 b(t)6,. Since Fg0, # 0, then @Y # 0. Substitute F in (36), then

rthl, — tb'0, + ] —r] + et r?Ke'0, + et rKe™ =0
q q 702 g TH 702 -
Separating by the variable 6,, obtain
B " rKe'(2t=T) B " ‘uKer(2t7T)
b(t) - bOe + T’)/O'Z ’ ](t) - ]Oe 70_2 .

Denote @ () := ®1(6,) + boby, then " = & # 0. Thus,

F =®(0y)e" +2rbe™'0,, @" #0, beR,
T=1, ¢=2ty0%be’ T, o= rqT — rebe* + L,
7 = r0t 4 rtbe¥'S + LS + Joe' — 2uthe?".
Therefore, we obtained the specialization and the symmetry group, which is generated
by operators
X1 = e’tag, Xy = aq + Sdg,
X3 = 9t + 2702by e 1) gg + (rg — rblezrt)aq + (10 4 rbye®tS — 2ubie**)y.

4.3. Thecaset=0,H £ 0

If T =0, H # 0, then u # 0, otherwise, Fy g, = 0. Therefore, F = a(t)@% +b(t)0, +
c(t), a # 0. We use the equivalence transformation of the group with the generator Yy
(18), where ¢ is a solution of the equation

9" () + 902 T 2a(t)y (1) + b(t)) =0,

and get F = a(t)@% + ¢c(t), then by a transformation with a generator Yy we obtain the
equivalent function F = a(t)63. Then (36) implies the equation

r(t—T) e (t=T)

¢ (H" +7r°Ke™)0y —r] +

t —
e o (H' +rKe™) —2Hab,; = 0.
Therefore,

e (t=T)

H" = 2902 T a(t)H — PKe™, ] —r]+u (H +rKe™)=0. (37)

702
Solving the second equation in (37) we get

J = Joe't — et (H + Ke'™)
=Jo H 702 .
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Then (35) has the form

't
=0, &=H(t)+Ke", a=-2[ a(s)H(s)ds+L,

fo

t er(t T)
y = (—2/ a(s)H(s)ds+L>S+ o (H () +rKe)s + (38)

to

r(t—T)
H(0)q -+ o™ = = 5= (H(1) + Ke").

Let ¥(t) is a partial solution of the first equation in (37) for K = 1, then a general
solution of the equation is H(t) = c1¢1(t) + co@a2(t) + K¥(t), where ¢ and ¢, are two
linearly independent solutions of the homogeneous equation H” = 2yo2e"T—t)a(t)H.
Therefore, (38) implies that

X = e”ag, Xz = aq + 589,

X3 = 4)1( 65 — 2/ )dsaq+

er(t—T) g0/( ) e’(t T)
+ (Wzls -2 ; a(s)go1(s)ds +@1(t)g—n o= @1(t) |9,

X4 = q)z( 85 — 2/ )dsaq+

el (t— e (t=T)
Wz S 25/ s)¢p2(s)ds + @a(t)g — p o @2(t) |9,

X5 = (¥(t) +e")as — 2 a(s)‘f(s)dsaq+

to
D ) 1 retyS — 25 [ a(s)E(s)ds 4+ el
| o2 (Y'(t) +re’")S — a(s)¥(s)ds +¥(t)g —u o2

to

(¥ (1) +e”)>a9.

102 4.4. Thecaset #0,H #0
For the case T # 0, H # 0 make a replacement

t
F=¢"®(t,6,) —e’t/ *u(s)dsb, +e”/H / su(s)dsdt—e”/e*”v(t)dt
to to

and obtain the equation T®; + H(t)®y, = 0. Its general solution has the form

o= q><9q - /H(t)dt/r).

Therefore, F = "'®(6, — [ H(t)dt/T) + b1(t)0, + c1(t). After using the equivalence
transformation of the group for Yy (18) with ¢ = [ H(t)dt/T we obtain F = "' ®(6,) +
b(t)8; + c(t), " # 0. Substitute the result in (36), then

rtbb, +rtc — '8, — ' —"H®' — Hb+ ] —r]+
r(t—T) r(t—T)

e 1" 21 1t e
5 (H" +r Ker)Gq—i-;i o2

(H +rKe'') =0.
Hence ®(6;) = ag + 416, + a9§, by the equivalence transformation for Xy, where

P (t) + yo2e (T (2ae"yp(t) +a; + b(t)) =0,
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then by an equivalence transformation for a group with a generator Xy obtain F = ae’t@%
with a constant a # 0. So, we obtain a partial case to the previous one, but with a nonzero
7, which gives additional symmetry. Thus,

Xy = e”ag, X = 8,, 4+ S99, X3 =09+ rqaq + 109y,
t

Xy = ¢1(t)0s — 2{1/ e o1 (s)dsaq—i-
to

et (t=T)

. <e’“‘%£ (t)

t
s-zs/ s o1 (3)d g —
o a5 | € p1(s)ds + p1(t)g — p

91 (t)> 89/

o2
t

X5 = @a(t)ds — Za/ " pa(s)dsdy+
t

0
et (t=T)

. <6’(”> 'A0)

t
o S —2aS /to e @y(s)ds + @a(t)g — p

gDz(f)) 89/

o2

t
X = (¥(t) +e™)ds — Za/ ¢ (5)dsd, +

to

ALY s —2as [ oW (s)ds + ¥ D)
+ o= (P'(t) +re")S —2a toe (s)ds+¥(t)g —u o

(P(t) + e”)) dg-
Instead of the first equation in (37) we have the equation with constant coefficients
H" — 2ayc?e'TH + r*Ke™ = 0.

Therefore, we can calculate a solution of this equation analitically. If ay > 0, a #
12 /29c%e'T, then

2 o1t
prt) = V2T () = VT g =TI (a9

r2 —2ayoZe' T’

Foray > 0,a = 1*/2yc%e'T we have

rt
pi(t) = VI (1) = VIR () = TR (40)

Finally, if ay < 0, then

2 ot
. r“Ke
@1(t) = siny/ —2ayo2eTt,  @o(t) = cos\/ —2ayo2e'Tt, ¥(t) = PR sy (41)

103 The equality a = r2/2y02e’T in this case is not possible.

1s 5. Theorem on Group Classification

105 As a result of calculations in the previous section, we obtain the following theorem
16 on group classification.

17 Theorem 2. Letr,v,0,u, T € R.
1. The Lie algebra for the equation

2

2
o o
0; :1’9+(y—r5)q—y95——2 955—7

Ter(T-ﬂ(es — )2+ F(t,6,), (42)

where F is not equivalent to a(t)6 or e" ®(8;) + boe™' 0, + b1e*"6;, Fy g, # O, is generated by
the operators
X1 =9y, Xo =0y + S0y (43)
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2. The Lie algebra for the equation

2

2
Or =10+ (u—rS)qg— ubs — %955 — %er(T*t) (85 —q) + e"'®(0,) + beszeq, (44)

where b € R, ® is a nonlinear function, which is not equivalent to a0?, is generated by the
operators

X1 = e’tae, Xy = E)q + Sdy,

(45)
X3 = 0t + 2702be" D ag + (rg — rbe®)dy + (10 + rbe¥™S — 2ube™ )0y,

3. The Lie algebra for the equation

o2 yo? r(T—t) 2 2
6r =16+ (4 —15)q — pfs — 5-0ss — ——e"" (05 — q)" + a(1)6,

where a(t) is a nonzero function, which is not equivalent to age™, is generated by the operators
Xl = Ertag, X2 = aq + Sag,

X3 = (pl( 85—2/ )dsaq+

e’ =T gt (1) o (t=T)
* (Wzls —25 " ”(5)4’1 (s)ds + @1(t)g —p o2 @1(t) | 9o,

Xy = (Pz( 85 — 2/ )dsaq+

}’(t T er(th)
Wz s - 25/ $)@a(s)ds + 92(1) = p—5=2(t) ) 95,

X5 = (¥(t) +e™")og —2 ta(s)‘l’(s)dsaq+

to

(e’(tT) t o (t=T)
+

(Y (t) +re")S—25 [ a(s)¥(s)ds +¥(t)g — p o

(Y(t) + e”)) g.
fo
s Here g1, ¢, are linearly independent solutions of the equation H" (t) = 2yo2e"T=Ha(t)H(t),
wo Y is a partial solution of the equation H" (t) = 2yo2e"T=Da(t)H(t) — r2e'.
4. The Lie algebra for the equation

— _ _ _ _E(Tft) _ 2 rtg2
0 =10+ (4 —rS)q — ubs 2955 > e (0s —q)° +ae"6g,
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where a is a nonzero constant, is generated by the operators

X1 = 6”39, X2 = aq + Sag, X3 = at + anq + 1’989,
t

X4 = (pl(i’)as — 2{1/ Ers(pl (s)dsaq—i-

to

(e ®)
yo?

-t e (t=T)
S —2aS / e pi(s)ds+ @1(t)g — u 5 @1(t) | 99,
Jto 0%%

t
X5 = ¢p(t)ds — Za/ e’s(pz(s)dsaq—i—
to

. (e’<”> ?5(1)

o2

e (t=T)

o2

ot
S — 2115/t e pa(s)ds+ @a(t)g — u goz(t)> g,
0

t
X = (¥(t) +e")og — Za/ e"Y(s)dso,+

to

e g s 245 [ Y (s)ds + ¥ et 1)
+ o (P'(t) +re")S —2a toe (s)ds+¥(t)g —u o2

(¥(t) +6’”)>ae,

where @1, p2,'Y are from (39), (40), or (41), depending on the sign of ay and the value of a.

Remark 3. In the second part of this theorem at b = 0 and in the fourth one we have the market
trading volume Vi = ae™ with a constant a # 0, as multiplier at a function of 0, in an expression
for F. If ® = 0 in the second part, then the market trading volume is V; = be?"t. In the third
part of the theorem V; = a(t).

Remark 4. A theorem on the group classification of equation (3) with a free element F depending
on 8, only is obtained in [30]. It contains the specifications F = "% and F = 93, which
correspond to additional symmetries of the equation.

6. Application to the Search of Some Submodels

Using a symmetry group for a differential equation we can reduce the number of
variables, on which an unknown function depends, by the dimension of the considered
group. If the resulting equation can be integrated, we obtain an exact solution of the
original equation, invariant with respect to the group of symmetries under consideration.
If the resulting equation is not integrable, following L.V. Ovsyannikov [31], we will call
such an equation an invariant submodel of the initial equation (initial model).

In order to find invariant solutions or submodels that are not translated into each
other by transformations of variables, we must find the so-called optimal system of
subalgebras of the Lie algebra of the equation under study. To do this, the internal
automorphisms of this algebra are used, which can be found through nonzero structural
constants of the algebra. Below we will do this for the two simplest Lie algebras of the
symmetry groups generators obtained in the group classification theorem.

6.1. Optimal system of subalgebras and submodels for the general case

Lie algebra L, (43) is commutative, hence it has no continuous groups of inter-
nal automorphisms. So, its optimal system of one-dimensional subalgebras is @1 =
{(X2), (X1 + cXz),c € R}.

The subalgebra (X;) has the invariants [y =, [, = S, J3 = 6 — ¢S. Writing J3 =
w(J1,J2) we obtain the form of the corresponding invariant solution 6 = w(t,S) + Sq.
Substitute it into equation (42) and obtain the submodel

2 yo?

Wy = 1w — pwg — %wss - Te’(T_t)w%; +F(t,S),
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which is invariant for (X;). Analogously we get the invariants ¢, %” +5,0— ech —Sq
for the subalgebra (X; + ¢X3), ¢ # 0. The invariant submodel for it has the form
o2

2 rt
W = 1w — pwg — 77,(}55 — %Er(Tit)w% + F(t, % + S),

where 0 = w(t,S) + %q + Sq. If ¢ = 0, then the subalgebra (X;) has no invariant
submodels, since its invariants ¢, S, 4 do not depend on 6.

6.2. Optimal system of subalgebras and submodels for the specification F = ®(6,)e"

Nonzero structural constants for a Lie algebra with a basis {Xj, Xp,..., X, } are
coefficients ci»‘j in the decomposition of a commutator [X;, X;] [17] by the basis: [X;, X;| =

n
Y ci-‘ij. Generators of continuous groups of internal automorphisms can be calculated
k=1
n
by the formula E; = ), cé‘jejagk, where ¢; are coefficients in the decomposition of an
jk=1

element of the Lie algebra by its basis, which depend on group parameters.

Consider the Lie algebra Lz with basis (45). For L3 we have 0%3 = —C%z =
—270%be'T, 33 = —c}, = r. The integration of the Lie equations for the generators

2

gives Ey : &1 = e; — 2y0?be'Tezay, & = ey +rezay; E3 : 61 = e — 27T”beﬁez(l —e 1),
¢y = e "ey. Also, we add a mirror automorphism E_ : ¢ = —&;, which does not
change the commutators of the basis operators of this Lie algebra L.

Let b # 0, for e3 # 0 by the internal automorphism E; obtain e; = 0, then we have
(e1,e2,e3) = (c,0,1) after scaling, i.e. we get cX; + X3, c € R. If e3 = 0, e, # 0, then by
Ej gete; =0, (e1,e2,e3) = (0,1,0), if we take

1 re "Te;
=——In{1-
s P ( 2y02be, >

—rT —rT
in the case ;=5 < 1. If 2=5°L > 1, we will use E_ to go to the previous case. For
2v0?be; 2y0?%be;

ey = e3 = 0 we have (e1,e,¢3) = (1,0,0). Thus, ©] = {(X1), (X2), (cX1 + X3),c € R}.

Let us search for a system of two-dimensional subalgebras for L3 with b # 0. For
the basis vector X; of the one-dimensional subalgebra (X7), consider the second basis
vector in the form a X, + X3, then the commutator has the form [X1,a X, + BX3] = 0.
We get subalgebras (X1, X») for ez = 0, (X3, X3) for e3 # 0, if we use Ej.

For the basis vector Xy, consider the second basis vector in the form aX; + BXs.
Their commutator is [Xp, a X7 + BX3] = rBXy — 2By0?be’ T X;. Therefore, a subalgebra is
formed at § = 0, which is already found in the form (Xj, X»).

For c¢Xj + X3, consider the second basis vector in the form aX; + fX;. Then
we have [cX; + X3,aX; + BX;] = 2By0?be’T X1 — rBX, and get the subalgebra (cX; +
X3,270%be’ X1 — rXp). By E3 and E_ reduce it to (c X1 + X3, X3).

Lemma 1. Optimal systems of one-dimensional and two-dimensional subalgebras of Lie algebra
L3 (45) with b # 0 are

01 = {(X1), (Xp), (X1 + X3),c € R}, ©} = {(X1, Xp), (X1, X3), (cX1 + X3, X3), ¢ € R}.

In the case b = 0, for e3 # 0 we obtain the vector (¢,0,1), ¢ € R, using E,. If
e3 = 0, then using E3, E_ we get (1,1,0), (1,0,0), (0,1,0). So, @% = {(X1), (X2), (X1 +
X3), (cX1 + X3),c¢ € R}. In this case, we have two-dimensional subalgebras (X, X»),
(X1, X3) also. Moreover, [Xp, X; + BX3] = rBfX,, and we have the subalgebra (X, a X7 +
BX3) for any o, p € R. If = 0, it will be a partial case of (X1, X»), for B # 0 we obtain
the subalgebra (cX; + X3, X). Since [cX; + X3,aX; + BXz] = —rpX,, we obtain another
subalgebra (cX; + X3, X1).
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The subalgebras (X1), (X1, X2), (X1, X3) do not have invariant submodels, since
(X71) does not have invariants depending on 6.
Consider the case b = 0, then the subalgebra (X; + X;) has invariants ¢, S, 6 —
(e" + S)g, therefore, an invariant solution has the form 0 = w(t,S) + (¢'* + S)q and the
invariant submodel is
o2

yo?
Wt =T1W — pWg — —-Wss — —5—

5 5 T w? 4 F(t,e" +5).

The subalgebra (cX; + X3) has invariants x := ge™ ", S, fe " — ct, hence we will
look for an invariant solution in the form 6 = cte™ + e"*w(ge~", S), where w is a function
of two variables. Substitute it into (44) and obtain the invariant for (cX; + X3) submodel

o W 2
D(wy) + rxwy = 5 Wss + pws + ——e (wg —x)°+ (rS — p)x +c.

The subalgebra (cX; + X3, X1) has no invariants depending on 6 and, therefore,
invariant submodels. Let us find the invariant submodel with respect to (cX; + X3, Xp).
Consider a function G = G(x,S,y), where x := qe_”, y = fe~" — ¢t are invariants
for the subalgebra (cX; + X3). Then X,G = ¢ "Gy 4 Se "G, and invariants of the
subalgebra (cX; + X3, Xp) are S and y — Sx = (0 — Sq)e " — ct. Therefore, we will
search an invariant solution for this subalgebra in the form 6 = cte™ + Sq + e"'w(S). The
invariant submodel will have the form

2 2c

2
w"(S) + O—‘Lzlw/(s) + e T’ (5)? — S0(5)+ 5 =0.

Conclusion

Theorem on group classification of the Guéant and Pu model of the option pricing
taking into account transaction costs and the impact of operations on the market is
obtained in this paper. For this aim, the Lie algebra of generators of continuous groups
of equivalence transformations is calculated. For the general case and for the case of
the equation with the right-hand side F = ¢"'®(6,) optimal systems of subalgebras
and corresponding invariant submodels is derived. The results of this work will be
applied to the analogous research of the Guéant and Pu model with the specifications
F = e"'®(0,) + be®™, F = a(t)03, F = ae’6;, which is presented in the obtained here
theorem on group classification.
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