УДК 669.018.567.41

ИЗУЧЕНИЕ ОСОБЕННОСТЕЙ АМОРФИЗАЦИИ СПЛАВОВ НА ОСНОВЕ НИКЕЛИДА ТИТАНА, ЦИРКОНИЯ И ЖЕЛЕЗА ПРИ ДЕФОРМАЦИИ В КАМЕРЕ БРИДЖМЕНА ¹¹⁾

Р.В. Сундеев, А.М. Глезер, А.В. Шалимова, Д.Л. Дьяконов

ФГУП ЦНИИчермет им. И.П.Бардина,

ул. 2-я Бауманская, 9/23, Москва, 105005, e-mail: sundeev55@yandex.ru

Аннотация. Методами рентгеноструктурного анализа и просвечивающей электронной микроскопии изучены особенности перехода кристаллических сплавов Ni₅₀Ti₃₀Hf₂₀, Ti₅₀Ni₂₅Cu₂₅, Zr₅₀Ni₁₈Ti₁₇Cu₁₅ и Fe₇₈B₈58Si₉P_{4.5} в аморфное состояние в ходе мегапластической (интенсивной) деформации в камере Бриджмена. Было показано, что при одинаковой степени деформации скорость аморфизации кристаллических сплавов существенно различается: однофазные кристаллические сплавы на основе никелида титана и железа – легко аморфизуются, тогда как сплав на основе циркония аморфизуется слабо, также как и двухфазный железный сплав. Предположено, что склонность к деформационной аморфизации кристаллических сплавов и соответствующих кристаллических фаз определяется тремя факторами: механическим, термодинамическим и концентрационным.

Ключевые слова: склонность к деформационной аморфизации, склонность к термической аморфизации, мегапластическая деформация.

1. Введение. Наиболее эффективным способом получения аморфного состояния металлических сплавов, является метод быстрой закалки из расплава-спиннигование [1]. Однако, в последние годы в литературе развивается представление о том, что аморфное состояние можно также получить и в процессе различных видов мегапластической (интенсивной) деформации (МПД) кристаллических материалов [2–4]. Большая часть таких работ, как правило, выполнены на сплавах, которые довольно сложно получить в аморфном состоянии. Целью данной работы является рассмотрение особенностей перехода кристаллических сплавов Ni₅₀Ti₃₀Hf₂₀, Ti₅₀Ni₂₅Cu₂₅, Zr₅₀Ni₁₈Ti₁₇Cu₁₅ и Fe₇₈B_{8.5}Si₉P_{4.5}), с разной склонностью к аморфизации при закалке, из кристаллического в аморфное состояние в ходе деформации в камере Бриджмена, а также сравнить для одних и тех же сплавов склонность к деформационной (СДА) и к термической аморфизации (СТА) при закалке из расплава.

2. Материал и методика проведения экспериментов. Кристаллические образцы для деформации были получены отжигом аморфного состояния всех изученных сплавов, приготовленных из чистых компонентов методом ЗЖС. Для аморфных сплавов Ni₅₀Ti₃₀Hf₂₀, Ti₅₀Ni₂₅Cu₂₅ и Zr₅₀Ni₁₈Ti₁₇Cu₁₅ отжиг на воздухе проводили по режиму

¹¹Исследование выполнено при поддержке Министерства образования и науки Российской Федерации, соглашение 14.А18.21.2059, при поддержке РФФИ (гранты 11-02-00607 и 11-02-12063-офи-м-2011), а также по проекту ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2012 годы» (гос. контракт 16.513.11.3139).

НАУЧНЫЕ ВЕДОМОСТИ 🦇 С

500-510°С – 30 мин., а для сплава Fe₇₈B_{8.5}Si₉P_{4.5} – по двум режимам: 540°С-30 сек (в щелочной среде) и 600°С – 25 мин. Последнее дало возможность получить для аморфного сплава на основе железа практически однофазное и двухфазное кристаллические состояния соответственно. Сплавы на основе никеля и титана после отжига находились в однофазном кристаллическом состоянии, а сплав на основе циркония – в двухфазном. Образцы деформировали в камере Бриджмена в одинаковых условиях – при гидростатическом давлении 4 ГПа и комнатной температуре. Скорость вращения подвижной наковальни в эксперименте изменяли от 1/4 до 9. Исследование структурных и фазовых превращений проводили методами рентгеноструктурного анализа (РСА) и просвечивающей электронной микроскопии. Объемную долю аморфной фазы рассчитывали по данным РСА, используя пакет программ, разработанный в работе [5].

Рис. 1. Профили рентгеновских спектров, полученные для сплавов: (a) $Ti_{50}Ni_{25}Cu_{25}$ (\blacktriangle B19-фаза, • Ti_4Ni_2O -фаза), (б) $Ni_{50}Ti_{30}Hf_{20}$ (\diamondsuit – B19'-фаза, • – TiO_2 -фаза, \blacktriangledown – Ti_4Ni_{20} -фаза), (в) $Fe_{78}B_{8.5}Si_9P_{4.5}$ (1) (\blacksquare – π -фаза, + – α -Fe-фаза), (г) $Zr_{50}Ni_{18}Ti_{17}Cu_{15}$ (\blacksquare – Лавеса фаза, + – Zr_2Ni фаза) и (д) $Fe_{78}B_{8.5}Si_9P_{4.5}$ (\blacktriangle – α (Fe-Si), \blacktriangledown – Fe₃ (B,P), • – Fe₂O₃) в кристаллическом состоянии и после кручения под гидростатическим давлением (P = 4 ГПа) при различном числе полных оборотов подвижной наковальни Бриджмена **n**.

Серия: Математика. Физика. 2012. №23(142). Вып. 29

3. Результаты экспериментов. Рентгеновские спектры, соответствующие всем исследованным состояниям, представлены на рис. 1. Видно, что по мере роста деформации (увеличение **n**) профиль спектров изменяется от характерного для кристаллического состояния к рентгеноаморфному. На рис. 2 показано изменение объемной доли кристаллической фазы V для всех изученных сплавов по мере увеличения **n**. Значения объемной доли на рис. 2 были нормированы на 100% доли V* исходной кристаллической фазы при **n** = 0, поскольку для удобства деформирования в каждом сплаве в исходном кристаллическом состоянии было сохранено небольшое количество (10об.%) аморфной фазы. Наклон зависимостей V*(**n**), очевидно, характеризует значение СДА $\xi_c = |\mathbf{dV}^*/\mathbf{dn}|$. Численные значения ξ_c для изученных сплавов сведены в таблицу.

Рис. 2. Зависимость приведенной объемной доли кристаллической фазы V* сплавов: • – Ni₅₀Ti₃₀Hf₂₀, ▲ — Ti₅₀Ni₂₅Cu₂₅, ■ – Zr₅₀Ni₁₈Ti₁₇Cu₁₅, ♦ – Fe₇₈B_{8.5}Si₉P_{4.5} (1) и × – Fe₇₈B_{8.5}Si₉P_{4.5} (2), от значения **n**.

Таблица 1

Силав	ξc	Кристаллические фазы в исходном состоянии	ξ
Ti ₅₀ Ni ₂₅ Cu ₂₅	45.5	B19	45.5
Ni ₅₀ Ti ₃₀ Hf ₂₀	45.5	B19'	45.5
Zr ₅₀ Ni ₁₈ Ti ₁₇ Cu ₁₅	2.5	Zr ₂ Ni	2.0
		Zr-Ti (Ni,Cu)	0.5
$Fe_{78}B_{8.5}Si_9P_{4.5}$ (1)	13,7	π-фаза	13.7
$Fe_{78}B_{8.5}Si_9P_{4.5}$ (2)	3.6	$Fe_3(B,P)$	3.5
		α -(Fe-Si)	0,1

Значения ξ_c и ξ для изученных сплавов

Бн 1Г1 Жа

Из анализа рис. 2 и таблицы видно, что все изученные сплавы можно условно разделить на две группы:

Первая группа – сплавы $Ni_{50}Ti_{30}Hf_{20}$, $Ti_{50}Ni_{25}Cu_{25}$ и в исходно однофазном кристаллическом состоянии сплав $Fe_{78}B_{8.5}Si_9P_{4.5}$ (1), имеющие относительно высокие значения ξ .

Вторая группа – сплавы $Zr_{50}Ni_{18}Ti_{17}Cu_{15}$ и в исходно двухфазном состоянии сплав $Fe_{78}B_{8.5}Si_9P_{4.5}$ (2), имеющие относительно низкие значения ξ .

Рис. 3. Темнопольные электронно-микроскопические изображения структуры сплава Fe₇₈B_{8.5}Si₉P_{4.5} (1): а) в исходном состоянии и б) после МПД **n**=1/2.

В сплаве $Fe_{78}B_{8.5}Si_9P_{4.5}$ (1) после отжига 540°C – 30 сек образуется метастабильная тетрагональная π -фаза (структурный аналог β -Mn, а = 0,619 нм) со средним размером частиц около 100 нм (рис. 3а). В этом структурном состоянии сплав $Fe_{78}B_{8.5}Si_9P_{4.5}$ (1) аморфизуется относительно быстро (при **n**=4).

Электронно-микроскопическое исследование структуры первой группы сплавов показало, что исходное состояние сплавы $Ni_{50}Ti_{30}Hf_{20}$ и $Ti_{50}Ni_{25}Cu_{25}$ находятся в однофазном состоянии и представляет собой мартенситные фазы B19 или B19', соответственно, с характерной пластинчатой структурой. После деформации $\mathbf{n} = 2$ в сплаве $Ti_{50}Ni_{25}Cu_{25}$ достигается рентгеноаморфное состояние [6]. Аналогичные структурно-фазовые превращения протекают и при деформации сплава $Ni_{50}Ti_{30}Hf_{20}$.

Фазовый состав сплава второй группы $Zr_{50}Ni_{18}Ti_{17}Cu_{15}$ представляет собой смесь двух кристаллических фаз в приблизительном соотношении 1:1. Это фаза Zr_2Ni со слоистой морфологией (структурный тип $CuAl_2$) и Zr-Ti (Ni,Cu) - фаза Лавеса (структурный тип MgZn₂) (рис. 4) [7]. Кристаллическое состояние сплава $Fe_{78}B_{8.5}Si_9P_{4.5}$ (2) представляет собой смесь двух фаз: кристаллической ОЦК-фазы на основе α -Fe, обогащенной кремнием, и тетрагональной фазы $Fe_3(B,P)$ [8]. В отличие от сплавов первой группы, сплав $Fe_{78}B_{8.5}Si_9P_{4.5}$ (2) в процессе деформации аморфизируется медленно. Данные в таблице указывают на тот факт, что имеется разница в процессе аморфизации однофазных и двухфазных сплавов.

Серия: Математика. Физика. 2012. №23(142). Вын. 29

Рис. 4. Темнопольные электронно-микроскопические изображения структуры сплава Zr₅₀Ni₁₈Ti₁₇Cu₁₅: а) в исходном состоянии и б) после МПД **n**=7.

Действительно, объемная доля **V*** ОЦК-фазы α -(Fe-Si) после деформации практически не меняется и колеблется в пределах 0,50 – 0,53, а аморфизация сплава происходит, главным образом, за счет уменьшения **V*** тетрагональной фазы Fe₃(B,P) от 0,35 до 0,18 ($\xi_c \approx \xi - \text{Fe}_3(\text{B},\text{P})$). Подобным же образом происходит частичная аморфизация сплава Zr₅₀Ni₁₈Ti₁₇Cu₁₅. Значение **V*** кристаллической фазы медленно снижается до величины 0,32 после **n**=7 за счет уменьшения объемной доли фазы Zr₂Ni от 0,45 до 0,28 ($\xi_c \approx \xi - \text{Zr-Ti}(\text{Ni},\text{Cu})$). При этом объемная доля фазы Лавеса в процессе деформации практически не изменяется. Естественно, что для однофазных сплавов справедливо соотношение ($\xi_c \approx \xi$). Таким образом, различные кристаллические сплавы и различные кристаллические фазы в их составе имеют различную СДА.

4. Обсуждение результатов Среди многих возможных факторов, определяющих СДА кристаллических твердых тел, можно выделить три основных. Рассмотрим подробнее природу каждого из них.

Механический фактор. Аморфизация кристалла связана с непосредственным влиянием очень больших (мегапластических) деформаций, возникающих в результате специального механического воздействия. Наблюдающееся в ряде экспериментов деформационное растворение кристаллических частиц (фаз) обычно связывают с дрейфом атомов в поле напряжения дислокаций, перерезающих кристалл [9]. Накопление дислокаций в процессе пластической деформации определяется, прежде всего, эффективным барьером Пайерлса σ_0 , характеризующим их подвижность. В первом приближении значение σ_0 , пропорционально модулю упругости кристалла [10]. Следовательно, чем ниже модуль упругости конкретной кристаллической фазы при заданной величине макроскопической деформации, тем выше в ней плотность деформационных дефектов. Среди всех рассматриваемых фаз наименьшим модулем упругости обладают мартенситные фазы в сплавах Ti-Ni-Cu и Ni-Ti-Hf, температурный интервал мартенситного превращения для которых близок к комнатной температуре. Картина перехода кристаллического состояния в аморфное в рамках структурного подхода для наиболее «мягкой» фазы В19 подробно представлена в работах [6]. Аналогичным образом осуществляется аморфизация сплава Ni₅₀Ti₃₀Hf₂₀ и сплава Fe₇₈B_{8.5}Si₉P_{4.5} (1) (рис. 36).

Термодинамический фактор. Безусловно, важную роль должен также играть и термодинамический фактор. Из общих соображений предполагаем, что фазовый переход из кристаллического состояния в аморфное может произойти при условии, что E > E, где E и E – свободные энергии деформированного кристалла и аморфного состояния соответственно. Тогда $E(G) > \Delta E$, где $\Delta E = E \cdot E_K$ – разность свободных энергий аморфного состояния и бездефектного кристалла и E(G) – дополнительная свободная энергия кристалла, связанная с деформационными дефектами, и зависящая в первом приближении от модуля сдвига G. Неравенство по существу определяет относительную роль механического фактора E(G) и термодинамического фактора ΔE в ходе превращения кристаллического состояния в аморфное. Чем выше свободная энергия кристалла, связанная с дислокациями, границами фрагментов и другими дефектами, внесенными в кристалл при деформации и чем ниже разность свободных энергий кристаллической и аморфной фаз, тем интенсивнее протекают процессы деформационной аморфизации.

Как показали исследования, проведенные в работе [11] на сплаве $Zr_{57}Ti_5Cu_{20}Ni_8Al_{10}$, в котором, как и в нашем сплаве $Zr_{50}Ni_{18}Ti_{17}Cu_{15}$ существуют фаза Zr_2Ni и фаза Лавеса Zr-Ti (Ni,Cu), эти кристаллические фазы имеют различную устойчивость к аморфизации при механоактивации в шаровой мельнице. Принимая за меру устойчивости фазы при деформации разность между энтальнией аморфной фазы и энтальпией образования кристаллической фазы, авторы [11] теоретически и экспериментально показали, что фаза Zr_2Ni должна аморфизоваться при деформации легче, чем фаза Лавеса Zr-Ti (Ni,Cu). В наших исследованиях также обнаружено, что аморфизация двухфазного сплава на базе Zr происходит за счет преимущественного деформационного «растворения» фазы $Zr_2Ni : \xi[Zr_2Ni] = 2,0$ и ξ [Zr-Ti (Ni,Cu)] = 0,5.

Концентрационный фактор. Вполне возможно, что деформационный переход кристаллического состояния в аморфное может потребовать перераспределения концентраций одного или нескольких компонентов сплава. Естественно, что в наибольшей степени это относится к случаям, когда химический состав исходной кристаллической и конечной аморфной фаз заметно различаются. В том случае, когда химический состав кристаллической и аморфной фаз отличается незначительно, концентрационный фактор становится второстепенным. Например, в сплавах $Ti_{50}Ni_{25}Cu_{25}$ и $Ni_{50}Ti_{30}Hf_{20}$ (мартенсит В19 или В19') и в сплаве $Fe_{78}B_{8.5}Si_9P_{4.5}$ (1) (π -фаза). Химические составы аморфной фазы и мартенсита в первом случае [3] и π -фазы во втором случае [8] близки к химическому составу соответствующих аморфных фаз. Заметно иная ситуация складывается в сплавах $Zr_{50}Ni_{18}Ti_{17}Cu_{15}$ и $Fe_{78}B_{8.5}Si_9P_{4.5}$ (2), где состав равновесных кристаллических фаз заметно отличается от среднего химического состава аморфного состояния.

Остановимся на соотношении между СТА и СДА металлических сплавов. Рассмотрим два изученных в работе сплава: $Ti_{50}Ni_{25}Cu_{25}$ и $Zr_{50}Ni_{18}Ti_{17}Cu_{15}$. Первый из них обладает в соответствии с таблицей очень высокой СДА ($\xi_c = 45,5$), а второй – весьма низкой ($\xi_c = 2,5$). В то же время СТА (значение критической толщины t) в этих сплавах прямо противоположное: сплав $Zr_{50}Ni_{18}Ti_{17}Cu_{15}$ относится к легко аморфизуемым сплавам ($t \approx 1$ мм) и может быть отнесен к группе объемных аморфных сплавов [7]. $Ti_{50}Ni_{25}Cu_{25}$, наоборот, имеет весьма низкую СТА ($t \approx 50$ мкм) [6]. Таким образом,

приходим к выводу, что СТА и СДА кардинально различаются. По крайней мере, этот вывод справедлив для выбранных способов термической (ЗЖС) и деформационной (МПД) аморфизации.

5. Выводы.

1. Существует, по крайней мере, три фактора, определяющих склонность к деформационной аморфизации кристаллических сплавов и соответствующих кристаллических фаз: механический, термодинамический и концентрационный.

2. Склонность к деформационной аморфизации кристаллических сплавов в процессе кручения при квазигидростатическом давлении в камере Бриджмена определяется аддитивной склонностью к деформационной аморфизации кристаллических фаз, входяших в их состав.

3. Склонность к термической аморфизации при закалке из жидкого состояния для сплавов заданного химического и фазового состава кардинальным образом отличается от их склонности к деформационной аморфизации в камере Бриджмена. Это обусловлено существенным различием физических параметров, определяющих реализацию этих процессов.

Литература

- 1. Судзуки К., Фудзимори Х., Хасимото К. Аморфные металлы / Под ред. Ц. Масумото М.: Металлургия, 1987. - 328 с.
- 2. Татьянин Е.В., Курдюмов В.Г., Федоров В.Б. // ФММ. 1986. 62. С.133-137.
- 3. Pushin V.G., Stolyarov V.V., Valiev R.Z., Kourov N.I., Kuranova N.N., Prokofiev E.A., Yurchenko L.I. Features of strucutre and phase transformations in shape memory TiNi-based alloys after severe plastic deformation // Ann. Chim. Sci. Mat. - 2002. - 27(3). - P.77-88.
- 4. Зельдович В.И., Фролов Н.Ю., Пилюгин В.П. и др. // ФММ. 2005. 99. C.90-100.
- 5. Шелехов Е.В., Свиридова Т.А. // МиТОМ. 2000. №8. С.16-21.
- 6. Глезер А.М., Носова Г.И., Сундеев Р.В., Шалимова А.В. // Известия РАН. серия физическая. - 2010. - 74. - №11. - С.1576-1582.
- 7. Глезер А.М., Сундеев Р.В., Шалимова А.В., Уссинов С.С. // Известия ВУЗов. Физика. -2011. – №8. – С.58-65. 8. Дьяконова Н.Б, Молотилов Б.В., Власова Е.Н., Лясоцкий И.В. Структурные превраще-
- ния в аморфных электротехнических сталях // Сталь. 2000. №7. С.65-70.
- 9. Сагарадзе В.В., Морозов С.В., Шабашов В.А., Ромашев Л.Н., Кузнецов Р.И // ФММ. -1988. – Вын.2. – С.328-338.
- 10. Штремель М.А. Прочность сплавов. Ч.2 / М.: МИСиС, 1997. 524 с.
- 11. Djakonova N.P., Sviridova T.A., Zakharova E.A., Molokanov V.V., Petrzhik M.I. // Journal of Alloys and Compounds. - 2004. - 367. - P.191-198.

Серия: Математика. Физика. 2012. №23(142). Вын. 29 197

STUDY OF AMORPHIZATION FEATURES IN ALLOYS BASED ON NICKEL-TITANIUM, ZIRCONIUM, AND IRON AT DEFORMATION IN BRIDGMAN'S CHAMBER

R.V. Sundeev, A.M. Glezer, A.V. Shalimova, D.L. Djakonov, G.I. Nosova

I.P.Bardin Central Research Institute for Ferrous Metallurgy 2nd Baumanskaya St., 9/23, Moscow, 105005, Russia,e-mail: sundeev55@yandex.ru

Abstract. The features of the transition of crystalline $Ni_{50}Ti_{30}Hf_{20}$, $Ti_{50}Ni_{25}Cu_{25}$, $Zr_{50}Ni_{18}Ti_{17}Cu_{15}$ and $Fe_{78}B_{8,5}Si_9P_{4,5}$ alloys to amorphous state at the severe plastic deformation in Bridgman's anvils have been studied by the X-ray diffraction and transmission electron microscopy. It is shown that at the same degree of deformation the amorphization rates of crystalline alloys differ substantially; namely, the single-phase crystalline titanium- and iron-based alloys are amorphized easily whereas the zirconium-based alloy is amorphized only poorly, just like the two-phase iron-based alloy. One may assume that the tendency to deformation-induced amorphization of crystalline alloys and corresponding crystalline phases is mainly determined by three factors, i.e. mechanical, thermodynamic, and concentration-related ones.

Key words: tendency to deformation-induced amorphization, tendency to thermal amorphization, severe plastic deformation.