
Article

Symmetry analysis of a model of option pricing and hedging

Sergey M. Sitnik 1∗ , Khristofor V. Yadrikhinskiy 2 and Vladimir E. Fedorov 2,3

Citation: Sitnik, S.M.; Yadrikhinskiy,

Kh.V.; Fedorov, V.E. Symmetry

analysis of a model of option pricing

and hedging. Symmetry 2022, 1, 0.

https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional af-

filiations.

Copyright: © 2022 by the authors.

Submitted to Symmetry for possible

open access publication under the

terms and conditions of the Cre-

ative Commons Attribution (CC

BY) license (https://creativecom-

mons.org/licenses/by/ 4.0/).

1 Belgorod State National Research University (BelGU), Pobedy Street, 85, 308015 Belgorod, Russia;
mathsms@yandex.ru

2 North Eastern Federal University, Yakut Branch of Far Eastern Center for Mathematical Research, 58,
Belinskiy St., Yakutsk 677000, Russia; ghdsfdf@yandex.ru

3 Chelyabinsk State University, Mathematical Analysis Department, 129, Kashirin Brothers St., Chelyabinsk
454001, Russia; kar@csu.ru

* Author to whom correspondence should be addressed.

Abstract: A model of Guéant and Pu of option pricing and hedging in the general form is1
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1. Introduction10

The classical Black — Scholes model [1,2] of the option pricing dynamics are based11

on the perfect market hypothesis. Under this hypothesis, there are no execution costs12

and market participants use only the prevailing market prices and cannot influence the13

prices by their operations. The Black — Scholes model gives useful results when the14

underlying asset is liquid and the transaction amount is not too large for the market.15

However, the perfect market hypothesis contradicts to the market practice in many16

aspects, what makes the classical model too limited in application.17

Last decades many researchers actively studied changes in the classical Black —18

Scholes model, which would take into account the market illiquidity and the impact of19

transactions on prices. See works of Magill and Constantinides [3], Kyle [4], Leland [5],20

Cvitanić and Karatzas [6], Barles and Soner [7], Grossman [8], Platen and Schweizer [9],21

Sircar and Papanicolaou [10], Schönbucher and Wilmott [11], Bank and Baum [12], Çetin,22

Jarrow and Protter [13, Section 4], Çetin and Rogers [14, Section 6], Rogers and Singh23

[15]. New models proposed in these works have been investigated by many researchers24

both numerically and analytically. The work of Ibragimov and Gazizov [16] contains25

the first analytical investigation of the Black — Scholes equation by the group analysis26

methods [17,18]. Note the works of Bordag [19,20], of Dyshaev and Fedorov [21–27],27

where group properties of various nonlinear Black — Scholes type models were studied,28

their invariant solutions and submodels were calculated. In papers of Dyshaev and29

Fedorov group classifications for various classes of nonlinear Black — Scholes type30

models were obtained.31

Guéant and Pu in [28,29] carried out the analysis of options pricing taking into32

account transaction costs and the impact of operations on the market under the next33

assumptions:34

(1) the risk-free rate r, the absolute risk aversion parameter γ and the volatility σ35

are constant;36
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(2) the process of market trading volume Vt is deterministic, non-negative, and37

bounded;38

(3) there exists a maximum degree of participation ρm, i. e. processes ν are such that39

|νt| ≤ ρmVt almost everywhere;40

(4) the number of shares in the hedged portfolio is qt = q0 +
∫ t

0 νsds;41

(5) the price process is modeled by the stochastic differential equation dSt = µdt +42

σdWt, where µ is the expected return of the underlying asset;43

(6) to model execution costs a continuous, non-negative, even, strictly convex44

function L : R → R+ is used, which is increasing on R+, L(0) = 0, and coercive, i.e.45

limρ→+∞ L(ρ)/ρ = +∞;46

(7) the dynamics of the account X is described by the equation dXt = rXtdt −47

νtStdt − VtL(νt/Vt)dt.48

As result, Guéant and Pu derived a differential equation

θt = rθ + (µ − rS)q − µθS −
1
2

σ2θSS −
1
2

γσ2er(T−t)(θS − q)2 + Vt H(θq), (1)

where H(p) = sup
|ρ|≤ρm

[pρ − L(ρ)]. It is a model of the dynamics of the indifference price49

θ(t, S, q) for a call option.50

In [30], the group classification of the Guéant — Pu model (1) with a constant51

market trading volume Vt is obtained, and for all specifications of the free element52

H from the classification optimal systems of subalgebras of the Lie algebra is found,53

invariant solutions and submodels for subalgebras from the optimal systems are derived.54

In the present paper the Guéant — Pu model

θt = rθ + (µ − rS)q − µθS −
1
2

σ2θSS −
1
2

γσ2er(T−t)(θS − q)2 + F(t, θq) (2)

is investigated. Here a free element F depends on t and θq, i. e. the market trading55

volume Vt may depend on t, in contrast to the model, which is considered in [30]. In56

the second section the continuous group of equivalence transformations of equation (2)57

is calculated. It correponds to an infinite-dimensional Lie algebra of the equation with58

three-dimensional finite part and with two basis operators, which coefficients are defined59

by two arbitrary functions of t and their derivatives. In the third section the search of the60

symmetry groups for general equation (2) started. The equivalence transformations are61

used in the fourth section for the search of the specifications of the free element F, such62

that Fθqθq ̸≡ 0, which corresponds to equations of form (2) with different Lie algebras.63

The obtained theorem on group classification is formulated in the fifth section. In the last64

section optimal systems of subalgebras are found for the Lie algebra of model (2) with65

a general function F(t, θq) and with a specification F = ertΦ(θq), which were obtained66

in the group classification. For every subalgebra from the optimal system the invariant67

submodel of the Guéant — Pu model is calculated, if it exists.68

2. Continuous Groups of Equivalence Transformations69

Consider the Gueant — Pu equation

θt = rθ + (µ − rS)q − µθS −
1
2

σ2θSS −
1
2

γσ2er(T−t)(θS − q)2 + F(t, θq), (3)

where θ = θ(t, S, q), F(t, θq) is a free element. Assume that rγσµ ̸= 0, T > 0.70

For the search of continouos equivalence transformations groups of equation (3) we
will consider the function F and all its derivatives as additional variables. Generators of
such groups have a form

Y = τ∂t + ξ∂S + α∂q + η∂θ + ζ∂F,
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where τ, ξ, α, η depend on t, S, q, θ, and ζ depends on t, S, q, θ, F, θt, θS, θq. Hereafter
∂β := ∂

∂β is the partial derivative with respect to a variable β. Equation (3) we will
consider in the system with additional equations

FS = 0, Fq = 0, Fθ = 0, Fθt = 0, FθS = 0, (4)

which show the dependence of F on t and θq only. System (3), (4) is considered as a
manifold M in the expanded space of the corresponding variables. Let us act by the
prolongated operator

Y
2
= Y + ηt∂θt + ηS∂θS + ηq∂θq + ηSS∂θSS + ζt∂Ft + ζS∂FS + ζq∂Fq + ζθ∂Fθ

+

+ζθt ∂Fθt
+ ζθS ∂FθS

+ ζθq ∂Fθq

on the both sides of equation (3). After restricting the result on the manifold M, we
obtain the equation

ηt − rη − (µ − rS)α + rqξ + µηS + γσ2er(T−t)(θS − q)
(

ηS − α − r
2
(θS − q)τ

)
−

zeta +
1
2

σ2ηSS|M = ηt − rη + rSα + rqξ + (µ + γσ2er(T−t)(θS − q))(ηS − α)−

− r
2

γσ2er(T−t)(θS − q)2τ − ζ +
1
2

σ2ηSS|M = 0.

(5)

The coefficients of the prolongated operator Y
2

are calculated using the total deriva-

tives operators

Dt =
∂

∂t
+ θt

∂

∂θ
+ . . . , DS =

∂

∂S
+ θS

∂

∂θ
+ θSS

∂

∂θS
+ . . . , Dq =

∂

∂q
+ θq

∂

∂θ
+ . . . ,

D̃t =
∂

∂t
+ Ft

∂

∂F
+ . . . , D̃S =

∂

∂S
+ FS

∂

∂F
+ . . . , D̃q =

∂

∂q
+ Fq

∂

∂F
+ . . . ,

D̃θ =
∂

∂θ
+ Fθ

∂

∂F
+ . . . , D̃θt =

∂

∂θt
+ Fθt

∂

∂F
+ . . . , D̃θS =

∂

∂θS
+ FθS

∂

∂F
+ . . .

and the prolongation formulas

ηt = Dtη − θtDtτ − θSDtξ − θqDtα, ηS = DSη − θtDSτ − θSDSξ − θqDSα,

ηq = Dqη − θtDqτ − θSDqξ − θqDqα, ηSS = DSηS − θStDSτ − θSSDSξ − θSqDSα,

ζS = D̃Sζ − FtD̃Sτ − FSD̃Sξ − FqD̃Sα − Fθ D̃Sη − Fθt D̃Sηt − FθS D̃SηS − Fθq D̃Sηq,

ζq = D̃qζ − FtD̃qτ − FSD̃qξ − FqD̃qα − Fθ D̃qη − Fθt D̃qηt − FθS D̃qηS − Fθq D̃qηq,

ζθ = D̃θζ − FtD̃θτ − FSD̃θξ − FqD̃θα − Fθ D̃θη − Fθt D̃θηt − FθS D̃θηS − Fθq D̃θηq,

ζθt = D̃θt ζ − FtD̃θt τ − FSD̃θt ξ − FqD̃θt α − Fθ D̃θt η − Fθt D̃θt η
t − FθS D̃θt η

S − Fθq D̃θt η
q,

ζθS = D̃θS ζ − FtD̃θS τ − FSD̃θS ξ − FqD̃θS α − Fθ D̃θS η − Fθt D̃θS ηt − FθS D̃θS ηS − Fθq D̃θS ηq.
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The result of the action of Y
2

on equations (4) after restricting on the manifold M gives

ζS|M = ζS − FtτS − Fθq η
q
S|M = ζS − FtτS − Fθq(ηSq + θqηSθ − θt(τSq + θqτSθ)−

−θS(ξSq + θqξSθ)− θq(αSq + θqαSθ))|M = 0,

ζq|M = ζq − Ftτq − Fθq η
q
q |M = ζq − Ftτq − Fθq(ηqq + θqηqθ − θt(τqq + θqτqθ)−

−θS(ξqq + θqξqθ)− θq(αqq + θqαqθ))|M = 0,

ζθ |M = ζθ − Ftτθ − Fθq η
q
θ |M = ζθ − Ftτθ − Fθq(ηqθ + θqηθθ − θt(τqθ + θqτθθ)−

−θS(ξqθ + θqξθθ)− θq(αqθ + θqαθθ))|M = 0

ζθt |M = ζθt − Fθq η
q
θt
|M = ζθt + Fθq(τq + θqτθ)|M = 0,

(6)

ζθS |M = ζθS − Fθq η
q
θS
|M = ζθS + Fθq(ξq + θqξθ)|M = 0.

The transition on the manifold M means the substitution for θt the right-hand side of (3)71

and vanishing of variables FS, Fq, Fθ , Fθt , FθS . It does not change the form of the last two72

equations in (6). Therefore, the separation of variables Fθq and θq gives ζθt = 0, ζθS = 0,73

τq = 0, τθ = 0, ξq = 0, ξθ = 0.74

We substitute the prolongation formulas into equation (5) and after the transition to
M obtain

ηt − θSξt − θqαt − rη + rSα + rqξ − r
2

γσ2er(T−t)(θS − q)2τ − ζ+

+(µ + γσ2er(T−t)(θS − q))(ηS + θSηθ − θSξS − θq(αS + θSαθ)− α)+

+
1
2

σ2(ηSS + 2θSηSθ + θ2
Sηθθ − 2θStτS + θSS(ηθ − θqαθ − 2ξS)−

−2θSq(αS + θSαθ)− θSξSS − θq(αSS + 2θSαSθ + θ2
Sαθθ))+

+

(
rθ + (µ − rS)q − µθS −

1
2

σ2θSS −
1
2

γσ2er(T−t)(θS − q)2 + F
)
×

×
(

ηθ − τt − θqαθ − (µ + γσ2er(T−t)(θS − q))τS −
σ2

2
τSS

)
= 0.

(7)

The differentiation of equation (7) by θSt, θSq gives τS = 0, αS = 0, αθ = 0. Thus,

τS = 0, τq = 0, τθ = 0, ξq = 0, ξθ = 0, αS = 0, αθ = 0, ζθt = 0, ζθS = 0. (8)

The first 3 equations in (6) now have the form

ζS|M = ζS − Fθq(ηSq + θqηSθ) = 0, ζq|M = ζq − Fθq(ηqq + θqηqθ − θqαqq) = 0,

ζθ |M = ζθ − Fθq(ηqθ + θqηθθ) = 0.

The separation of the variables Fθq and θq here gives

ηSθ = 0, ηSq = 0, αqq = ηqθ = 0, ηqq = 0, ηθθ = 0,

ζS = 0, ζq = 0, ζθ = 0, ζθt = 0, ζθS = 0.
(9)

By substitution into equation (7) equalities (8) and (9) we get

ηt − θSξt − θqαt − rη + rSα + rqξ + (µ + γσ2er(T−t)(θS − q))(ηS + θSηθ − θSξS − α)−

− r
2

γσ2er(T−t)(θS − q)2τ − ζ +
1
2

σ2(ηSS + θSS(ηθ − 2ξS)− θSξSS)+

+(ηθ − τt)

(
rθ + (µ − rS)q − µθS −

1
2

σ2θSS −
1
2

γσ2er(T−t)(θS − q)2 + F
)
= 0.
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We separate this equation by the variables θSS, θS, since ζ does not depend on them in
view of (9), and after a reduction we obtain

θSS : 2ξS = τt, θ2
S : ηθ − 2ξS − rτ + τt = 0, (10)

θS : γσ2er(T−t)(rqτ + qξS − α + ηS − qτt)− µξS + µτt − ξt −
σ2

2
ξSS = 0, (11)

1 : ηt − θqαt − rη + rSα + rqξ + (µ − γσ2er(T−t)q)(ηS − α)− r
2

γσ2er(T−t)q2τ−

−ζ +
σ2

2
ηSS + (ηθ − τt)

(
rθ + (µ − rS)q − 1

2
γσ2er(T−t)q2 + F

)
= 0.

(12)

From 2ξS = τt in (10) in view of τS = 0 due to (8) we get ξSS = 0. Substitution 2ξS = τt
from the first equation to the second one in (10) yields ηθ = rτ. Now we differentiate
(11) by q and using (8), (9) we get rτ + ξS − αq − τt = 0. Substitute ξS = τt/2 from (10),
then αq = rτ − τt/2. Next, by differentiating (11) by S and using (8) and (9), we obtain
γσ2er(T−t)ηSS − ξtS = 0, or γσ2er(T−t)ηSS = τtt/2. Therefore, ηSSS = 0. Thus,

ξSS = 0, αq = rτ − τt

2
, ηθ = rτ, ηSS =

er(t−T)

2γσ2 τtt, ηSSS = 0. (13)

The differentiation of equation (12) by S twice with the substitution of the vanishing
functions from (8), (9) and (13) gives ηtSS − rηSS = 0. The substitution of ηSS from (13)
here leads to τttt = 0. By the differentiation of equation (12) by θq we obtain αt + ζθq = 0.
The differentiation by q gives αtq = 0, i. e. due to (13) rτt − τtt/2 = 0. Since r ̸= 0, this
differential equation implies the equality τtt = 0, hence τt = 0. Then due to (10), (13)

τt = 0, αq = rτ, ξS = 0, ηSS = 0. (14)

From (8), (9), (14) it follows that τ is a constant, ξ = ξ(t), α = rτq + A(t). Substituting
these equalities into (11) we get γσ2er(T−t)(ηS − A(t))− ξt = 0. Therefore, due to (9),
(13), (14) η = rτθ + B(t)q + (A(t) + er(t−T)ξ ′(t)/(γσ2))S + C(t). So,

ξ = ξ(t), α = rτq + A(t), η = rτθ + B(t)q +

(
A(t) +

er(t−T)ξ ′(t)
γσ2

)
S + C(t). (15)

Substituting these expressions into (12) and shortening we obtain

(B′ − rB + rξ − ξ ′)q + C′ − rC +
µ

γσ2 er(t−T)ξ ′+

+

(
A′ +

er(t−T)

γσ2 ξ ′′
)

S − A′θq − ζ + rτF = 0.
(16)

The differentiation by q of equation (16) implies that B′ − rB + rξ − ξ ′ = 0, hence
B(t) = ξ(t) + Dert. Next, differentiate by S equation (16) and obtain

B = ξ + Dert, A = − e−rT

γσ2

∫ t

t0

ersξ ′′(s)ds + c. (17)
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We substitute (17) into (16) and (15) and get

ξ = ξ(t), α = rτq − e−rT

γσ2

∫ t

t0

ersξ ′′(s)ds + c,

η = rτθ + (ξ(t) + Dert)q +
e−rT

γσ2

(
ertξ ′(t)−

∫ t

t0

ersξ ′′(s)ds
)

S + cS + C(t),

ζ = C′(t)− rC(t) +
µ

γσ2 er(t−T)ξ ′(t) +
er(t−T)

γσ2 ξ ′′(t)θq + rτF.

Thus, we prove the next assertion.75

Theorem 1. The Lie algebra of continuous equivalence transformations for equation (3) is
generated by the operators

Y1 = ertq∂θ , Y2 = ∂q + S∂θ , Y3 = ∂t + rq∂q + rθ∂θ + rF∂F,

Yϕ = ϕ(t)∂θ + (ϕ′(t)− rϕ(t))∂F, Yψ = ψ(t)∂S −
e−rT

γσ2

∫ t

t0

ersψ′′(s)ds∂q+

+

(
ψ(t)q +

e−rT

γσ2

(
ertψ′(t)−

∫ t

t0

ersψ′′(s)ds
)

S
)

∂θ+

+

(
µ

γσ2 er(t−T)ψ′(t) +
er(t−T)

γσ2 ψ′′(t)θq

)
∂F.

Solving the Lie equations for the obtained Lie algebras and taking the projections
on the variables t, θq, F we get

Y1 : θ̄q = θq + a1ert; Y3 : t̄ = t + a3, F̄ = era1 F;

Yϕ : F̄ = F − rϕ(t) + ϕ′(t); Yψ : θ̄q = θq + ψ(t),

F̄ = F +
µ

γσ2 er(t−T)ψ′(t) +
er(t−T)

2γσ2 ψ(t)ψ′′(t) +
er(t−T)

γσ2 ψ′′(t)θq.

(18)

Remark 1. A Lie algebra is called principal [17] for equation (3), if it is admissible for (3)76

with any specification of F. From (18) it follows that the principal Lie algebra of equation (3) is77

generated by Y2 and by Yϕ at ϕ(t) = ert. Indeed, for such ϕ the group of transformations, which78

is generated by Yϕ, does not change t, θq and F.79

Remark 2. We see that the Lie algebra of continuous equivalence transformations for equation80

(3) is infinite-dimensional, since its operators depend on arbitrary functions ϕ and ψ. Note81

that such equation with a function F depending on θq only has a 5-dimensional Lie algebra of82

continuous equivalence transformations (see [30]). It generated by Y2, Y3, Yϕ for ϕ(t) ≡ 1, Yϕ83

for ϕ(t) = ert and Yψ at ψ(t) ≡ 1.84

3. Calculation of the Symmetry Groups in General Case85

Our purpose is to obtain the so-called group classification [17] for equation

θt = rθ + (µ − rS)q − µθS −
σ2

2
θSS −

1
2

γσ2er(T−t)(θS − q)2 + F(t, θq). (19)

For this aim, firstly we will search generators of the symmetry groups for the equation86

under general assumptions.87
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On equation (19) we act by the second prolongation X
2

= X + ηq∂θq + ηS∂θS +

ηt∂θt + ηSS∂θSS for a generator X = τ∂t + ξ∂S + α∂q + η∂θ of a continuous group of
transformations, where functions τ, ξ, α, η depend on t, S, q, θ. So,

ηt − rη + rSα + rqξ + (µ + γσ2er(T−t)(θS − q))(ηS − α)−

− r
2

γσ2er(T−t)(θS − q)2τ +
σ2

2
ηSS − Ftτ − Fθq ηq|M = 0.

(20)

After the substitution into (20) of the prolongation formulas and the restriction on the
manifold M, using the equation (19) for θt, we obtain(

rθ + (µ − rS)q − µθS −
σ2

2
θSS −

1
2

γσ2er(T−t)(θS − q)2 + F
)
×

×
(

ηθ − τt − θSξθ − θqαθ − (µ + γσ2er(T−t)(θS − q))(τS + θSτθ)+

+ Fθq(τq + θqτθ)−
σ2

2
(θSSτθ + θSτSS + 2θSτSθ + θ2

Sτθθ)

)
−

−
(

rθ + (µ − rS)q − µθS −
σ2

2
θSS −

1
2

γσ2er(T−t)(θS − q)2 + F
)2

τθ+

+ηt − θSξt − θqαt − rη + rSα + rqξ+

(µ + γσ2er(T−t)(θS − q))(ηS + θSηθ − θS(ξS + θSξθ)− θq(αS + θSαθ)− α)−

− r
2

γσ2er(T−t)(θS − q)2τ − Ftτ − Fθq(ηq + θqηθ − θS(ξq + θqξθ)− θq(αq + θqαθ))+

+
σ2

2
(ηSS + 2θSηSθ + θ2

Sηθθ − 2θtS(τS + θSτθ) + θSS(ηθ − θqαθ − 2ξS − 3θSξθ)−

−2θSq(αS + θSαθ)− θS(ξSS + 2θSξSθ + θ2
Sξθθ)− θq(αSS + 2θSαSθ + θ2

Sαθθ)) = 0.

(21)

The differentiation of this equation by the variables θSq and θtS leads to the equations88

τS = 0, τθ = 0, αS = 0, αθ = 0.89

Equating the coefficient at θSS in (21) to zero, obtain ξθ = 0, τt − 2ξS − Fθq τq = 0,
and using the equality τS = 0 we get ξSS = 0. Therefore,

τS = 0, τθ = 0, αS = 0, αθ = 0, ξθ = 0, ξSS = 0, τt − 2ξS − Fθq τq = 0. (22)

Applying these equalities in (21) we obtain the equality(
rθ + (µ − rS)q − µθS −

1
2

γσ2er(T−t)(θS − q)2 + F)(ηθ − τt + Fθq τq

)
+ ηt−

−θSξt − θqαt − rη + (µ + γσ2er(T−t)(θS − q))(ηS + θSηθ − θSξS − α)+

+rSα + rqξ − r
2

γσ2er(T−t)(θS − q)2τ − Ftτ − Fθq(ηq + θqηθ − θSξq − θqαq)+

+
1
2

σ2(ηSS + 2θSηSθ + θ2
Sηθθ) = 0.
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We separate this equation by the variable θS taking into account the last equation from
(22) and get the equations

θ2
S : γer(T−t)(ηθ − rτ) + ηθθ = 0, (23)

θS : γσ2er(T−t)(−qξS + ηS − α + rqτ) + Fθq ξq + σ2ηSθ − ξt + 2µξS = 0, (24)

1 :
(

rθ + (µ − rS)q − γσ2

2
er(T−t)q2 + F

)
(ηθ − τt + Fθq τq) + ηt − θqαt − rη+

+rSα + rqξ + (µ − γσ2er(T−t)q)(ηS − α)− r
2

γσ2er(T−t)q2τ − Ftτ−

−Fθq(ηq + θqηθ − θqαq) +
σ2

2
ηSS = 0.

(25)

From (22) it follows that ξ = A(t, q)S + B(t, q), equation (23) implies that ηθ = rτ +

C0(t, S, q)e−γer(T−t)θ . Therefore,

ξ = A(t, q)S + B(t, q), η = rθτ + C(t, S, q)e−γer(T−t)θ + D(t, S, q). (26)

Substitute these equalities into (24), (25) and get

γσ2er(T−t)(−qA + DS − α + rqτ)− AtS − Bt + Fθq(AqS + Bq) + 2µA = 0, (27)(
rθ + (µ − rS)q − γσ2

2
er(T−t)q2 + F

)
(rτ − γer(T−t)Ce−γer(T−t)θ − 2A)+

+rθτt + Cte−γer(T−t)θ + rγer(T−t)θCe−γer(T−t)θ + Dt − r2θτ − rCe−γer(T−t)θ − rD−

−θqαt + rSα + rq(AS + B) + (µ − γσ2er(T−t)q)(CSe−γer(T−t)θ + DS − α)−

− r
2

γσ2er(T−t)q2τ − Ftτ +
σ2

2
(CSSe−γer(T−t)θ + DSS)−

−Fθq(rθτq + Cqe−γer(T−t)θ + Dq + θq(rτ − γer(T−t)Ce−γer(T−t)θ)− θqαq) = 0.

In the last equation the variable θ is present explicitly, after the reduction of similar terms
the equation has a form a + beqθ = 0, q ̸= 0. Hence a = b = 0 and we have the equations

a =

(
(µ − rS)q − γσ2

2
er(T−t)q2 + F

)
(rτ − 2A) + Dt − rD−

−θqαt + rSα + rq(AS + B) + (µ − γσ2er(T−t)q)(DS − α)−

− r
2

γσ2er(T−t)q2τ − Ftτ +
σ2

2
DSS − Fθq(Dq + rθqτ − θqαq) = 0,

(28)

b = −
(
(µ − rS)q − γσ2

2
er(T−t)q2 + F

)
γer(T−t)C + Ct − rC+

+(µ − γσ2er(T−t)q)CS +
σ2

2
CSS − Fθq(Cq − γer(T−t)Cθq) = 0.

(29)

4. Calculation of the Group Classification in the Case Fθqθq ̸= 090

Let us continue the calculations using the assumption Fθqθq ̸= 0. Differentiating the
last equation in (22), (27) and (29) by θq, we obtain that τq = 0, Aq = 0, Bq = 0, C = 0.
Taking into account form (26) of ξ, we get A = τt/2. Hence

τq = 0, Aq = 0, A =
τt

2
, Bq = 0, C = 0. (30)

Differentiate (27) by S and due to (30) obtain the equality γσ2er(T−t)DSS = τtt/2, hence91

DSSS = 0 and DSSq = 0. Therefore, the differentiation of equation (28) twice by S gives92

−rDSS + DtSS = 0 and substituting the expression for DSS we get τttt = 0.93
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Next, differentiating equation (27) by q and equation (28) by θq and S we obtain

−τt

2
+ DSq − αq + rτ = 0, DSq = 0, αq = rτ − τt

2
.

Differentiate (28) by S and q and get

−r(rτ − τt) + rαq + rA − γσ2er(T−t)DSS = rτt − τtt/2 = 0.

From this equation and the equality τttt = 0 it follows that τt = 0.94

Therefore, τ is a constant, αq = rτ, α = rqτ + E(t). Substitute it in equation (27)
and obtain γσ2er(T−t)(DS − E)− Bt = 0. Hence,

ξ = B(t), α = rqτ + E(t), D = G(t, q) + E(t)S +
er(t−T)

γσ2 B′(t)S. (31)

Substituting (31) into (28) and reducing we get

rτF + Gt + E′S +
er(t−T)

γσ2 B′′S − E′θq − rG + rBq + µ
er(t−T)

γσ2 B′ − B′q − τFt − GqFθq = 0.

(32)

Differentiate (32) by θq and q and get Gqq = 0. Then G = H(t)q + J(t) and the separation
of equation (32) by q and S gives

G = H(t)q + J(t), E′ +
er(t−T)

γσ2 B′′ = 0, H′ − rH + rB − B′ = 0,

rτF + J′ − E′θq − rJ + µ
er(t−T)

γσ2 B′ − τFt − HFθq = 0.

(33)

The third equation in (33) implies that B = H + Kert. Substitute this equality into the
second equation in (33), then

B(t) = H(t) + Kert, E(t) = −
∫ t

t0

er(s−T)

γσ2 (H′′(s) + r2Kers)ds + L. (34)

Now equalities (31) implies that

ξ = H(t) + Kert, α = rqτ −
∫ t

t0

er(s−T)

γσ2 (H′′(s) + r2Kers)ds + L,

η = rθτ +

(
−
∫ t

t0

er(s−T)

γσ2 (H′′(s) + r2Kers)ds + L

)
S+

+
er(t−T)

γσ2 (H′(t) + rKert)S + H(t)q + J(t).

(35)

Substituting (34) into the last equation in (33) we get

rτF − τFt − HFθq + J′ − rJ +
er(t−T)

γσ2 (H′′ + r2Kert)θq + µ
er(t−T)

γσ2 (H′ + rKert) = 0. (36)

This equation has the form rτF − τFt − H(t)Fθq + u(t)θq + v(t) = 0. Consider possible95

situations.96

4.1. The case τ = 0, H ≡ 097

If τ = 0, H ≡ 0, then K = 0, J′ − rJ = 0, J = J0ert. Due to (35) we get the generators98

of symmetry groups X1 = ert∂θ , X2 = ∂q + S∂θ for arbitrary F, such that Fθqθq ̸= 0.99
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4.2. The case τ ̸= 0, H ≡ 0100

If τ ̸= 0, H ≡ 0, then F = Φ1(θq)ert + b(t)θq + c(t). Using the equivalence transfor-
mation of the group, which is generated by Yϕ (18) with ϕ, such that ϕ′ − rϕ + c = 0, we
obtain F = Φ1(θq)ert + b(t)θq. Since Fθqθq ̸≡ 0, then Φ′′

1 ̸≡ 0. Substitute F in (36), then

rτbθq − τb′θq + J′ − rJ +
er(t−T)

γσ2 r2Kertθq + µ
er(t−T)

γσ2 rKert = 0.

Separating by the variable θq, obtain

b(t) = b0ert +
rKer(2t−T)

τγσ2 , J(t) = J0ert − µKer(2t−T)

γσ2 .

Denote Φ(θ) := Φ1(θq) + b0θq, then Φ′′ = Φ′′
1 ̸≡ 0. Thus,

F = Φ(θq)ert + 2rbe2rtθq, Φ′′ ̸= 0, b ∈ R,

τ = τ0, ξ = 2τγσ2ber(t+T), α = rqτ − rτbe2rt + L,

η = rθτ + rτbe2rtS + LS + J0ert − 2µτbe2rt.

Therefore, we obtained the specialization and the symmetry group, which is generated
by operators

X1 = ert∂θ , X2 = ∂q + S∂θ ,

X3 = ∂t + 2γσ2b1er(t+T)∂S + (rq − rb1e2rt)∂q + (rθ + rb1e2rtS − 2µb1e2rt)∂θ .

4.3. The case τ = 0, H ̸≡ 0101

If τ = 0, H ̸≡ 0, then u ̸≡ 0, otherwise, Fθqθq ≡ 0. Therefore, F = a(t)θ2
q + b(t)θq +

c(t), a ̸≡ 0. We use the equivalence transformation of the group with the generator Yψ

(18), where ψ is a solution of the equation

ψ′′(t) + γσ2er(T−t)(2a(t)ψ(t) + b(t)) = 0,

and get F = a(t)θ2
q + c(t), then by a transformation with a generator Yϕ we obtain the

equivalent function F = a(t)θ2
q . Then (36) implies the equation

J′ +
er(t−T)

γσ2 (H′′ + r2Kert)θq − rJ + µ
er(t−T)

γσ2 (H′ + rKert)− 2Haθq = 0.

Therefore,

H′′ = 2γσ2er(T−t)a(t)H − r2Kert, J′ − rJ + µ
er(t−T)

γσ2 (H′ + rKert) = 0. (37)

Solving the second equation in (37) we get

J = J0ert − µ
er(t−T)

γσ2 (H + Kert).
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Then (35) has the form

τ = 0, ξ = H(t) + Kert, α = −2
∫ t

t0

a(s)H(s)ds + L,

η =

(
−2

∫ t

t0

a(s)H(s)ds + L
)

S +
er(t−T)

γσ2 (H′(t) + rKert)S+

+H(t)q + J0ert − µ
er(t−T)

γσ2 (H(t) + Kert).

(38)

Let Ψ(t) is a partial solution of the first equation in (37) for K = 1, then a general
solution of the equation is H(t) = c1 φ1(t) + c2 φ2(t) + KΨ(t), where φ1 and φ2 are two
linearly independent solutions of the homogeneous equation H′′ = 2γσ2er(T−t)a(t)H.
Therefore, (38) implies that

X1 = ert∂θ , X2 = ∂q + S∂θ ,

X3 = φ1(t)∂S − 2
∫ t

t0

a(s)φ1(s)ds∂q+

+

(
er(t−T)φ′

1(t)
γσ2 S − 2S

∫ t

t0

a(s)φ1(s)ds + φ1(t)q − µ
er(t−T)

γσ2 φ1(t)

)
∂θ ,

X4 = φ2(t)∂S − 2
∫ t

t0

a(s)φ2(s)ds∂q+

+

(
er(t−T)φ′

2(t)
γσ2 S − 2S

∫ t

t0

a(s)φ2(s)ds + φ2(t)q − µ
er(t−T)

γσ2 φ2(t)

)
∂θ ,

X5 = (Ψ(t) + ert)∂S − 2
∫ t

t0

a(s)Ψ(s)ds∂q+

+

(
er(t−T)

γσ2 (Ψ′(t) + rert)S − 2S
∫ t

t0

a(s)Ψ(s)ds + Ψ(t)q − µ
er(t−T)

γσ2 (Ψ(t) + ert)

)
∂θ .

4.4. The case τ ̸= 0, H ̸≡ 0102

For the case τ ̸= 0, H ̸≡ 0 make a replacement

F = ertΦ(t, θq)− ert
∫ t

t0

e−rsu(s)dsθq + ert
∫

H(t)
∫ t

t0

e−rsu(s)dsdt − ert
∫

e−rtv(t)dt

and obtain the equation τΦt + H(t)Φθq = 0. Its general solution has the form

Φ = Φ
(

θq −
∫

H(t)dt/τ

)
.

Therefore, F = ertΦ(θq −
∫

H(t)dt/τ) + b1(t)θq + c1(t). After using the equivalence
transformation of the group for Yψ (18) with ψ =

∫
H(t)dt/τ we obtain F = ertΦ(θq) +

b(t)θq + c(t), Φ′′ ̸≡ 0. Substitute the result in (36), then

rτbθq + rτc − τb′θq − τc′ − ert HΦ′ − Hb + J′ − rJ+

+
er(t−T)

γσ2 (H′′ + r2Kert)θq + µ
er(t−T)

γσ2 (H′ + rKert) = 0.

Hence Φ(θq) = a0 + a1θq + aθ2
q , by the equivalence transformation for Xψ, where

ψ′′(t) + γσ2er(T−t)(2aertψ(t) + a1 + b(t)) = 0,
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then by an equivalence transformation for a group with a generator Xϕ obtain F = aertθ2
q

with a constant a ̸= 0. So, we obtain a partial case to the previous one, but with a nonzero
τ, which gives additional symmetry. Thus,

X1 = ert∂θ , X2 = ∂q + S∂θ , X3 = ∂t + rq∂q + rθ∂θ ,

X4 = φ1(t)∂S − 2a
∫ t

t0

ers φ1(s)ds∂q+

+

(
er(t−T)φ′

1(t)
γσ2 S − 2aS

∫ t

t0

ers φ1(s)ds + φ1(t)q − µ
er(t−T)

γσ2 φ1(t)

)
∂θ ,

X5 = φ2(t)∂S − 2a
∫ t

t0

ers φ2(s)ds∂q+

+

(
er(t−T)φ′

2(t)
γσ2 S − 2aS

∫ t

t0

ers φ2(s)ds + φ2(t)q − µ
er(t−T)

γσ2 φ2(t)

)
∂θ ,

X6 = (Ψ(t) + ert)∂S − 2a
∫ t

t0

ersΨ(s)ds∂q+

+

(
er(t−T)

γσ2 (Ψ′(t) + rert)S − 2aS
∫ t

t0

ersΨ(s)ds + Ψ(t)q − µ
er(t−T)

γσ2 (Ψ(t) + ert)

)
∂θ .

Instead of the first equation in (37) we have the equation with constant coefficients

H′′ − 2aγσ2erT H + r2Kert = 0.

Therefore, we can calculate a solution of this equation analitically. If aγ > 0, a ̸=
r2/2γσ2erT , then

φ1(t) = e
√

2aγσ2erT t, φ2(t) = e−
√

2aγσ2erT t, Ψ(t) =
r2Kert

r2 − 2aγσ2erT . (39)

For aγ > 0, a = r2/2γσ2erT we have

φ1(t) = e
√

2aγσ2erT t, φ2(t) = e−
√

2aγσ2erT t, Ψ(t) = − rKtert

2
. (40)

Finally, if aγ < 0, then

φ1(t) = sin
√
−2aγσ2erTt, φ2(t) = cos

√
−2aγσ2erTt, Ψ(t) =

r2Kert

r2 − 2aγσ2erT . (41)

The equality a = r2/2γσ2erT in this case is not possible.103

5. Theorem on Group Classification104

As a result of calculations in the previous section, we obtain the following theorem105

on group classification.106

Theorem 2. Let r, γ, σ, µ, T ∈ R.107

1. The Lie algebra for the equation

θt = rθ + (µ − rS)q − µθS −
σ2

2
θSS −

γσ2

2
er(T−t)(θS − q)2 + F(t, θq), (42)

where F is not equivalent to a(t)θ2
q or ertΦ(θq) + b0ertθq + b1e2rtθq, Fθqθq ̸≡ 0, is generated by

the operators
X1 = ert∂θ , X2 = ∂q + S∂θ . (43)
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2. The Lie algebra for the equation

θt = rθ + (µ − rS)q − µθS −
σ2

2
θSS −

γσ2

2
er(T−t)(θS − q)2 + ertΦ(θq) + be2rtθq, (44)

where b ∈ R, Φ is a nonlinear function, which is not equivalent to aθ2
q , is generated by the

operators

X1 = ert∂θ , X2 = ∂q + S∂θ ,

X3 = ∂t + 2γσ2ber(t+T)∂S + (rq − rbe2rt)∂q + (rθ + rbe2rtS − 2µbe2rt)∂θ .
(45)

3. The Lie algebra for the equation

θt = rθ + (µ − rS)q − µθS −
σ2

2
θSS −

γσ2

2
er(T−t)(θS − q)2 + a(t)θ2

q ,

where a(t) is a nonzero function, which is not equivalent to a0ert, is generated by the operators

X1 = ert∂θ , X2 = ∂q + S∂θ ,

X3 = φ1(t)∂S − 2
∫ t

t0

a(s)φ1(s)ds∂q+

+

(
er(t−T)φ′

1(t)
γσ2 S − 2S

∫ t

t0

a(s)φ1(s)ds + φ1(t)q − µ
er(t−T)

γσ2 φ1(t)

)
∂θ ,

X4 = φ2(t)∂S − 2
∫ t

t0

a(s)φ2(s)ds∂q+

+

(
er(t−T)φ′

2(t)
γσ2 S − 2S

∫ t

t0

a(s)φ2(s)ds + φ2(t)q − µ
er(t−T)

γσ2 φ2(t)

)
∂θ ,

X5 = (Ψ(t) + ert)∂S − 2
∫ t

t0

a(s)Ψ(s)ds∂q+

+

(
er(t−T)

γσ2 (Ψ′(t) + rert)S − 2S
∫ t

t0

a(s)Ψ(s)ds + Ψ(t)q − µ
er(t−T)

γσ2 (Ψ(t) + ert)

)
∂θ .

Here φ1, φ2 are linearly independent solutions of the equation H′′(t) = 2γσ2er(T−t)a(t)H(t),108

Ψ is a partial solution of the equation H′′(t) = 2γσ2er(T−t)a(t)H(t)− r2ert.109

4. The Lie algebra for the equation

θt = rθ + (µ − rS)q − µθS −
σ2

2
θSS −

γσ2

2
er(T−t)(θS − q)2 + aertθ2

q ,
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where a is a nonzero constant, is generated by the operators

X1 = ert∂θ , X2 = ∂q + S∂θ , X3 = ∂t + rq∂q + rθ∂θ ,

X4 = φ1(t)∂S − 2a
∫ t

t0

ers φ1(s)ds∂q+

+

(
er(t−T)φ′

1(t)
γσ2 S − 2aS

∫ t

t0

ers φ1(s)ds + φ1(t)q − µ
er(t−T)

γσ2 φ1(t)

)
∂θ ,

X5 = φ2(t)∂S − 2a
∫ t

t0

ers φ2(s)ds∂q+

+

(
er(t−T)φ′

2(t)
γσ2 S − 2aS

∫ t

t0

ers φ2(s)ds + φ2(t)q − µ
er(t−T)

γσ2 φ2(t)

)
∂θ ,

X6 = (Ψ(t) + ert)∂S − 2a
∫ t

t0

ersΨ(s)ds∂q+

+

(
er(t−T)

γσ2 (Ψ′(t) + rert)S − 2aS
∫ t

t0

ersΨ(s)ds + Ψ(t)q − µ
er(t−T)

γσ2 (Ψ(t) + ert)

)
∂θ ,

where φ1, φ2, Ψ are from (39), (40), or (41), depending on the sign of aγ and the value of a.110

Remark 3. In the second part of this theorem at b = 0 and in the fourth one we have the market111

trading volume Vt = aert with a constant a ̸= 0, as multiplier at a function of θq in an expression112

for F. If Φ ≡ 0 in the second part, then the market trading volume is Vt = be2rt. In the third113

part of the theorem Vt = a(t).114

Remark 4. A theorem on the group classification of equation (3) with a free element F depending115

on θq only is obtained in [30]. It contains the specifications F = eνθq and F = θ2
q , which116

correspond to additional symmetries of the equation.117

6. Application to the Search of Some Submodels118

Using a symmetry group for a differential equation we can reduce the number of119

variables, on which an unknown function depends, by the dimension of the considered120

group. If the resulting equation can be integrated, we obtain an exact solution of the121

original equation, invariant with respect to the group of symmetries under consideration.122

If the resulting equation is not integrable, following L.V. Ovsyannikov [31], we will call123

such an equation an invariant submodel of the initial equation (initial model).124

In order to find invariant solutions or submodels that are not translated into each125

other by transformations of variables, we must find the so-called optimal system of126

subalgebras of the Lie algebra of the equation under study. To do this, the internal127

automorphisms of this algebra are used, which can be found through nonzero structural128

constants of the algebra. Below we will do this for the two simplest Lie algebras of the129

symmetry groups generators obtained in the group classification theorem.130

6.1. Optimal system of subalgebras and submodels for the general case131

Lie algebra L2 (43) is commutative, hence it has no continuous groups of inter-132

nal automorphisms. So, its optimal system of one-dimensional subalgebras is Θ1 =133

{⟨X2⟩, ⟨X1 + cX2⟩, c ∈ R}.134

The subalgebra ⟨X2⟩ has the invariants J1 = t, J2 = S, J3 = θ − qS. Writing J3 =
w(J1, J2) we obtain the form of the corresponding invariant solution θ = w(t, S) + Sq.
Substitute it into equation (42) and obtain the submodel

wt = rw − µwS −
σ2

2
wSS −

γσ2

2
er(T−t)w2

S + F(t, S),
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which is invariant for ⟨X2⟩. Analogously we get the invariants t, ert

c + S, θ − ert

c q − Sq
for the subalgebra ⟨X1 + cX2⟩, c ̸= 0. The invariant submodel for it has the form

wt = rw − µwS −
σ2

2
wSS −

γσ2

2
er(T−t)w2

S + F
(

t,
ert

c
+ S

)
,

where θ = w(t, S) + ert

c q + Sq. If c = 0, then the subalgebra ⟨X1⟩ has no invariant135

submodels, since its invariants t, S, q do not depend on θ.136

6.2. Optimal system of subalgebras and submodels for the specification F = Φ(θq)ert
137

Nonzero structural constants for a Lie algebra with a basis {X1, X2, . . . , Xn} are138

coefficients ck
ij in the decomposition of a commutator [Xi, Xj] [17] by the basis: [Xi, Xj] =139

n
∑

k=1
ck

ijXk. Generators of continuous groups of internal automorphisms can be calculated140

by the formula Ei =
n
∑

j,k=1
ck

ijej∂ek , where ej are coefficients in the decomposition of an141

element of the Lie algebra by its basis, which depend on group parameters.142

Consider the Lie algebra L3 with basis (45). For L3 we have c1
23 = −c1

32 =143

−2γσ2berT , c2
23 = −c2

32 = r. The integration of the Lie equations for the generators144

gives E2 : ē1 = e1 − 2γσ2berTe3a2, ē2 = e2 + re3a2; E3 : ē1 = e1 − 2γσ2

r berTe2(1 − e−ra3),145

ē2 = e−ra3 e2. Also, we add a mirror automorphism E− : ē1 = −ē1, which does not146

change the commutators of the basis operators of this Lie algebra L3.147

Let b ̸= 0, for e3 ̸= 0 by the internal automorphism E2 obtain e2 = 0, then we have
(e1, e2, e3) = (c, 0, 1) after scaling, i. e. we get cX1 + X3, c ∈ R. If e3 = 0, e2 ̸= 0, then by
E3 get e1 = 0, (e1, e2, e3) = (0, 1, 0), if we take

a3 = −1
r

ln
(

1 − re−rTe1

2γσ2be2

)

in the case re−rTe1
2γσ2be2

< 1. If re−rTe1
2γσ2be2

≥ 1, we will use E− to go to the previous case. For148

e2 = e3 = 0 we have (e1, e2, e3) = (1, 0, 0). Thus, Θ1
1 = {⟨X1⟩, ⟨X2⟩, ⟨cX1 + X3⟩, c ∈ R}.149

Let us search for a system of two-dimensional subalgebras for L3 with b ̸= 0. For150

the basis vector X1 of the one-dimensional subalgebra ⟨X1⟩, consider the second basis151

vector in the form αX2 + βX3, then the commutator has the form [X1, αX2 + βX3] = 0.152

We get subalgebras ⟨X1, X2⟩ for e3 = 0, ⟨X1, X3⟩ for e3 ̸= 0, if we use E2.153

For the basis vector X2, consider the second basis vector in the form αX1 + βX3.154

Their commutator is [X2, αX1 + βX3] = rβX2 − 2βγσ2berTX1. Therefore, a subalgebra is155

formed at β = 0, which is already found in the form ⟨X1, X2⟩.156

For cX1 + X3, consider the second basis vector in the form αX1 + βX2. Then157

we have [cX1 + X3, αX1 + βX2] = 2βγσ2berTX1 − rβX2 and get the subalgebra ⟨cX1 +158

X3, 2γσ2berTX1 − rX2⟩. By E3 and E− reduce it to ⟨cX1 + X3, X2⟩.159

Lemma 1. Optimal systems of one-dimensional and two-dimensional subalgebras of Lie algebra
L3 (45) with b ̸= 0 are

Θ1
1 = {⟨X1⟩, ⟨X2⟩, ⟨cX1 + X3⟩, c ∈ R}, Θ1

2 = {⟨X1, X2⟩, ⟨X1, X3⟩, ⟨cX1 + X3, X2⟩, c ∈ R}.

In the case b = 0, for e3 ̸= 0 we obtain the vector (c, 0, 1), c ∈ R, using E2. If160

e3 = 0, then using E3, E− we get (1, 1, 0), (1, 0, 0), (0, 1, 0). So, Θ2
1 = {⟨X1⟩, ⟨X2⟩, ⟨X1 +161

X2⟩, ⟨cX1 + X3⟩, c ∈ R}. In this case, we have two-dimensional subalgebras ⟨X1, X2⟩,162

⟨X1, X3⟩ also. Moreover, [X2, αX1 + βX3] = rβX2, and we have the subalgebra ⟨X2, αX1 +163

βX3⟩ for any α, β ∈ R. If β = 0, it will be a partial case of ⟨X1, X2⟩, for β ̸= 0 we obtain164

the subalgebra ⟨cX1 + X3, X2⟩. Since [cX1 + X3, αX1 + βX2] = −rβX2, we obtain another165

subalgebra ⟨cX1 + X3, X1⟩.166
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Lemma 2. Optimal system of one-dimensional and two-dimensional subalgebras of Lie algebra167

L3 (45) with b1 = 0 are Θ2
1 = {⟨X1⟩, ⟨X2⟩, ⟨X1 + X2⟩, ⟨cX1 + X3⟩, c ∈ R} and Θ2

2 =168

{⟨X1, X2⟩, ⟨cX1 + X3, X1⟩, ⟨cX1 + X3, X2⟩, c ∈ R}.169

The subalgebras ⟨X1⟩, ⟨X1, X2⟩, ⟨X1, X3⟩ do not have invariant submodels, since170

⟨X1⟩ does not have invariants depending on θ.171

Consider the case b = 0, then the subalgebra ⟨X1 + X2⟩ has invariants t, S, θ −
(ert + S)q, therefore, an invariant solution has the form θ = w(t, S) + (ert + S)q and the
invariant submodel is

wt = rw − µwS −
σ2

2
wSS −

γσ2

2
er(T−t)w2

S + F(t, ert + S).

The subalgebra ⟨cX1 + X3⟩ has invariants x := qe−rt, S, θe−rt − ct, hence we will
look for an invariant solution in the form θ = ctert + ertw(qe−rt, S), where w is a function
of two variables. Substitute it into (44) and obtain the invariant for ⟨cX1 + X3⟩ submodel

Φ(wx) + rxwx =
σ2

2
wSS + µwS +

γσ2

2
erT(wS − x)2 + (rS − µ)x + c.

The subalgebra ⟨cX1 + X3, X1⟩ has no invariants depending on θ and, therefore,
invariant submodels. Let us find the invariant submodel with respect to ⟨cX1 + X3, X2⟩.
Consider a function G = G(x, S, y), where x := qe−rt, y := θe−rt − ct are invariants
for the subalgebra ⟨cX1 + X3⟩. Then X2G = e−rtGx + Se−rtGy and invariants of the
subalgebra ⟨cX1 + X3, X2⟩ are S and y − Sx = (θ − Sq)e−rt − ct. Therefore, we will
search an invariant solution for this subalgebra in the form θ = ctert + Sq + ertw(S). The
invariant submodel will have the form

w′′(S) +
2µ

σ2 w′(S) + γerTw′(S)2 − 2
σ2 Φ(S) +

2c
σ2 = 0.

Conclusion172

Theorem on group classification of the Guéant and Pu model of the option pricing173

taking into account transaction costs and the impact of operations on the market is174

obtained in this paper. For this aim, the Lie algebra of generators of continuous groups175

of equivalence transformations is calculated. For the general case and for the case of176

the equation with the right-hand side F = ertΦ(θq) optimal systems of subalgebras177

and corresponding invariant submodels is derived. The results of this work will be178

applied to the analogous research of the Guéant and Pu model with the specifications179

F = ertΦ(θq) + be2rt, F = a(t)θ2
q , F = aertθ2

q , which is presented in the obtained here180

theorem on group classification.181
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