
R E V I E W Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Iourov et al. Molecular Cytogenetics           (2022) 15:45 
https://doi.org/10.1186/s13039-022-00624-y

populations in the same individual or tissue) in the brain 
may be a mechanism for neuronal variability in health 
and disease [3–7]. Somatic mosaicism encompasses all 
types of intercellular genetic variations. Somatic chro-
mosomal mosaicism (the presence of cell population dif-
fering with respect to their chromosome complements) 
is one of the commonest types of somatic mosaicism. 
Single gene sequence variations (mutations), copy num-
ber variations (CNVs) and retrotransposition of trans-
posable elements also represent common types of genetic 
variation involved in somatic mosaicism [8–10]. Finally, 
chromosomal instability (increased rates of non-specific 
chromosome abnormalities in a cell population) may be 
an underlying mechanism for the development of the 
genomically mosaic brain [6, 9, 11–13]. Generally, it is 
proposed that chromosomal instability and increased 
rates of somatic mosaicism (i.e. higher than in control 
brain samples or > 1–12% of genomically abnormal brain 
cells) are likely to cause brain disorders [14–18].

Introduction
The human brain is a highly complex system encom-
passing ~ 100  billion neurons, up to 1012 glial cells and 
5,000-200,000 synapses per neuron. Taking into account 
these astronomical amounts, neuronal and glial cells 
are unlikely to possess identical genomes [1, 2]. Accord-
ingly, it has been proposed that somatic mosaicism 
(the presence of genetically (genomically) different cell 
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Abstract
It is hard to believe that all the cells of a human brain share identical genomes. Indeed, single cell genetic 
studies have demonstrated intercellular genomic variability in the normal and diseased brain. Moreover, there is 
a growing amount of evidence on the contribution of somatic mosaicism (the presence of genetically different 
cell populations in the same individual/tissue) to the etiology of brain diseases. However, brain-specific genomic 
variations are generally overlooked during the research of genetic defects associated with a brain disease. 
Accordingly, a review of brain-specific somatic mosaicism in disease context seems to be required. Here, we 
overview gene mutations, copy number variations and chromosome abnormalities (aneuploidy, deletions, 
duplications and supernumerary rearranged chromosomes) detected in the neural/neuronal cells of the diseased 
brain. Additionally, chromosome instability in non-cancerous brain diseases is addressed. Finally, theoretical 
analysis of possible mechanisms for neurodevelopmental and neurodegenerative disorders indicates that a genetic 
background for formation of somatic (chromosomal) mosaicism in the brain is likely to exist. In total, somatic 
mosaicism affecting the central nervous system seems to be a mechanism of brain diseases.
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During the last two decades, a large amount of 
data generated by genetic studies of brain cells has 
been reported. Consequently, somatic mosaicism has 
been associated with neurodegenerative diseases (e.g. 
Alzheimer’s disease), autism, epilepsy, schizophrenia, and 
monogenic intellectual disability [3, 5, 9, 11, 12, 15–17, 
19–29]. Here, we overview data on somatic mosaicism 
(from single nucleotide variants to aneuploidy, or losses/
gains of whole chromosomes) in the diseased brain.

Somatic mosaicism in brain diseases
The development of molecular cytogenetic techniques for 
studying human interphase chromosomes at any stage of 
the cell cycle and at molecular resolutions has provided 
an opportunity for uncovering somatic chromosomal 
mosaicism in the normal and diseased brain [30–33]. In 
parallel, single cell analysis using whole-genome sequenc-
ing has allowed the assessment of genomic variability 
in the normal and diseased brain [34–39]. Using similar 
advanced technologies for whole-genome analysis, CNVs 
confined to the diseased brain have been found [36–38]. 
Schizophrenia: individual cases of schizophrenia have 
been shown to be associated with aneuploidy and struc-
tural chromosomal imbalances in the diseased brain [3, 
40–43]. Neurodegenerative diseases: Alzheimer’s dis-
ease cases have been associated with brain-specific aneu-
ploidy [12, 26, 28, 44–47]. Furthermore, chromosome 
instability manifested as aneuploidy or structural chro-
mosomal abnormalities has been found to mediate neu-
rodegeneration in several devastative brain diseases [12, 
28, 45–51]. Somatic mosaicism for single gene mutations 
(i.e. single nucleotide variants with a proven pathogenic 
effect) has been associated with Alzheimer’s disease [52, 
54].

Single gene mutations were also found in individual 
cases of autism [13] and epilepsy [24, 27]. Mosaic genetic 
changes of chromosome X affecting the brain have been 
hypothesized to produce preponderance of males among 
individuals with neurodevelopmental diseases (e.g. 
autism) [54, 55]. Somatic mosaicim generated by LINE-1 
retrotransposition [9] has been shown to be involved in 
the pathogenesis of schizophrenia and monogenic intel-
lectual disability [56].

Dynamic changes of mosaicism rates (i.e. ontogenetic 
changes of proportions between normal and abnormal 
cells) affecting the human brain have been also suggested 
to modulate human behavior [57–59]. Thus, chromosome 
instability (chromosome condensation defects or altera-
tions to chromosome structure/morphology without 
microscopically visible changes of chromosomal DNA) 
has been shown involved in gulf war illness pathogenesis 
[60]. Additionally, changing of chromosomal/genomic 
mosaicism rates has been hypothesized to be involved in 
behavior variability (e.g. worsening or improvement of 

behavioral abnormalities; sporadic occurrence or cease 
of behavioral abnormalities) in health and neurobehav-
ioral diseases [59]. Table 1 summarizes available data on 
somatic mosaicism and genome/chromosome instabil-
ity manifesting as chromosome abnormalities, CNVs, 
LINE-1 retrotransposition and single gene mutations 
detected in the diseased brain [3, 15, 26, 35, 40–47, 52, 
53, 61–94].

Summarizing data on somatic mosaicism in the dis-
eased brain depicted by Table  1 allows to conclude: (1) 
somatic mosaicism seems to be an appreciable source for 
human brain morbidity; (2) spectrum of mosaicism types 
is truly wide (almost all types of genetic mosaicism are 
detectable in the diseased brain); (3) pathways affected 
by the mutated genes are disease-specific and might be 
intriguing drug targets.

Consequences and origins of somatic mosaicism in 
the brain
It is important to note that somatic mosaicism is detect-
able in biopsies of healthy individuals [57, 95, 96]. Analo-
gously, from 0.5 to 12% of genomically abnormal cells 
are consistently detected in the unaffected brain [15, 17, 
19, 23, 30, 34, 97]. However, clinical cohorts (including 
cohorts of individuals with neuropsychiatric disorders) 
generally exhibit high rates of somatic mosaicism, which 
seems to be involved in the pathogenesis [23, 57, 95, 
98–100]. Nonetheless, despite debates regarding mosa-
icism rates in the normal brain, it is generally accepted 
that these are likely to be higher in the diseased brain [4, 
5, 15, 23, 101, 102]. Furthermore, genomically abnormal 
(aneuploid) neurons have been demonstrated to be func-
tionally active and integrated into brain circuitry [103]. 
On the other hand, the Alzheimer’s disease brain has 
not demonstrated increased rates of somatic mosaicism 
in a case-control study [104]. Still, there are a number of 
studies demonstrating mosaic mutations (single nucleo-
tide variants and CNVs) of genes mutated in familial 
Alzheimer’s disease in the diseased brain [52, 66]. Taking 
into account the complexity of the disease, one can sug-
gest that genome/chromosome instability and somatic 
mosaicism may be a mechanism for a proportion of cases 
[23, 28, 48]. Additionally, somatic mosaicism and genome 
instability have been systematically integrated into 
molecular and cellular pathways of neurodegenerative 
and neuropsychiatric disorders [12, 26, 28, 29, 38, 105–
109]. Bioinformatics analyses and functional genomics 
studies have indicated that numerous mosaic (brain-spe-
cific) gene mutations are pathogenic [24, 39, 63, 92, 107]. 
Since chromosomal instability, structural variations and 
aneuploidy significantly affect cellular homeostasis, it has 
been systematically proposed that somatic mosaicism in 
the brain is able to cause central nervous system dysfunc-
tion or progressive neuronal loss [4, 5, 16, 19, 26, 45, 110]. 
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Disease/Disorder Type of genomic change Brief description Chromosome Locus Gene Refs
Alzheimer’s disease Single nucleotide variants Low-level mosaic single 

nucleotide variants
1 1q42.13 PS2 [53]

14 14q24.2 PS1

17 17q21.31 MAPT

21 21q21.3 APP

Single nucleotide variants Brain-specific single nucleo-
tide variants

2 2q32.2 COL3A1 [61]

4 4q31.3 LRBA

Single gene mutations Single gene autosomal 
dominant variants

11 11q24.1 SORL1 [53]

Single nucleotide variants Single nucleotide variants in 
the temporal cortex

1 1q32.2 CD55 [62]

Single nucleotide variants Pathogenic somatic muta-
tion leading to a loss-of-
function mutation

19 19p13.2 PIN1 [63]

Single gene mutations Accumulating of mosaic so-
matic mutations in autism/
intellectual disability genes

20 20q13.13 ADNP [64]

Nucleotide repeat expansion Hexanucleotide repeat 
expansions

9 9p21.2 C9orf72 [65]

CNVs CNVs affecting ~ 10% of cells NS* NS NS [52]

CNV (gain) Single gene amplification 21 21q21.3 APP [66]

CNV (gain) Single gene gain 12 12q13.12 PRPH [65]

DNA content variation Increased rates of DNA 
content variation (varia-
tions of DNA content in a 
cell suggested to hallmark 
aneuploidy/polyploidy)

— — — [47, 67]

Aneuploidy Increased rates of 
aneuploidy

17 — — [45, 67]

Aneuploidy (trisomy/monosomy) Chromosome-specific 
(numerical) instability

21 Whole 
chromosome

— [15]

Aneuploidy (monosomy) X chromosome loss
(an aging marker)

X Whole 
chromosome

— [46]

Aneuploidy (chromosome 
instability)

Chromosome missegrega-
tion and aneuploidy proba-
bly resulted from mutations 
in the APP, presenelin 1 and, 
probably, NPC1

21 — — re-
viewed 
by
[26]

Amyotrophic lateral scle-
rosis (sporadic)

CNVs Brain-specific CNVs 3 3p26.3p26.2 CNTN4 [68]

8 8p23.2 CSMD1

22 22q11.22 GGTLC2

Ataxia telangiectasia (ATM 
mutations)

LINE-1 retrotransposition Specific LINE-1 
retrotransposition

— — — [69]

Aneuploidy (chromosome instabil-
ity) and chromosome 14-specific 
instability
(affecting exclusively this 
chromosome)

High rates of chromosome 
instability in degenerating 
areas of the brain suggested 
to have ATM mutations 
(aneuploidy, non-random 
chromosomal breaks, rear-
ranged chromosomes)

1, 7, 11, 13, 14, 
17, 18, 21, X, Y

Whole 
chromosomes

— [15, 44]

14 14q12 NOVA1, 
FOXG1B

Autism spectrum disorder Single gene mutations Recurrent deleterious 
mutations

2 2q24.3 SCN1A [35]

2 2q24.3 SCN2A

3 3p21.31 SETD2

6 6q25.3 ARID1B

LINE-1 retrotransposition LINE-1 overexpression in the 
cerebellum

— — — [70]

Table 1 Spectrum of somatic mosaicism detected in neural cells of the diseased brain
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Disease/Disorder Type of genomic change Brief description Chromosome Locus Gene Refs
Focal Cortical Dysplasia Single nucleotide variants Missense mutations 9 9q34.13 TSC1 [71, 72]

16 16p13.3 TSC2

1 1p36.22 MTOR [73]

22 22q12.2q12.3 DEPDC5 [74]

Focal cortical dysplasia, 
type II

Single nucleotide variants Somatic doublet mutation 7 7q36.1 RHEB [75]

Hemimegalen-cephaly Single nucleotide variants Missense mutations 1 1q43q44 AKT3 [71, 76]

3 3q26.32 PIK3CA

14 14q32.33 AKT1

Single nucleotide variants Missense mutations 1 1p36.22 MTOR [73]

Single nucleotide variants “Double-hit” single nucleo-
tide variants of two genes

1 1p36.22 MTOR [77]

9 9p22.1 RPS6

Hypothalamic Hamartoma Single nucleotide variants Missense mutations 7 7p14.1 GLI3 [78, 79]

X Xp22.2 OFD1

Frontotemporal lobar 
degeneration

Aneuploidy (trisomy) Neuronal aneuploi-
dy + apoptosis due to 
mitotic defects caused by 
MAPT mutations

12, 21 — — [80]

Huntington’s disease Nucleotide repeat expansion Expansion of an unstable 
trinucleotide repeat (CAG)

4 4p16.3 HTT [81]

Lewy body diseases Aneuploidy (NS) Increase in neuronal 
DNA content (probably 
aneuploidy)

— — — [82]

Niemann-Pick disease, 
type C1
(NPC1 mutations)

Aneuploidy (trisomy) Accumulation of (trisomic) 
cells with additional chro-
mosome 21 in Niemann-
Pick disease, type C1

21 — — [83]

Nonlesional focal epilepsy Single gene mutations Missense mutations, dele-
tions (frameshift), insertions

X Xp11.23 SLC35A2 [84]

Parkinson’s disease Single nucleotide variants Questionable SNCA variants 4 4q22.1 SNCA [85]

CNV (gains) Somatic SNCA gains in nigral 
dopaminergic neurons

4 4q22.1 SNCA [86]

Rett syndrome (MECP2 
mutations)

LINE-1 retrotransposition Specific LINE-1 
retrotransposition

— — — [87]

Schizophrenia Single nucleotide variants NS NS NS NS [88]

CNV (loss) Somatic deletions 2 2q31.2 PRKRA [42]

5 5q35.2 BOD1

7 7p15.2 CBX3

CNVs (gains/losses) Diseases-specific CNVs 4 4q35.2 NS [43]

6 6p11.2

7 7q11q12

11 11p15.4p15.5

15 15q11.2

LINE-1 retrotransposition Increased LINE-1 “burden” 
and LINE-1 insertions in 
synapse or schizophrenia-
related genes

— — — [89, 90]

Aneuploidy (trisomy) Low-level mosaic trisomy 18, X — — [3]

Aneuploidy (trisomy/monosomy) Low-level mosaic trisomy 
and monosomy

1 Whole 
chromosome

— [40]

Aneuploidy (trisomy/monosomy) Increased rates of gono-
somal aneuploidy

X, Y — — [41]

Sturge-Weber syndrome 
(leptomeningeal
angiomatosis)

Single nucleotide variants Missense mutation (R183Q) 9 9q21.2 GNAQ [91]

Table 1 (continued) 
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However, there is an urgent need for forthcoming studies 
dedicated to functional consequences of somatic mosa-
icism in the brain.

A large part of human brain cells are generated dur-
ing prenatal development without systematic/general 
renewal of neuronal cell populations after birth. There-
fore, it is not surprising that the genetic landscape of the 
human brain is determined during early ontogeny stages 
[1, 23]. The developing human brain exhibiting high rates 
of chromosome instability and mosaicism manifested as 
aneuploidy [14, 16, 97]. Since these genetic variations are 
able to underlie neuronal cell death (for details see [110] 
and [111]) and a progressive decrease of cell numbers 
is observed in the developing brain during early ontog-
eny stages [1], it has been suggested that developmental 
chromosome instability and/or mosaicism underlying 
programmed cell death might be a regulation mecha-
nism of cell numbers in the mammalian brain [14, 112]. 
Thus, alterations to pathways regulating programmed 
neuronal cell death might be responsible for the pres-
ence of abnormal cells in the postnatal brain [4, 22]. It 
is noteworthy that genomically abnormal neuronal cells 
are prone to cell death [110]. More precisely, aneuploid 
neurons selectively die in the diseased brain [45] and are 
susceptible to caspase-mediated death (e.g. apoptotic 
cell death) [110]. DNA damage in neurons may initiate 
apoptosis or produce a senescence-like state mediated 
by chromosome instability [113, 114], which may lead to 
cell death by another mechanism (e.g. mitotic catastro-
phe) [115]. Programmed neuronal cell death is a likely 
mechanism for neurodegeneration in aging-related brain 
diseases [45, 111, 115]. Furthermore, the genomic varia-
tions in the aged brain appear to underlie brain aging 
and aging-related brain deterioration [12, 25, 115–117]. 
Additionally, aging-related pathogenic processes in the 
Alzheimer’s disease brain may be associated with X chro-
mosome aneuploidy, a chromosomal hallmark of human 
aging [46, 117118]. A devastative consequence of altera-
tions to programmed neuronal cell death may be the 
persistence of chromosome instability during early post-
natal period, which is able to cause cancer in addition to 
non-cancerous brain diseases [119, 120]. Alternatively, 
the persistence of cell populations with altered genome is 
able to cause non-cancerous brain diseases [4, 5, 16, 37]. 
Thus, brain-specific somatic mosaicism is likely to result 

from developmental genomic instability and its rate fluc-
tuations throughout ontogeny in an appreciable propor-
tion of brain disease cases.

Alzheimer’s disease has long been associated with 
aberrant cell cycle (i.e. cell cycle re-entry, deregula-
tion or endoreduplication) of neuronal cells [45, 47, 48, 
121–124]. Mutations in the APP found in familial cases 
of Alzheimer’s disease may also cause chromosome mis-
segregation leading to aneuploidy [121]. Similarly, MAPT 
mutations associated with frontotemporal lobar degen-
eration have been shown to produce mitotic defects in 
neuronal cells resulting in chromosome instability or 
aneuploidy [80]. Cohesion defects have also been asso-
ciated with chromosome instability/aneuploidy in the 
Alzheimer’s disease brain [123]. Moreover, DNA replica-
tion stress [122] and genomic changes (CNVs) of genes 
implicated in the cell cycle pathway [125] are likely to 
be involved in molecular and cellular pathways to brain-
specific somatic mosaicism (i.e. pathways of cell cycle 
regulation and mitotic checkpoint). It appears that these 
abnormal molecular and cellular processes leading to 
genome instability are similar to those observed in can-
cers [126, 127]. Oncogenic parallels are repeatedly noted 
in neurodegenerative diseases [28, 124]. However, “neu-
rodegenerative” genomic instability originates from inter-
actions between altered genome (mutational burden) and 
environment rather than from clonal evolution in cancers 
[28]. A recent study has shed light on a new formation 
mechanism of mosaicism for structural variations involv-
ing the APP gene in the Alzheimer’s disease brain, i.e. 
somatic gene recombination in neurons [128]. Finally, a 
more likely pathway to somatic mosaicism and genome 
instability in the brain includes specific genomic/genetic 
burden and the genetic-environmental interactions [129, 
130]. In total, it seems that genes mutated in familial 
cases of complex brain disorders are involved in path-
ways of cell cycle regulation, mitotic checkpoint, chroma-
tin remodeling, signaling (important for cell metabolism, 
proliferation and survival). To test briefly possible rele-
vance of these assumptions, one may take a look at inter-
actomes of genes listed in Table 1. Figure 1 demonstrates 
interactomes of genes involved in brain-specific somatic 
mosaicism in Alzheimer’s disease, autism and epileptic 
disorders. These diseases have been selected inasmuch 
as several genes have been repeatedly found mutated 

Disease/Disorder Type of genomic change Brief description Chromosome Locus Gene Refs
Subcortical band het-
erotopia (“double cortex” 
syndrome)

Single gene mutations Mosaic gene mutations as-
sociated with the syndrome

17 17p13.3 PA-
FAH1B1
(LIS1)

[92, 93]

X Xq23 DCX

Tuberous Sclerosis Single nucleotide variants Missense mutations 16 16p13.3 TSC2 [94]
* NS — non-specific;

Table 1 (continued) 
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in the diseased brain. As one can see, these genes share 
same interactomic networks (apart from COL3A1 and 

PRPH in Alzheimer’s disease). Moreover, elements of 
these interactomic networks are involved in a number 
of pathways, alterations to which might cause cellular 
genomes to become susceptible to the instability and to 
be dysregulated at the chromatin level. However, this is 
not the case for genes mutated in the schizophrenia brain 
(interactome cannot be generated). Unfortunately, stud-
ies aimed at analysis of genetic variation affecting genes 
of pathways implicated in maintaining genome stability, 
cell cycle regulation and programmed cell death are rare. 
Forthcoming studies of somatic genome variation in the 
brain are likely to be pathway-specific for unraveling the 
intrinsic causes of brain-specific mosaicism for diagnos-
tic and therapeutic purposes [131].

What is now and what is next?
Recent studies have additionally supported the idea that 
somatic mosaicism in the diseased brain may be a mech-
anism for neurodevelopmental and neurodegeneration 
disorders [132–134]. Furthermore, clinical (neurode-
velopmental) cohorts repeatedly demonstrate high rates 
of somatic mosaicism [135–137], which may be seen as 
a mechanism for the disease or a target for therapeutic 
interventions [23, 138]. In this context, it is to mention 
an intriguing mechanism for brain-specific chromosome 
instability and/or aneuploidy termed chromohelkosis 
(chromosome ulceration or open wound), which results 
from the co-occurrence of non-mosaic and mosaic chro-
mosome imbalances caused by a susceptibility to genome 
instability and a genomic rearrangement [139]. There-
fore, as noticed previously [129], environmental interac-
tions with changed genomes should not be left aside in 
studies dedicated to somatic cell genomics of brain disor-
ders. To support this idea, one can refer to the ability of 
the notorious COVID-19 virus to produce aging-related 
genome/chromosome instability in the diseased brain 
[140]. Thus, therapeutic interventions based on analysis 
of brain-specific somatic mosaicism are to be developed 
taking into account genetic-environmental interactions.

Successful therapeutic interventions in brain disorders 
mediated by somatic mosaicism appear to require spe-
cific diagnostic approaches. Emerging technologies based 
on genome scanning techniques, molecular cytogentic/
cytogenomic methods and post-genomic bioinformatic 
approaches are likely to be the way for the success [131, 
141–143]. Cytopostgenomics and systems cytogenom-
ics seem to be the areas of cytogenetic research which 
would help to develop the approaches to uncover causes 
and consequences of somatic chromosomal mosaicism in 
the diseased brain [142, 143]. Analyzing available candi-
date processes or pathways for therapeutic interventions 
in brain disorders mediated by somatic mosaicism (e.g. 
DNA reparation, programmed cell death, neurodegener-
ation pathway) [144–146] gives an opportunity to suggest 

Fig. 1 Interactomes of genes involved in somatic genome variations af-
fecting the diseased brain (see Table 1) generated by STRING v11 [151]: (A) 
Alzheimer’s disease; (B) autism; (C) epileptic disorders
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that pathway-centric (cyto)genomic studies are likely 
to be the most promising. To this end, it is to note that 
modern molecular cytogenetic and genomic techniques 
are able to generate new data on the role of somatic 
mosaicism in the aging and diseased brain [147–150].

Concluding remarks
Technological advances in sequencing resulted in an 
overuse of molecular (sequencing) methods comparing 
to molecular cytogenetic techniques. As a result, little 
attention is paid to molecular cytogenetic aspects of 
somatic mosiacism in the human brain. This review rep-
resents a unique overview of both molecular genetic and 
molecular cytogenetic (cytogenomic) data on brain-spe-
cific genomic variations at DNA, subchromosomal and 
chromosomal levels associated with a wide spectrum of 
non-cancerous brain diseases.

Regardless of a relatively small amount, studies dedi-
cated to somatic mosaicism in the human brain have 
demonstrated a wide spectrum of genomic variations 
involved in neurological and psychiatric diseases. Brain-
specific genome variations causing neurodegenerative 
and neuropsychiatric disorders produce several impor-
tant tasks for current biomedicine. Firstly, the unavail-
ability of tissues for premortem genomic analysis (apart 
from surgical biopsies) raises important diagnostic 
issues. Here, we have suggested that a kind of susceptibil-
ity of cellular genomes to become unstable (i.e. mutations 
of genes involved in molecular and cellular pathways to 
maintain genomic stability throughout cell cycle) appears 
to exist. Briefly, (i) in the developing human brain, chro-
mosome instability and mosaic aneuploidy/CNVs have 
a high rate, which is, however, significantly diminished 
in the postnatal brain; (ii) alterations to pathways of 
genome stability maintenance, cell cycle regulation and 
programmed cell death should mediate the persistence 
or increase of genome instability (mosaicism) rates in the 
brain; (iii) this persistence/increase affecting a propor-
tion of brain cells may cause central nervous system dys-
function or neuronal loss (brain diseases).

Uncovering the susceptibility to brain-specific chro-
mosome/genome instability might have diagnostic value. 
Moreover, these pathways to brain-specific genome 
instability and somatic mosaicism may be a drug target 
in brain diseases mediated by somatic mosaicism. Actu-
ally, pathogenic cascades of brain diseases involving 
somatic mosaicism and genome instability are suggested 
to be valuable drug targets. Furthermore, data on somatic 
mosaicism in surgical biopsies have already been consid-
ered useful for the therapeutic interventions. The excit-
ing area of somatic cell genomics brings new insights 
into genetic (genomic) mechanisms of brain dysfunction, 
which are required for efficient molecular diagnosis and 
treatment of neurological and psychiatric illnesses.
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