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Abstract—In this paper, we study a multi-dimensional generalized integral transformation. The
functional and compositional properties of the integral transformation in spaces of summable
functions are investigated. The scheme of study is similar to the process of constructing the theory
of the H-transformation, in which the central place is given to the questions of bounded and one-
to-one action of the corresponding integral operator in spaces of integrable functions with weight
concentrated at zero and at infinity. Theory of the considered integral transformation in weighted
spaces of summable functions is constructed.
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1. INTRODUCTION

First introduce general multi-dimensional integral transform

(
Kf

)
(x) = hx1−(λ+1)/h d

dx
x(λ+1)/h

∞∫

0

k[xt]f(t)dt (x > 0); (1)

here (see [1], Section 28.4; [2], Ch. 1; [3]) x = (x1, x2, ..., xn) ∈ Rn; t = (t1, t2, ..., tn) ∈ Rn, Rn

be the n-dimensional Euclidean space; x · t =
∑n

n=1 xntn denotes their scalar product; in particular,
x · 1 =

∑n
n=1 xn for 1 = (1, 1, ..., 1). The expression x > t means that x1 > t1, x2 > t2, ..., xn > tn, the

nonstrict inequality ≥ has similar meaning ;
∫∞
0 =

∫∞
0

∫∞
0 · · ·

∫∞
0 ; by N = {1, 2, ...} we denote the set

of positive integers, N0 = N
⋃

{0}, Nn
0 = N0 ×N0 × ...×N0; k = (k1, k2, ..., kn) ∈ Nn

0 = N0 × ...× N0

(ki ∈ N0, i = 1, 2, ..., n) is a multi-index with k! = k1! · · · kn! and |k| = k1 + k2 + ...+ kn;

Rn
+ = {x ∈ Rn, x > 0}; for l = (l1, l2, ..., ln) ∈ Rn

+ Dl = ∂|l|

(∂x1)l1 ···(∂xn)ln
; dt = dt1 · dt2 · · · dtn;

tl = tl1tl2 · · · tln ; f(t) = f(t1, t2, ..., tn). Let Cn (n ∈ N) be the n-dimensional space of n complex
numbers z = (z1, z2, · · · , zn) (zj ∈ C, j = 1, 2, · · · , n); λ = (λ1, λ2, ..., λn) ∈ Cn; h = (h1, h2, ..., hn),
hj ∈ R \ {0}, j = 1, 2, ..., n; d

dx = d
dx1·dx2···dxn

. We introduce the function in the kernel k[xt] = k[x1t1] ·
k[x2t2] · · · k[xntn], which is the product of some one type special functions.
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Our paper is devoted to the study of tranform (1) Kf in the weighted spaces Lν, 2 summabe functions
f(x) = f(x1, x2, ..., xn) on Rn

+, such that

||f ||ν,2 =

⎧
⎪⎨

⎪⎩

∫

R1
+

xνn·2−1
n {· · ·

⎧
⎪⎨

⎪⎩

∫

R1
+

xν2·2−1
2 [

∫

R1
+

xν1·2−1
1 |f(x1, ..., xn)|2dx1]dx2

⎫
⎪⎬

⎪⎭
· · · }dxn

⎫
⎪⎬

⎪⎭

1/2

< ∞

(2 = (2, 2, ..., 2), ν = (ν1, ν2, ..., νn) ∈ Rn, ν1 = ν2 = ... = νn).
In this work, to study transformations of type (1), we use the technique of the multidimensional Mellin

transformation

(Mf)(s) =

∞∫

0

f(t)ts−1dt.

Note that a very important class of transforms under consideration is a class of Buschman–Erdélyi
operators, they have many important properties and applications, cf. [3–8]. And topic of this paper is
also in a very tight connection with transmutation theory, cf. [9–13].

For transformations of type (1) there is an analogue of the multidimensional Parseval equality in the
form

∞∫

0

k[xt]f(t)dt =
1

(2πi)n

c1+i∞∫

c1−i∞

c2+i∞∫

c2−i∞

· · ·
cn+i∞∫

cn−i∞

(Mk)(s)(Mf)(1 − s)x−sds, (2)

where infinite integration contours (ck − i∞, ck + i∞) (k = 1, 2, ..., n) start at points ck − i∞ (k =
1, 2, ..., n) and end at points ck + i∞ (k = 1, 2, ..., n), respectively, with some real ck ∈ R (k =
1, 2, ..., n). The Mellin transform of kernels of hypergeometric type is the ratio of the products of the
Euler gamma functions ц(z), the asymptotics of which, in accordance with the Stirling formula, has a
power-exponential character. This allows us to study the given class of integral transformations in the
weighted spaces of summable functions and obtain inversion formulas directly from equality (2) and the
convolution structure of the class of transformations (1) [14, 15].

The results obtained generalize those obtained earlier for the corresponding one-dimensional trans-
formation (see [16], Ch. 3).

2. PRELIMINARIES

Denote by [X,Y ] a set of bounded linear operators acting from a Banach space X into a Banach space
Y . For ν = (ν1, ν2, ..., νn) ∈ Rn, r = (r1, r2, ..., rn) ∈ Rn (1 < r < ∞) by Lν, r denote the weighted
space of integrable functions f(x) = f(x1, x2, ..., xn) on Rn

+, for which

||f ||ν,r =

⎧
⎪⎨

⎪⎩

∫

R1
+

xνn·rn−1
n {· · ·

⎧
⎪⎨

⎪⎩

∫

R1
+

xν2·r2−1
2

×

⎡

⎢
⎣
∫

R1
+

xν1·r1−1
1 |f(x1, ..., xn)|r1dx1

⎤

⎥
⎦

r2/r1

dx2

⎫
⎪⎪⎬

⎪⎪⎭

r3/r2

· · · }rn/rn−1dxn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

1/rn

< ∞.

For f(x) = f(x1, x2, ..., xn) ∈ Lν, r (ν = (ν1, ν2, ..., νn) ∈ Rn, ν1 = ν2 = ... = νn, 1 < r < 2) the n-
dimensional Mellin transform (Mf)(s) is defined by

(Mf)(s) =

∫

Rn

f(eτ )esτdτ , (3)

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 43 No. 6 2022
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s = ν + it, ν = (ν1, ν2, ..., νn), t = (t1, t2, ..., tn) ∈ Rn.

If f ∈ Lν, r
⋂

Lν, 1 then (3) coincides with the classical multidimensional Mellin transform of
the function f(x) = f(x1, x2, ..., xn) (x = (x1, x2, ..., xn) ∈ Rn

+) defined by the formula ([2], formula
1.4.42):

(Mf)(s) =

∞∫

0

f(t)ts−1dt, Re(s) = ν,

s = (s1, s2, ..., sn), sj ∈ Cn (j = 1, 2, ...n).
The inverse Mellin transform is given for x ∈ Rn

+ by the formula ([2], formula 1.4.43)

(M−1g)(x) = M
−1[g(s)](x) =

1

(2πi)n

γ1+i∞∫

γ1−i∞

γ2+i∞∫

γ2−i∞

· · ·
γn+i∞∫

γn−i∞

x−sg(s)ds,

with γj = Re(sj) (j = 1, · · · , n). The theory for these multidimensional Mellin transforms appears in
the book by Brychkov [17], see also ([2], Ch. 1).

We need the following spaces. By Lp(R
n), as usual, we denote the space of functions f(x) =

f(x1, x2, ..., xn), for which

||f ||p =

⎧
⎨

⎩

∫

Rn

|f(x)|pdx

⎫
⎬

⎭

1/p

< ∞, p = (p1, p2, ..., pn), 1 ≤ p < ∞.

For p = ∞, the space L∞(Rn) is introduced as the collection of all measurable functions with a finite
norm

||f ||L∞(Rn) = esssup|f(x)|, (4)

where esssup|f(x)| is the essential supremum of the function |f(x)| [18].
Based on Statement 3.1 (see [16]) directly verify the validity of the following properties of the Mellin

transform (3).
Lemma 1. The following properties of the Mellin transform (3) are valid:
(a) Transformation (3) is a unitary mapping of the space Lν, 2 (ν = (ν1, ν2, ..., νn) ∈ Rn, ν1 =

ν2 = ... = νn) onto the space L2(R
n).

(b) For f ∈ Lν, 2 (ν = (ν1, ν2, ..., νn) ∈ Rn, ν1 = ν2 = ... = νn), there holds

f(x) =
1

(2πi)n
lim

R→∞

ν1+iR∫

ν1−iR

ν2+iR∫

ν2−iR

· · ·
νn+iR∫

νn−iR

(Mf)(s)x−sds,

where the limit is taken in the topology of the space Lν, 2 (ν = (ν1, ν2, ..., νn) ∈ Rn, ν1 = ν2 = ... =

νn) and where, if F (ν + it) = F1(ν1 + it1) · · ·Fn(νn + itn), Fj(νj + itj) ∈ L1(−R,R), j = 1, ..., n,
then

ν1+iR∫

ν1−iR

ν2+iR∫

ν2−iR

· · ·
νn+iR∫

νn−iR

F (s)ds = in
R∫

−R

R∫

−R

· · ·
R∫

−R

F (ν + it)dt.

(c) For functions f ∈ Lν, 2 and g ∈ L1−ν, 2 (ν = (ν1, ν2, ..., νn) ∈ Rn, ν1 = ν2 = ... = νn) the
following equality holds

∞∫

0

f(x)g(x)dx =
1

(2πi)n

ν+i∞∫

ν−i∞

(Mf)(s)(Mg)(1 − s)x−sds. (5)
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Let Wδ (see, for example, [2], formula (1.3.6); [16], formula (3.3.12)) be elementary operator

(Wδf)(x) = f

(
x

δ

)
, x ∈ Rn, δ = (δ1, δ2, ..., δn) ∈ Rn

+. (6)

It is known that the Mellin transform (3) of the transformation Wδ is equal ([2], formula (1.4.47))

(MWδf)(s) = δs(Mf)(s) (Re(s) = ν). (7)

Taking into account Lemma 3.1 [16], equality (7), Lemma 2.1 [19–21], it is directly verified that the
operator Wδ has the following properties.

Lemma 2. Let ν = (ν1, ν2, ..., νn) ∈ Rn (ν1 = ν2 = ... = νn) and 1 ≤ r < ∞. Wδ is bounded
isomorphism of Lν,r onto itself, and if f ∈ Lν,r (1 ≤ r ≤ 2), then

(MWδf)(s) = δs(Mf)(s) (Re(s) = ν).

3. Lν,2-THEORY FOR THE MULTI-DIMENSIONAL K-TRANSFORM

In this section we consider multi-dimensional generalized integral transform (1):

(
Kf

)
(x) = hx1−(λ+1)/h d

dx
x(λ+1)/h

∞∫

0

k[xt]f(t)dt (x > 0),

where kernel k ∈ L1−ν,2, λ = (λ1, λ2, ..., λn) ∈ Cn and h = (h1, h2, ..., hn), hj ∈ R \ {0},j = 1, 2, ..., n.

Theorem 1. (a) Let the transformation operator (1) satisfy the condition K ∈ [Lν,2,L1−ν,2],
then the kernel on the right side of (1) k ∈ L1−ν,2. If we set for ν1 �= 1− (Re(λ1) + 1)/h1, ν2 �=
1− (Re(λ2) + 1)/h2, ..., νn �= 1− (Re(λn) + 1)/hn (ν1 = ν2 = ... = νn)

(Mk)(1 − ν + it) =
θ(t)

λ+ 1− (1− ν + it)h
(8)

almost everywhere, then function θ ∈ L∞(Rn), and for f ∈ Lν,2 there holds the relation

(MKf)(1− ν + it) = θ(t)(Mf)(ν − it) (9)

almost everywhere.
(b) Conversely, for given function θ ∈ L∞(Rn), ν = (ν1, ν2, ..., νn) ∈ Rn (ν1 = ν2 = ... = νn) ,

h = (h1, h2, ..., hn) ∈ Rn
+, there is a transform K ∈ [Lν,2,L1−ν,2] so that the equality (9) holds for

f ∈ Lν,2. Moreover, if ν1 �= 1− (Re(λ1) + 1)/h1, ν2 �= 1− (Re(λ2) + 1)/h2, ..., νn �= 1− (Re(λn) +

1)/hn (ν1 = ν2 = ... = νn), then transformation Kf is representable in the form (1) with the kernel
k definite by (8).

(c) Under the hypotheses of (a) or (b) with θ �= 0, K is one-to-one transformation from the
space Lν,2 into the space L1−ν,2, and if in addition 1/θ ∈ L∞(Rn), then K maps Lν,2 onto L1−ν,2,
and for functions f, g ∈ Lν,2 the relation

∞∫

0

f(x)(Kg)(x)dx =

∞∫

0

(Kf)(x)g(x)dx

is valid.
Proof. (a) Let K is given by (1) and K ∈ [Lν, 2,L1−ν, 2], ν1 �= 1− (Re(λ1) + 1)/h1, ..., νn �= 1−

(Re(λn) + 1)/hn (ν1 = ... = νn).
First we consider the case ν1 > 1− (Re(λ1) + 1)/h1, ..., νn > 1− (Re(λn) + 1)/hn (ν1 = ... = νn).

For a = (a1, a2, ..., an), where aj > 0 (j = 1, 2, ..., n) are real numbers, will determing the function

ga(t) =

{
t(λ+1)/h−1, 0 < t < a;

0, t > a;

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 43 No. 6 2022



1412 SITNIK et al.

=

{
t
(λ1+1)/h1−1
1 · · · t(λn+1)/hn−1

n , 0 < tj < aj (j = 1, 2, ...n);

0, tj > aj (j = 1, 2, ...n).
(10)

Then

||ga||v,2 =

⎧
⎨

⎩

an∫

0

tvn·2−1
n · · ·

⎧
⎨

⎩

a2∫

0

tv2·2−1
2

×

⎡

⎣
a1∫

0

tv1·2−1
1

∣
∣∣t(Re(λ1)+1)/h1−1
1 t

(Re(λ2)+1)/h2−1
2 · · · t(Re(λn)+1)/hn−1

n

∣
∣∣
2
dt1

⎤

⎦ dt2

⎫
⎬

⎭
· ··}dtn

⎫
⎬

⎭

1/2

=

⎧
⎨

⎩

an∫

0

t2((Re(λn)+1)/hn+vn−1)−1
n dtn · · ·

a1∫

0

t
2((Re(λ1)+1)/h1+v1−1)−1
1 dt1

⎫
⎬

⎭

1/2

=

⎧
⎨

⎩

a∫

0

t2((Re(λ)+1)/h+v−1)−1dt

⎫
⎬

⎭

1/2

< ∞,

which means ga ∈ Lν, 2. From here we get

(
Kg1

)
(x) = hx1−(λ+1)/h d

dx
x(λ+1)/h

1∫

0

1∫

0

· · ·
1∫

0

k[xt]t(λ+1)/h−1dt

= h1h2 · · · hnx1−(λ1+1)/h1

1 x
1−(λ2+1)/h2

2 · · · x1−(λn+1)/hn
n

d
dx

x
(λ1+1)/h1

1 x
(λ2+1)/h2

2 · · · x(λn+1)/hn
n

×
1∫

0

1∫

0

· · ·
1∫

0

k[x1t1]k[x2t2] · · · k[xntn]t
(λ1+1)/h1−1
1 t

(λ2+1)/h2−1
2 · · · t(λn+1)/hn−1

n dt1dt2 · · · dtn

= [xjtj = τj (j = 1, 2, ...n)]

= hx1−(λ+1)/h d
dx

xn∫

0

xn−1∫

0

· · ·
x1∫

0

k[τ1]k[τ2] · · · k[τn]τ
(λ1+1)/h1−1
1 τ

(λ2+1)/h2−1
2 × · · ·

× τ (λn+1)/hn−1
n dτ1dτ2 · · · dτn = hx1−(λ+1)/h d

dx

x∫

0

τ (λ+1)/h−1k[τ ]dτ = hk(x)

almost everywhere. Thus, K g1 = h k. Therefor since K ∈ [Lν, 2,L1−ν, 2], then we have k ∈ L1−ν, 2.

Since f ∈ Lν, 2 and k ∈ L1−ν, 2, by using the Cauchy–Bunyakovsky inequality [22]
∣∣
∣∣
∣∣

b∫

a

f(x)g(x)dx

∣∣
∣∣
∣∣
≤

⎛

⎝
b∫

a

|f(x)|2dx

⎞

⎠

1/2 ⎛

⎝
b∫

a

|g(x)|2dx

⎞

⎠

1/2

(−∞ ≤ a < b ≤ ∞),

we have ∣∣
∣∣
∣∣
x(λ+1)/h

∞∫

0

k(xt)f(t)dt

∣∣
∣∣
∣∣
=

∣∣
∣∣
∣∣
x(λ+1)/h

∞∫

0

{
t1/2−νk(xt)

}{
t−1/2+νf(t)

}
dt

∣∣
∣∣
∣∣

≤ x(Re(λ)+1)/h

⎧
⎨

⎩

∞∫

0

t2(1−ν)−1 |k(xt)|2 dt

⎫
⎬

⎭

1/2

||f ||ν,2 = xν−1+(Re(λ)+1)/h||k||1−ν,2||f ||ν,2 = o(1)

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 43 No. 6 2022
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as x1 → +0, ..., xn → +0. Integrating both sides of the equality (1), we obtain
x∫

0

t(λ+1)/h−1(Kf)(t)dt = hx(λ+1)/h

∞∫

0

k(xt)f(t)dt (x > 0). (11)

For x > 0 and we Re(s) + (Re(λ) + 1)/h > 1 we obtain for gx(t)

(Mgx)(s) =
hx(λ+1)/h+s−1

λ+ 1− h(1− s)
. (12)

Since f ∈ Lν, 2 and gx ∈ Lν, 2, from (5) we have
x∫

0

t(λ+1)/h−1(Kf)(t)dt =

x∫

0

gx(t)(Kf)(t)dt

=
1

(2πi)n

ν1+i∞∫

ν−i∞

(Mgx)(s)(MKf)(1− s)ds =
hx(λ+1)/h

(2πi)n

1−ν1+i∞∫

1−ν−i∞

x−s (MKf)(s)

λ+ 1− sh
ds

=
hxν−1+(λ+1)/h

(2π)n

+∞∫

−∞

x−it (MKf)(1− ν + it)

λ+ 1− (1− ν + it)h
dt. (13)

Similarly, from (5) and (7) we find

hx(λ+1)/h

∞∫

0

k(xt)f(t)dt = hx(λ+1)/h

∞∫

0

(W1/xk)(t)f(t)dt

=
hx(λ+1)/h

(2πi)n

1−ν+i∞∫

1−ν−i∞

x−s(Mk)(s)(Mf)(1 − s)ds

=
hxν−1+(λ+1)/h

(2π)n

+∞∫

−∞

x−it(Mk)(1− ν + it)(Mf)(ν − it)dt. (14)

Now we substitute (13) and (14) into (11), and denote by

F(t) =
(MKf)(1− ν + it)

λ+ 1− (1− ν + it)h
− (Mk)(1 − ν + it)(Mf)(ν − it). (15)

Let x = ey, then we obtain
+∞∫

−∞

e−iytF(t)dt = 0,y ∈ Rn.

According to property (a) of the multidimensional Mellin transform in Lemma 1, M ∈ [Lσ, 2,L2(R
n)],

(σ = (σ1, σ2, ..., σn) ∈ Rn, σ1 = σ2 = ... = σn). We obtain, that multidimensional Mellin transforms

(MKf)(1− ν + it), (Mg1)(ν − it) =
h

λ+ 1− (1− ν + it)h
,

(Mk)(1 − ν + it), (Mf)(ν − it)

belong to the space L2(R
n) (2 = (2, ..., 2). From that follows F(t) in (15) belongs to the space L2(R

n)
too. Hence, the expression on the left side of (15) also belongs to the space L2(R

n). Determining θ
through (8), taking into account (15), we obtain (9).

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 43 No. 6 2022
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Show that θ ∈ L∞(Rn). From (9) it follows that if f ∈ Lν, 2, then θ(t)(Mf)(ν − it) ∈ L2(R
n).

According to property (a) of Lemma 1, the Mellin transform (3) maps space Lν, 2 (ν1 = ν2 = ... =

νn) onto space L2(R
n) and, thus, θ(t)ϑ(t) ∈ L2(R

n) for any function ϑ(t) ∈ L2(R
n). Therefore θ ∈

L∞(Rn). This completes the proof of (a) for the case ν1 > 1− (Re(λ1) + 1)/h1, ..., νn > 1− (Re(λn) +
1))/hn (ν1 = ... = νn).

The case, when ν1 < 1− (Re(λ1) + 1)/h1, ..., νn < 1− (Re(λn) + 1)/hn (ν1 = ... = νn), is proved
similarly after replacing the function ga(t) in (10) by the function ha(t) defined for a = (a1, a2, ..., an),
aj > 0 (j = 1, 2, ..., n), by the formula

ha(t) =

{
0, 0 < t < a;

t(λ+1)/h−1, t > a.
(16)

Let us prove the case (b). We suppose that θ ∈ L∞(Rn) and f ∈ Lν, 2. From Lemma 1 the Mellin
transform maps space L1−ν, 2 onto space L2(R

n) unitarily, so there is a unique function g ∈ L1−ν, 2 such
that

(Mg)(1 − ν + it) = θ(t)(Mf)(ν − it).

We define K by Kf = g. Then (9) is satisfied. K is also a linear operator, namely, if f1 ∈ Lν, 2, f2 ∈ Lν, 2

(ν1 = ν2 = ... = νn) and c1 ∈ Rn, c2 ∈ Rn, then

(MK(c1 f1 + c2 f2))(1 − ν + it) = θ(t)(M (c1 f1 + c2 f2))(ν − it)

= c1 θ(t)(M f1)(ν − it) + c2θ(t)(M f2)(ν − it)

= c1 (M f1)(1− ν + it) + c2(M f2)(1− ν + it) = (M (c1K f1 + c2K f2))(1− ν + it),

hence follows K(c1 f1 + c2 f2) = c1K f1 + c2K f2.
Further, from Lemma 1 it follows that taking as θ∗(t) = θ(−t), we obtain

||K f ||1−ν, 2 = ||MK f ||2 = |θ∗M f ||2 ≤ ||θ∗||∞||M f ||2 = ||θ||∞|| f ||ν, 2,

where ||θ||∞ is the norm of θ in the space (4). This means that K ∈ [Lν,2,L1−ν,2].

Let ν1 �= 1− (Re(λ1)+ 1)/h1, ..., νn �= 1− (Re(λn)+ 1)/hn (ν1 = ... = νn) and let the function k(t)
be defined by (8). Then, based on property (c) of the Lemma 1, we obtain that k ∈ L1−ν, 2, since 1

(u+it) ∈
L∞(Rn) for a constant vector u = (u1, ..., u1) (u1 �= 0, ..., un �= 0). If ν1 < 1− (Re(λ1)+ 1)/h1, ..., νn <
1− (Re(λn) + 1)/hn (ν1 = ... = νn) and the function ha(t) is given by (16), then

(Mhx)(s) =
−hx(λ+1)/h+s−1

λ+ 1− h(1− s)
. (17)

From (16), (5), (17), (9), (8), and (6), if x > 0, similarly to (13), we obtain
∞∫

x

t(λ+1)/h−1(Kf)(t)dt =

∞∫

0

hx(t)(Kf)(t)dt =
1

(2πi)n

ν+i∞∫

ν−i∞

(Mhx)(s)(MKf)(1− s)ds

=
1

(2π)n

+∞∫

−∞

−hx(λ+1)/h+ν+it−1(MKf)(1− ν − it)

λ+ 1− (1− ν − it)h
dt

=
−hx(λ+1)/h+ν−1

(2π)n

+∞∫

−∞

xit θ∗(t)(Mf)(ν + it)

λ+ 1− (1− ν − it)h
dt

=
−hx(λ+1)/h+ν−1

(2π)n

+∞∫

−∞

xit(Mk)(1 − ν − it)(Mf)(ν + it)dt
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=
−hx(λ+1)/h+ν−1

(2πi)n

1−ν+i∞∫

1−ν−i∞

x1−ν−s(Mk)(s)(Mf)(1 − s)ds

=
−hx(λ+1)/h

(2πi)n

1−ν+i∞∫

1−ν−i∞

(MW1/xk)(s)(Mf)(1 − s)ds

=
−hx(λ+1)/h

(2πi)n

1−ν+i∞∫

1−ν−i∞

(Mk(xt))(s)(Mf)(1 − s)ds = −hx(λ+1)/h

∞∫

0

k(xt)f(t)dt.

Differentiating the left and right sides of the last equality, we obtain (1). Similarly, for the case
ν1 > 1− (Re(λ1) + 1)/h1, ..., νn > 1− (Re(λn) + 1)/hn (ν1 = ... = νn) formula (12) for the function
ga(t) in (10) is used.

Prove (c). Let θ �= 0 almost everywhere. Then if f ∈ Lν, 2 and Kf = 0, it follows from (9) that
θ(t)(Mf)(ν − it) = 0 almost everywhere, hence (Mf)(ν − it) = 0 almost everywhere. This implies
that f(t) = 0 almost everywhere,which means that transformation Kf is one-to-one.We suppose that
1/θ ∈ L∞(Rn). Based on statement (b) of the Theorem 1, there is a transformation T ∈ [L1−ν,2,Lν,2]

such that if g ∈ L1−ν,2, then

(MT g)(ν + it) =
1

θ(−t)
(Mg)(1 − ν − it)

almost everywhere. Based on (9), we have

(MK T g)(1 − ν + it) = θ(t)(MT g)(ν − it) = (Mg)(1 − ν − it).

Thus, for any function g ∈ L1−ν,2, the identity K T g = g holds, and therefore K maps the space Lν,2 onto
space L1−ν,2.

Further, if the functions f ∈ Lν,2 and g ∈ L1−ν,2, then from (5) and (9) we finally obtain

∞∫

0

f(x)(Kg)(x)dx =
1

(2πi)n

ν+i∞∫

ν−i∞

(Mf)(s)(MKg)(1 − s)ds

=
1

(2π)n

+∞∫

−∞

(Mf)(ν + it)(MKg)(1 − ν − it)dt

=
1

(2π)n

+∞∫

−∞

(Mf)(ν + it)θ(−t)(Mg)(ν + it)dt

=
1

(2π)n

+∞∫

−∞

(Mf)(ν − it)θ(t)(Mg)(ν − it)dt

=
1

(2π)n

+∞∫

−∞

(MKf)(1− ν + it)(Mg)(1 − (1− ν + it))dt

=
1

(2πi)n

1−ν+i∞∫

1−ν−i∞

(MKf)(s)(Mg)(1 − s)ds =

∞∫

0

(Kf)(x)g(x)dx.

This proves Theorem 1.
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