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Abstract—We consider an initial-boundary value problem for the system of partial differential
equations describing processes of growth and spread of substance in biology, sociology, economics
and linguistics. We note from a general point of view that adding diffusion (migration) terms to
ordinary differential equations, for example, to logistic ones, can in some cases improve sufficient
conditions for the stability of a stationary solution. We give examples of models in which the addition
of diffusion terms to ordinary differential equations changes the stability conditions of a stationary
solution.
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1. INTRODUCTION

In this paper we study the stability of stationary solutions to differential equations and systems
of partial differential equations that arise most often in mathematical biology when describing the
quantitative growth and distribution of certain substances. Such substances include, in particular,
biological populations. The first model of population growth, written in the form of a differential equation,
was proposed by T. R. Malthus (Thomas Robert Malthus, 1766–1834) shortly after the discovery of
differential and integral calculus (1798). This model considers a homogeneous population in conditions
of unlimited food resources and habitat. At the same time, it is assumed that the growth rate of
population is proportional to its size. The dynamics of such populations can be described by the
ordinary differential equation (see, for example, [1–3]) du/dt = Au, where A is the innate rate of natural
population growth. The solution of this equation is the function

u(t) = u (t0) exp(At), (1)

that is, over time, the population size grows indefinitely according to the exponential law. In accordance
with this law, an isolated population would develop under conditions of unlimited resources. In nature,
such conditions are practically not found. A few examples of breeding species brought to places, where
there is a lot of food and there are no competing populations and predators, are known to everyone
(rabbits in Australia). The Malthus equation accurately describes the dynamics of a population of
protozoa artificially created and maintained in conditions of an excess of food and space, for example,
penicillin fungi grown in a cultivator, until the culture medium is depleted.
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Formula (1) adequately describes the process of population growth only for a limited period of time,
since there comes a time when the growing population will exhaust the available resources. The
population size may stabilize at some stable level, it may fluctuate regularly or irregularly, or it may
contract. The behavior of a population whose size is stabilized at a certain equilibrium level is often
described using the logistic equation proposed by P. F. Verhulst (Pierre François Verhulst, 1804–1849)
in 1838:

du

dt
= f(u) = ru

(
1− u

K

)
,

The solution of this equation has the form

u(t) =
u (t0)K exp(rt)

K − u (t0) + exp(At)
.

The direct study of this function shows that for small values of u, the Verhulst equation can be replaced
with sufficient accuracy by the Malthus equation, and the growth is explosive exponential, with an
increase in the value of t, the value of u(t) approaches a constant value of K, called the capacity of
the ecological niche of the population. Functions that satisfy such properties, differential equations that
give such functions as solutions, as well as models that include such equations, are often called logistic.

It is well known that the partial stationary solution u(t) ≡ 0 of the Verhulst equation is unstable. This
is easily verified by using the first linear approximation. In the general case, for checking the stability of a
stationary solution w ≡ const of equation du/dt = f(u), that is, the solutions of equation f(w) = 0, we
have to check the sign of the derivative f ′(u) at the point u = w. For the Verhulst equation, the function
f(u) has the form

f(u) = ru
(
1− u

K

)
,

its derivative has the form
df(u)

du
= r − 2ru

K
,

and at the point u = 0, it takes the value

df(u)

du

∣∣∣∣
u=0

= r > 0.

Since the value of the derivative f ′(u) at the point u(t) ≡ 0 is positive, the stationary solution of u(t) ≡ 0
is unstable.

Systems of differential equations simulate the growth of phenomena of various types, and for all such
systems, studies of the stability of stationary solutions play an important role. These studies have a long
history. In many cases, such models are based on ordinary differential equations. Although the theory
of systems of ordinary differential equations has long been classical, interest in it does not fade away. In
the last few decades, this is also due to the fact that such systems have found applications in modelling
biological and social systems. From relatively recent works on mathematical biology, it is possible to
indicate in this regard [4–10]. In [11], a discrete version of the Ferhulst equation was used to study the
spread of the COVID-19 coronavirus epidemic in Moscow. In the work [12], models of the origin and
development of trends in painting are considered basing on the same principles as models of the growth
of biological substances.

In 1921, H. Hotelling (Harold Hotelling, 1895–1973) proposed to describe animal and human
populations, taking into account migration patterns in addition to the logistic law (see, for example,
[13]). In order to do this, he proposed an equation of the form

∂p

∂t
= A(ξ − p)p+BΔp, (2)

where Δ = ∂2/∂x2 + ∂2/∂y2 is the Laplace operator, A, B, ξ are given positive constants. This equation
describes the growth and spread of a population. In this case, the values included in the equation
have the following meaning: A is a population growth rate, B is a distribution rate, ξ is a population
saturation threshold (or saturated density coefficient), p is a size (density) of the population, t is a time,
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x, y are coordinates on the plane. The same equation is used to model the development of a malignant
tumor [14]. The first term on the right side of the Hotelling equation is called a logistic term (growth
component). The second term is usually called a diffusion term. It reflects the influence of migration
(diffusion) processes on the change in population size. Equations and models reflecting changes in the
size of biomass under the influence of logistic and diffusion components began to be called diffusion-
logistic, and sometimes simply diffusion, implying, apparently, that the logistic component is present
in the model by default. Such models can include not only one equation, but also systems of partial
differential equations.

In this paper we consider a certain family of mathematical models with partial differential equations
(models with distributed parameters), which are obtained from models with ordinary differential equa-
tions (models with concentrated parameters) by adding the so-called diffusion terms. The tendency
of such sophistications of mathematical models can be traced in some works related to modelling the
growth and distribution of populations, the growth and spread of infections, and the growth of tumors.
In this regard, see first of all the monograph [2]. In the work [15], a diffusion model of a malignant tumor
is presented. The mathematical model of glioma growth is based on the classical definition of cancer as
uncontrolled proliferation of cells with the potential for invasion and metastasis, simplified for gliomas,
which practically do not metastasize. This model is given in [14].

We are interested in the stability of stationary solutions of diffusion models. This issue is discussed
in the book [2]. This book states that adding diffusion terms can change the stability of a stationary
solution both for the worse and for the better. For models of a certain type, we try to concretize sufficient
conditions for the stability of stationary solutions. Let’s first point to a simple example. In the monograph
by T. Puu [13], using the Lyapunov function (Alexander Mikhailovich Lyapunov, 1857–1918) of a special
kind, a sufficient condition for the stability of a regular stationary solution w of the initial boundary value
problem with a boundary condition of the first, second or third kind for the Hotelling equation (2) in a
bounded domain was found in the form w > ξ/2. Later this condition was improved (weakened), namely,
it was shown that the condition w > ξ/2−B/

(
2Ad2

)
is sufficient for the stability of a stationary solution

w(x, y) of the initial boundary value problem with a boundary condition of condition of the first, second
or third kind for the Hotelling equation (2) in a bounded domain with a diameter of d (see [16, 17]). This
condition for B > 0 is satisfied for a small diameter of the domain Ω. It is necessary to pay attention to
the following circumstance. The trivial solution is a stationary solution to the Hotelling equation both for
B = 0 (in this case it coincides with the Verhulst equation) and for B > 0. However, in the case B = 0,
as already noted, the trivial solution is unstable, and in the case B > 0 the trivial solution is stable. Below
we extend the results of [16, 17] to one class of systems of partial differential equations.

2. INITIAL BOUNDARY VALUE PROBLEM UNDER STUDY

We consider the initial boundary value problem for a system of partial differential equations (see also
[18, 19])

∂us
∂t

= ϑsΔus + Fs(u), x = (x1, . . . , xn) ∈ Ω ⊂ R
n, t > 0, (3)

(
μsus + ηs

∂us
∂ν

)∣∣∣∣
x∈∂Ω

= Bs(x), μ2
s + η2s > 0, μs ≥ 0, ηs ≥ 0,

μs = const, ηs = const, (4)

us(x, 0) = u0s(x), s = 1, . . . ,m, (5)

where Ω is a bounded domain with a piecewise smooth boundary ∂Ω, −→ν = ν is a unit exter-
nal normal vector to the boundary ∂Ω of the domain Ω, u = (u1(x, t), . . . , um(x, t)), ϑs ≥ 0, u =
(u1(x, t), . . . , um(x, t)), ϑs ≥ 0, s = 1, . . . ,m,Δ is the Laplace operator defined by the formula

Δv =

n∑
j=1

∂2v/∂x2j .
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Certainly, we must require the fulfillment of the conditions for matching the initial and boundary
data. However, in the framework of this work, we are moving away from this issue. We assume that
all conditions of existence of the classical (regular) solutions to the problem under consideration are
satisfied, and in addition, all the original functions have the necessary properties allowing us to perform
all the operations that we perform below. If

ϑs = 0, s = 1, . . . ,m (6)

(in a model with concentrated parameters without diffusion terms), the variables x1, . . . , xn are included
in equations (3) as parameters whose derivatives are not contained in these equations. If

∑m
s=1 ϑ

2
s > 0,

then we deal with a system with distributed parameters.

3. STATIONARY SOLUTION AND ITS STABILITY

Let w = w(x) = (w1(x1, . . . , xn), . . . , wm(x1, . . . , xn)) be a stationary solution of the initial bound-
ary value problem (3)–(5), that is, the solution of the boundary value problem

ϑsΔws + Fs(w) = 0, x ∈ Ω,

(
μsws + ηs

∂ws

∂ν

)∣∣∣∣
x∈∂Ω

= Bs(x), s = 1, . . . ,m.

Suppose that the functions Fs(u), s = 1, . . . ,m, are differentiable at the point w. Then for sufficiently
small deviations zs = zs(x1, . . . , xn, t) = us − ws, s = 1, . . . ,m, we have

Fs(u) = Fs(w + z) = Fs(w) +

m∑
k=1

bsk zk +

m∑
k=1

εsk(z) zk, (7)

where

bsk =
∂Fs(w)

∂zk
, lim

z→0
εsk(z) = 0, s, k = 1, . . . ,m.

Substituting us = ws + zs into equation (3) and taking into account (7), we get

∂zs
∂t

= ϑsΔws + Fs(w) + ϑsΔzs +
m∑
k=1

bskzk +
m∑
k=1

εsk(z) zk, s = 1, . . . ,m. (8)

Considering that w is a stationary solution, we obtain from (8)

∂zs
∂t

= ϑsΔzs +
m∑
k=1

bskzk +
m∑
k=1

εsk(z) zk , s = 1, . . . ,m.

We multiply each sth equation of system (8) by zs and integrate the obtained equality over the domain
Ω. Taking into account (7), we obtain

1

2

∂

∂t

∫

Ω

z2s dx = ϑs

∫

Ω

zs Δzs dx+

∫

Ω

m∑
k=1

bsk zs zk dx+

∫

Ω

m∑
k=1

εsk(z) zs zk dx, s = 1, . . . ,m. (9)

The last term on the right side of equality (9) with small deviations of z does not affect the sign of the
entire sum and can be discarded. We apply the Green formula (see [20]) to the first term on the right side
of this equation. As a result, we get

1

2

∂

∂t

∫

Ω

z2s dx = −ϑs

∫

Ω

|∇zs|2 dx+ ϑs

∫

∂Ω

zs
∂zs
∂ν

dΓ +

∫

Ω

m∑
k=1

bsk zs zk dx, s = 1, . . . ,m, (10)

where dΓ is an arc element of the boundary ∂Ω, i. e. the second term on the right side of equality (10) is
a surface (for n ≥ 3) or contour (for n = 2) integral of the first kind over the boundary of the domain Ω,
or the sum of values at the ends of the interval Ω in the case of n = 1. In the integral over the boundary
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for μs = 0 or for ηs = 0 the integrand is equal to zero due to the boundary condition (4). From the same
boundary condition, when μsηs > 0, we get

∂zs
∂ν

∣∣∣∣
∂Ω

= − μs

ηs
zs

∣∣∣∣
∂Ω

.

Therefore, equality (10) can be rewritten as

1

2

∂

∂t

∫

Ω

z2s dx = −ϑs

∫

Ω

|∇zs|2 dx− ϑs

∫

∂Ω

σs z
2
s dΓ +

∫

Ω

m∑
k=1

bsk zs zk dx, s = 1, . . . ,m, (11)

where σs = μs/ηs if μsηs > 0 or σ = 0 if μsηs = 0. Summing m equalities (11), we get

1

2

∂

∂t

∫

Ω

|z|2 dx =
m∑
s=1

⎛
⎝−ϑs

∫

Ω

|∇zs|2 dx− ϑs

∫

∂Ω

σs z
2
s dΓ

⎞
⎠+

∫

Ω

m∑
s=1

m∑
k=1

Θsk zs zk dx, (12)

where Θsk = (bsk + bks)/2. The sign of the left side of equality (12) is considered as an indicator of the
stability of a trivial solution. Therefore, it is important to find the ratio of the terms in the right side,
leading to the negativity of this expression. In parentheses on the right side, both the first term and the
second term are not greater than zero. Next, we need to take into account the sign of the last term in the
right part. Obviously, the negative definiteness of the quadratic form

m∑
s=1

m∑
k=1

Θsk zkzs dx (13)

will ensure the negativity of the left side of equality (12), and, therefore, the stability of the stationary
solution. In the case of a model with concentrated parameters (a system of ordinary differential
equations), that is, when conditions (6) are satisfied, negative definiteness of the quadratic form (13)
is also a necessary condition for the stability of a trivial solution.

Let us consider the diffusion model with distributed parameters. In this case, it is possible to weaken
the sufficient condition for the stability of a stationary solution. For this purpose, we use the Steklov–
Poincare–Friedrichs inequality (see [21, p. 62; 22, p. 150; 23, 24])∫

Ω

| � zs|2dx ≥ 1

d2

∫

Ω

z2sdx,

where d = diamΩ is a diameter of the domain Ω. Hence

1

2

∂

∂t

∫

Ω

| z |2 dx � −
m∑
s=1

ϑs

d2

∫

Ω

z2s dx−
m∑
s=1

ϑs

∫

∂Ω

σs z
2
sdΓ +

∫

Ω

m∑
s=1

m∑
k=1

Θsk zkzs dx.

Now we can assert that a sufficient condition for the stability of a stationary solution is the negative
definiteness of the quadratic form

m∑
s=1

m∑
k=1

Ask zkzs, (14)

where

Ask = Θsk − δksϑs/d
2. (15)

4. EXAMPLES OF MATHEMATICAL MODELS IN BIOLOGY

4.1. The Lotka–Volterra Model

As an example we will consider the Lotka–Volterra system (Alfred James Lotka, 1880–1949;
Vito Volterra, 1860–1940), which in a non-diffusion version has long been one of the main tools
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in mathematical ecology, genetics, and the mathematical theory of selection and evolution (see, for
example, [1, 10]):

∂us/∂t =

⎛
⎝φs −

m∑
j=1

φjuj

⎞
⎠ us + ϑsΔus, s = 1, . . . ,m.

Coefficients (15) of the quadratic form (14) have the form

Aks = δks

⎛
⎝φs −

m∑
j=1

φjwj − ϑs/d
2

⎞
⎠− (φkws + φswk)/2. (16)

It is clear that due to the subtraction of positive terms ϑs/d
2 from diagonal elements of a matrix of

quadratic form with coefficients (16), a sufficient condition for negative definiteness of a quadratic form
in the diffusion model is less rigid than in the non-diffusion case. This can be demonstrated quite clearly
by the example of a trivial solution. Condition Φs < ϑs/d

2, s = 1, . . . ,m, is sufficient for the stability
of a trivial solution of this system. For ϑs > 0, s = 1, . . . ,m, that is, in the case of a diffusion model
with distributed parameters, this condition is satisfied for domains with a small diameter. In the case of
two equations, the model considered in this example turns into a predator-prey model. Without taking
into account migrations (diffusion), the system of equations in the simplest version of this model has the
following form (see, for example, [2])

∂u1
∂t

= αu1 − βu1u2,
∂u2
∂t

= κβu1u2 −mu2.

The initial conditions are given in the form us(x, 0) = u0s, s = 1, 2. By adding the diffusion terms, we
obtain the following system of partial differential equations

∂u1
∂t

= αu1 − βu1u2 + ϑ1Δu1,
∂u2
∂t

= κβu1u2 −mu2 + ϑ2Δu2. (17)

We consider the system of equations (17) in a bounded domain Ω with a diameter d, with a piecewise
smooth boundary and we require the solution to fulfill the boundary conditions

(
μsus + ηs

∂us
∂ν

)∣∣∣∣
x∈∂Ω

= Bs(x), μ2
s + η2s > 0, μsηs ≥ 0, μs = const, ηs = const, (18)

and initial conditions

us(x, 0) = u0s(x), s = 1, 2. (19)

Let w = (w1, w2) be a stationary solution of the problem (17)–(19). Coefficients (15) of a quadratic form
(14) for system (17) have the form

A11 = α− βw2 − ϑ1/d
2, A22 = κβw1 −m− ϑ2/d

2, A12 = A21 = β(κw2 − w1)/2.

This quadratic form is negatively defined if and only if the following equalities are satisfied

A11 = α− βw2 − ϑ1/d
2 < 0, (20)

A11A22 −A2
12 = (α− βw2 − ϑ1/d

2)(κβw1 −m− ϑ2/d
2)− β2(κw2 − w1)

2/4 > 0. (21)

Conditions (20), (21) are sufficient for the asymptotic stability of the stationary solution w. Obviously,
if the stationary solution is constant, these inequalities are certainly fulfilled in domains with small
diameters. Therefore, stationary solutions of the diffusionless model w1 = w2 = 0 and w1 = m/(κβ),
w2 = α/β, while remaining stationary solutions in the diffusion model in a domain with a small diameter
(of course, with an appropriate set of initial and boundary conditions), change the nature of stability,
namely, they become asymptotically stable. On the other hand, as shown in [2], a large value of a domain
diameter can result in the so-called diffusion instability.
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4.2. Diffusion Models of Oncological Processes
Let us consider the immune response model described in [15]. Let u1 be a linear density of dividing

cells, q = q(x, t) be a linear density of lymphocytes. Then the mathematical model describing the
interaction of dividing cells and lymphocytes, assuming the absence of their interaction with normal
and dead cells, has the form

∂u1
∂t

= D1
∂2u1
∂x2

+ μ1u1 − γ12u1q,

∂q

∂t
= D4

∂2q

∂x2
− v

∂q

∂x
− γ21u1q. (22)

The model described in [15] is assumed to have the pointwise appearance of dividing cells. We consider
a model with smooth distribution of dividing cells at the initial moment of time. Then we will have initial
conditions of the form

u1(x, 0) = u01(x) ∈ C∞([0, l]), q(x, 0) = q0. (23)

When choosing boundary conditions, it is assumed that
∂u1
∂x

∣∣∣∣
x=0

= 0, q

∣∣∣∣
x=0

= q0;
∂u1
∂x

∣∣∣∣
x=l

= 0, q

∣∣∣∣
x=l

= q0.

A refined sufficient condition for the asymptotic stability of a stationary solution consists in the fulfillment
of two inequalities [25]:

μ1 − γ12w2 − 2D1/l
2 < 0, (24)

4
(
μ1 − γ12w2 − 2D1/l

2
)(

− exp(−σx)γ21w1 −
σ2D4

exp(σl)− 1− lσ

)

− (γ12w1 + exp(σl)γ21w2)
2 > 0. (25)

If we formally pass to a point model from model (22), discarding diffusion and convective terms with
partial derivatives with respect to the spatial variable, we obtain the system of ordinary differential
equations

du1
dt

= μ1u1 − γ12u1q,
dq

dt
= −γ21u1q. (26)

It is obvious that a vector function with coordinates u1 = 0, q = 0 is an unstable stationary solution
of system (26). However, for system (22), the same vector function may also turn out to be a stable
stationary solution if the following condition is satisfied:

μ1 − 2D1/l
2 < 0. (27)

Condition (25) for the zero solution turns out to be superfluous, since it becomes a consequence of
condition (27).

In the work [25], in order to prove the sufficiency of conditions (24), (25), the authors had to
use a weighted version of the Steklov–Poincare–Friedrichs inequality because of the convective term
−v∂q/∂x in the second equation. Another weighted variant is used in the work [26], where it is shown
that the condition

M
(γ + 1)2

4h2
−A(s− 2p0) > 0

is sufficient for the asymptotic stability of the stationary solution p0 of the initial boundary value problem
∂p

∂t
= Ap(s− p) +MBγp,

∂p(0, t)

∂r
= 0, p(h, t) = β, t ≥ 0.

Here Bγ is the Bessel operator defined by the formula

Bγp =
∂2p

∂r2
+

γ

r

∂p

∂r
= r−γ ∂

∂r

(
rγ

∂p

∂r

)
.

Very extensive information, including impressive literature reviews, about boundary value problems,
functional spaces related to singular differential equations with the Bessel operator, see in [27–30].
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4.3. Kermak–McKendrick Epidemic Model

As an example we consider the classical epidemic model of W. Kermak and A. McKendrick

dS

dt
= −βSI,

dI

dt
= βSI − γI,

dR

dt
= γI,

where β and γ are positive constants. This model, proposed in 1927 (see [31]), characterizes the changes
in the number of susceptible (S), infected (I), and recovered (R) individuals in the population in question.
Subsequently, based on this model, an impressive number of models have been created, clarifying it and
adapting to various situations. We change the model by adding a diffusion term to the right side of each
equation, after that we obtain a system of partial differential equations

dS

dt
= −βSI + ϑ1ΔS, (28)

dI

dt
= βSI − γI + ϑ2ΔI, (29)

dR

dt
= γI + ϑ3ΔR. (30)

We consider system (28)–(30) in a domain Ω ⊂ R
2 with a with a piecewise smooth boundary Γ = ∂Ω.

We introduce uniform designations, which are consistent with the original model: u1 = u1(x, t) = S,
u2 = u2(x, t) = I, u3 = u3(x, t) = R. Let us impose additional conditions on the solution (u1, u2, u3)

–boundary: (
μjuj + ηj

∂uj
∂ν

)∣∣∣∣
x∈∂Ω

= Bj(x), μ
2
j + η2j > 0, μj ≥ 0, ηj ≥ 0,

–initial:
uj(x, 0) = wj(x), j = 1, 2, 3.

Here Bj(x) ∈ C(∂Ω), wj(x) ∈ C2(Ω) ∩ C(Ω), j = 1, 2, 3, Ω = Ω ∪ ∂Ω . Let the vector w =
(w1(x), w2(x), w3(x)) be a stationary solution of system (28)–(30), that is, the solution of the system

−βw1w2 + ϑ1Δw1 = 0,

βw1w2 − γw2 + ϑ2Δw2 = 0,

γw2 + ϑ3Δw3 = 0,

satisfying the boundary conditions(
μjwj + ηj

∂wj

∂ν

)∣∣∣∣
x∈∂Ω

= Bj(x), μ
2
j + η2j > 0, μj ≥ 0, ηj ≥ 0.

This time, we obtain the inequality for the derivative of the Lyapunov function

1

2

∂

∂t

∫

Ω

z2 dx �
∫

Ω

3∑
k,j=1

Akjzkzj dx−
∫

∂Ω

3∑
j=1

ϑjgj dΓ +

∫

Ω

(
βz1z

2
2 − βz21z2

)
dx,

where

A11 = −βw2 −
ϑ1

d2
, A22 = βw1 − γ − ϑ2

d2
, A33 = −ϑ3

d2
,

A12 = (βw2 − βw1)/2, A23 = γ/2, A13 = 0.

Using the Sylvester criterion, we obtain the following sufficient conditions for negative definiteness of a
quadratic form

A11 = −βw2 −
ϑ1

d2
< 0, (31)
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A11A22 −A2
12 =

(
−βw2 −

ϑ1

d2

)(
−βw1 − γ − ϑ2

d2

)
− 1

4
β (w2 − w1) > 0, (32)

(
A11A22 −A2

12

)
A33 −A11A

2
23 (33)

=

((
−βw2 −

ϑ1

d2

)(
−βw1 − γ − ϑ2

d2

)
− 1

4
β (w2 −w1)

)(
−ϑ3

d2

)
−

(
−βw2 −

ϑ1

d2

)
γ2

4
< 0. (34)

These conditions are verifiable in practice, in computer simulations. Note that if we consider a trivial
stationary solution w1 = w2 = w3 = 0 in the framework of this model, conditions (31)–(34) will take
the form

A11 =
ϑ1

d2
> 0, (35)

A11A22 −A2
12 =

ϑ1

d2

(
γ +

ϑ2

d2

)
> 0, (36)

(
A11A22 −A2

12

)
A33 −A11A

2
23 =

ϑ1

d2

(
γ2

4
−

(
γ +

ϑ2

d2

)
ϑ3

d2

)
< 0. (37)

In a model with concentrated parameters, that is, when ϑ1 = ϑ2 = ϑ3 = 0, conditions (35)–(37) are not
fulfilled, the trivial solution is unstable. In a model with distributed parameters, that is, when ϑ1ϑ2ϑ3 > 0,
conditions (35), (36) are fulfilled in any case, therefore, condition (37) becomes a substantial sufficient
condition for the stability of a trivial solution. This condition, obviously, can be rewritten as

γ2

4
−

(
γ +

ϑ2

d2

)
ϑ3

d2
< 0.

The fulfillment of this condition is possible for a domain with a small diameter. For domains with a large
diameter, this condition is not satisfied.

5. MODELS IN HUMANITIES

5.1. The Hotelling Equation

We have already given one example above. The Verhulst model has an unstable trivial solution, which
becomes stable if we add a diffusion term and proceed to the Hotelling model in a domain with a small
diameter. Let’s note that the Hotelling equation describes the growth of a natural language vocabulary
[32]).

5.2. On Modelling the Interaction of Language Groups

The model considered below in a non-diffusion form is borrowed from the work [12]. We supplement
it to a diffusive form and give the quantities involved in it a different meaning. We still consider a
new interpretation to be possible, basing on the already-mentioned principle of analogies in models
constructing (see [33]). We realize that obtaining reliable data about the input values of the model,
as well as about the desired values for its experimental verification, is a separate time-consuming task,
which is not considered here.

Let u1 = u1(x1, x2, t) and u2 = u2(x1, x2, t) be the number (in arbitrary units) of groups of speakers
of two languages (adverbs, dialects) living in the common territory. We will assume that the second
group has “aggressiveness” in the following sense: due to the influence of the participants of the second
group, a transition from the first group to the second group is possible. The system of ordinary differential
equations, describing this process, has the form

∂u1
∂t

= μu1(u1 − α)(1 − u1)− u1u2, (38)

∂u2
∂t

= −β(b− u1)u2, (39)
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where α ∈ [0, 1), μ, β, and b are some parameters. We add to the system (38)–(39) the initial conditions

u1|t=0 = u01 ∈ [0, 1], u2|t=0 = u02 ∈ [0, 1).

In the diffusion version, the system takes the form

∂u1
∂t

= μu1(u1 − α)(1 − u1)− u1u2 + ϑ1Δu1, (40)

∂u2
∂t

= −β(b− u1)u2 + ϑ2Δu2, (41)

where ϑ1 � 0, ϑ2 � 0 (for ϑ1 = 0, ϑ2 = 0 we obtain the system (38)–(39) from [12]). We assume that
the system is considered in a bounded domain Ω with a piecewise smooth boundary Γ. We add boundary
conditions (

η11u1 + η12
∂u1
∂ν

)∣∣∣∣
Γ

= ζ1(x1, x2),

(
η21u2 + η22

∂u2
∂ν

)∣∣∣∣
Γ

= ζ2(x1, x2),

where ν is the unit vector of the external normal to the boundary Γ, η2s1 + η2s2 > 0, ηs1ηs2 > 0, s = 1, 2.
Everywhere further we will consider regular solutions with sufficient smoothness, what, in particular,
entails the fulfillment of all the necessary conditions for matching the initial and boundary data.

Applying the above reasoning in this case, we get the inequality

1

2

∂

∂t

l∫

0

|z|2 dx ≤
l∫

0

(a11z
2
1 + 2a12z1z2 + a22z

2
2) dx,

where d is the diameter of the domain Ω,

a11 = 2μv1 + 2μαv1 − μα− 3μv21 − v2 −
ϑ1

d2
,

a12 = a21 =
1

2
(βv2 − v1) , a22 = βv1 − bβ − ϑ2

d2
.

A refined sufficient condition for the asymptotic stability of a stationary solution is the negative
definiteness of the quadratic form

2∑
k=1

2∑
j=1

akj ξk ξj. (42)

Certainly, checking this condition, although somewhat cumbersome, is still quite feasible, especially
with the help of a computer.

It should be noted that taking into account diffusion phenomena can also introduce new knowledge
about the object of research or about the model. Let’s turn to the primary source of the model under
consideration. In the work [12] it is indicated that the system of ordinary differential equations (38)–(39)
has four stationary points. Note that each of them is also a stationary solution of the system (40), (41) of
partial differential equations with diffusion terms. In order to illustrate our thesis about new information
about the object, we consider two of these stationary points.

1. v1 = α, v2 = 0.

At this stationary point, the eigenvalues of the matrix of the right side of the equations (38), (39)
will have the form λ1 = μα(1− α) > 0, λ2 = −β(b− α). Since one of the eigenvalues is positive, this
stationary point will be unstable. We will study the influence of nonzero diffusion terms. It turns out that
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in this case the quadratic form (42) may be negatively defined if certain conditions are satisfied. In this
case we have

a11 = μα(1− α)− ϑ1/d
2, a12 = −α/2, a22 = β(α − b)− ϑ2/d

2.

According to the Sylvester criterion, for the negative definiteness of the form (42), it is necessary and
sufficient to fulfill the conditions

a11 = μα(1− α)− ϑ1/d
2 < 0,

a11a22 − a212 = Φ1(d;α, β, μ, b) =
(
μα(1− α)− ϑ1/d

2
) (

β(α− b)− ϑ2/d
2
)
− α2/4 > 0.

It is quite obvious that each of these two conditions will be satisfied for sufficiently small d.
2. v1 = 1, v2 = 0.

At this point λ1 = −μ(1−α) < 0, λ2 = −β(b− 1). The inequality b > 1 is a necessary and sufficient
condition for the stability of the point (1, 0), considered as a stationary point of a system of ordinary
differential equations (38), (39). Considering (40), (41), we have

a11 = −μ(1− α) − ϑ1/d
2, a12 = −1/2, a22 = β(1− b)− ϑ2/d

2.

Sylvester’s criterion for the negative definiteness of a quadratic form in this case will lead to the
conditions

a11 = −μ(1− α)− ϑ1/d
2 < 0,

a11a22 − a212 = Φ2(d;α, β, μ, b) =
(
−μ(1− α)− ϑ1/d

2
) (

β(1 − b)− ϑ2/d
2
)
− 1/4 > 0.

This time, the first condition is satisfied. The second condition can be satisfied for small values of d, not
only for b > 1, but also for b � 1. Also worthy of note is the point v1 = 0, v2 = 0. At this stationary point,
the eigenvalues of the matrix at the right side of equations (38)–(39) will be negative, and therefore this
point will be stable. In this case, adding diffusion terms does not give anything new.

CONCLUSION

In this paper, we obtained a sufficient condition for the asymptotic stability of a stationary solution
in a system of partial differential equations obtained from autonomous systems of ordinary differential
equations by adding diffusion terms. It is noted that the nature of stability of constant stationary
solutions changes when models with concentrated parameters are replaced by models with distributed
parameters (in domains with small diameters for the better). It should be added that the obtained results
also indicate the absence of the phenomenon known as Turing instability in many cases of domains with
small diameters. In terms of population models, this fact means that migration processes contribute to
the stability of stationary states in small domains.
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