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Abstract. We note from a general point of view that adding diffusion terms to ordinary 
differential equations, for example, to logistic ones, can in some cases improve sufficient 
conditions for the stability o f a stationary solution. We give examples of models in which the 
addition of diffusion terms to ordinary differential equations changes the stability conditions of 
a stationary solution.

1. In troduction
Systems o f differential equations simulate the growth o f phenomena o f various types, and for all 
such systems, studies o f the stability o f stationary solutions play an important role. These studies 
have a long history. In many cases, such models are based on ordinary differential equations. 
Although the theory of systems o f ordinary differential equations has long been classical, interest 
in it does not fade away. In the last few decades, this is also due to the fact that such systems 
have found applications in modelling biological and social systems. From relatively recent works 
on mathematical biology, it is possible to indicate in this regard [1 - 6].

In the work [7], a model o f the origin and development of currents in painting, based on 
equations o f the same type, is considered.

In this paper, we consider a certain class o f mathematical models with partial differential 
equations (models with distributed parameters), which are obtained from models with ordinary 
differential equations (models with concentrated parameters) by adding the so-called diffusion 
terms. The tendency o f such sophistications of mathematical models can be traced in some 
works related to modelling the growth and distribution o f populations, the growth and spread 
o f infections, and the growth o f tumors. In this regard, see first of all the monograph [8]. In the 
work [9], a diffusion model o f a malignant tumor is presented.

The mathematical model o f glioma growth is based on the classical definition o f cancer as 
uncontrolled proliferation o f cells with the potential for invasion and metastasis, simplified for 
gliomas, which practically do not metastasize. This model is governed by the equation (see [10])

where u(x, t) defines the concentration of malignant cells at location x  and time t, M  is the 
random motility coefficient defining the net rate o f migration o f the tumor cells, т represents
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net proliferation rate o f the tumor cells, s is the limiting concentration o f cells that a volume of 
tissue can hold,

. _  2 _  &_
dx\ +  d x 2 +  d x “l

is the Laplace operator. The term M A n  is usually called the diffusion term.
We are interested in the stability o f stationary solutions o f diffusion models. This issue is 

discussed in the book [8]. This book states that adding diffusion terms can change the stability 
o f a stationary solution both for the worse and for the better. For models of a certain type, we 
try to concretize sufficient conditions for the stability o f stationary solutions.

2. M ateria ls and m eth ods
We consider the initial-boundary value problem for the system of partial differential equations: 

dn
d -  _  § sAns  +  Fs(n), x  _ ( x i , . . . , X n )  e  Q С Rn , (2 )

dns
Ц-ns +

d 1
_  B -(x ) ,  i? 2 +  n- >  0, >  0, n- >  0, (3)

xEdQ

ns(x, 0) _  u0(x ), s _ l , . . . , m ,  (4)

where Q is a bounded domain with a piecewise smooth boundary Г _  dQ, 1  is a unit external 
normal vector to the boundary dQ o f the domain Q, n _  (n1 ( x , t ) , . . .  ,n m(x , t ) ) ,  § s >  0, 
B s(x) e  C (dQ), u0(x) e  C (Q), s _  l , . . .  ,m,  Q _  Q U dQ, A  is the Laplace operator defined by 
the formula

n 2d2v
A v  _  E  Щ  ■

j = 1 j
Let us consider a special kind of functions Fs(n) _  Fs( u i , . . .  ,n m) :

Fs(n) —  ̂ '  b-k nk + E E  a-i j  щ  nj + f - ( x ) ,  f -  e  C (Q), a - i j  _ a- j i ,  £, j ,  s _ 1 , . . . , m .  (5)
k= 1  i =1 j =1

Let w _  (w 1 ( x ) , . . .  ,w m(x))  be a stationary solution of system (2), that is, the solution o f the 
system

$sAw.s +  Fg(w) _  0 , s _  1 , . . .  ,m,  x  e  Q, (6)

satisfying the boundary conditions

dw-
w- +  n-^=^  

d 1
_  B - (x), s _  1 , . . .  ,m.  (7)

x€dQ

In this paper, we study the stability o f a stationary solution of system (2). Let z _  z ( x , t )  _  
n (x , t )  — w(x)  be a vector of deviations from a stationary solution. We substitute n _  w +  z in 
system (2). Then

dn- dz- n . , .   . . ^
—  _  —  _  t f -A(w-  +  z-) +  F-(w  +  z), s _ 1 , . . . , m ,  x  e  Q.

After identical transformations, we obtain the equality

dn 4 dz
■ - _  tf-A z- +

k= 1  i = 1 j =1

  dz-
dt dt

tf- A z - +  У ] b-k zk +  EE a-i j  (2wizj  +  zi z j ) +
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+ ^ sA w s +  Fs(w), s =  1 , . . .  ,m,  x  E Q. 

Taking into account (6), the last equality is converted to the form

dus dzs
dt dt

« s A z s +  bsk zk +  E E  asgj (2wgZj +  zg Zj) ,  s =  1 , . . .  ,m,  x  E Q.
k=i g= 1 j= i

We multiply this equality by zs and integrate over the domain Q. We obtain:

1 d_
2 dt

* * m „
t d x = d x + z  ь, к zkz. d x+

П П k= 1 П

/ / m n m n \
I 2 EE asgj wg zj zs +  EE asgj zg zj zs I dx. 

n V g= 1 j = 1 g= 1 j = 1 )

Assuming that the deviations zs are small enough, we discard the monomials o f degree higher 
than 2 o f these deviations, then we get:

/ » „ I m m n \
z 2 dx =  «s I zs Azs dx +  I ^  bsk zk zs +  2 E E  asgj wgzjzs I dx. (8)1  d  I z 2

2 dt 1 zs
П k=1 g= 1 j =1

We apply the first Green formula for the Laplace operator to the first term on the right side of 
this equation. For two functions f  E C  1 (Q) and g E C 2 (Q) П C 1 (Q), the Green formula takes 
the form (see [1 1 ])

J  f  A gdx  =  - J  V f  V gdx  +  J  f ^  dr,
г

where 1  is a unit external normal vector to Г. Here d r  is an arc element o f the boundary 
Г =  dQ. Substituting f  =  zs, g =  zs into (8), we obtain:

1  F t j  z2 dx =  - « s  J | Vzs |2 dx -  «s  J  g (zs )d r+
дП

+  ( ^  '  bsk zk zs +  2 E E  asgj wgzj zs I dx, s =  1 , . . .  ,m,  (9)
П v = 1 g= 1 j = 1 )

where the second term on the right side o f the equation is a surface (for n >  3) or contour (for 
n =  2) integral o f the first kind over the boundary o f the domain Q or the sum of non-negative
values at the ends of the interval Q in the case o f n  =  1 ; g(z s) =  0 for g s =  0 or for gs =  0; if
ns =  0, then g(zs) =  g sz 2/ns. In all cases g(zs) >  0. Summing m  equalities (9), we obtain

1 о  p л л

-  dt I z |2 dx =  -  ^ 2  «s  I Vzs  |2 dx - ^ 2  «s  g ( z s )d r +  
n s= 1 П s= 1 дП

m m m
+  [ E E  bsk zk zs +  2 asgj wgzj zs j dx,

П \s= 1 k=1 s= 1 g= 1 j =1
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or equivalently,
1 л lib л lib л л lib lib

2 ~dt J I Z |2 =  — E Vs I | V z s |2 dx — ^ 2  Vs I g(zs )dr  +  /Е Е  fish ZkZs dx, (10)
П s= 1  П s= 1  дП П s= 1  h= 1

where m
fish =  bsh +  2 ^  as£k w£. ( 1 1 )

£ =1
We put

©sh =  (Ask +  fas )/2 . ( 1 2 )

Then equality (10) can be rewritten as

1 d m „ m „ „ m m

2 dt J  I z I2 dx  =  — E VW | Vzs |2 dx — ^2 Vs I g (zs )d r +  /ЕЕ  ©sk zk zs dx. (13)
п s= 1 П s= 1 дП п s= 1 k= 1

Transformation (12) is introduced for the transition from an unsymmetric quadratic form to a 
symmetric one. Obviously, the negative definiteness o f a quadratic form

m mEE ©sk zk zs dx  (14)
s= 1  k= 1

will ensure the negativity o f the left side o f equality (13), and, therefore, the stability o f the 
stationary solution.

In the absence o f diffusion terms, that is, when

Vs =  0, s =  1 , . . .  ,m,  (15)

the variables x 1 , . . .  , x n are included in equations (2 ) as parameters whose derivatives are not 
contained in these equations. This is the case o f a model with concentrated parameters. Let

m
Vs2s

s= 1
E v 2 >  o, (16)

that is, we proceed to the consideration o f the diffusion model with distributed parameters. In 
this case, it is possible to weaken the sufficient condition for the stability o f a stationary solution. 
For this purpose, we use the Steklov-Poincare-Friedrichs inequality (see [12] p. 150, [13] p. 62)

J  | v  zs^dx >  dp J  z 2sdx, 
п п  

where d =  diam Q is a diameter o f the domain Q. Therefore,

-1 0 ^  m q *  m » » m m
2  dt I z |2 dx ^  — ^ 2  ^5 zl  dx — ^ 2  Vs g (zs )d r  +  ^ 2 ^ 2  ©sk zk zs dx. (17)

П s= 1 П s= 1 дП П s= 1 k= 1

Now we can assert that a sufficient condition for the stability o f a stationary solution is the 
negative definiteness of the quadratic form

m m

EE A sk zkzs , (18)
s= 1  k= 1
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where
A -k _  ®-k $ k - .

In order to demonstrate how the properties of the model change when introducing distributed 
parameters by adding diffusion terms, we consider the case

b-k _  0, f  (x) _  0 , x  e  Q, s , k _  1 , . . .  ,m.

In this case, the vector w =  0 is a stationary solution o f the system both for the case of 
concentrated parameters (15) and for the case o f distributed parameters (16). However, the 
situations are fundamentally different. In the diffusionless case, the zero vector is not a stable 
solution. If all the equations of the system contain diffusion terms, that is,

>  0 , s _  1 , . . .  ,m,

quadratic form (18) will take the form

1 m

— ̂ 2 ^  z2 (19)
-=1

and, obviously, will be negatively defined, consequently, the zero solution will be stable. 
Another interesting example is provided by the Hotelling equation

dn . . .  . „  .
_  A(£ — n)n  +  B A n ,

where n is an unknown function, n _  n ( x 1 , x 2,t) e  C 2 (Q) П C  1 (Q) for any t >  0,

. _  0̂  0̂

d x 1 +  d x 2

is the Laplace operator, A, B,  £ are given positive constants. This equation describes population 
growth and distribution. In this case, the values included in the equation have the following 
meaning: x 1 , x 2 are the geographical coordinates, A  is the population growth rate, B  is the
migration rate, £ is the coefficient o f the saturated population density, n is the population
density, t is the time parameter. This model takes into account migration processes. Population 
growth is modelled as a logistic process. Migration processes are described using Fourier’s Law 
of Heat Conduction.

Let w (x 1 , x 2) be a stationary solution o f the Hotelling equation, that is, the solution o f the 
equation

A(£ — w)w +  B A w  _  0.

The above method leads to the conclusion that the condition

£ bw >  -  -
2 2 Ad2

is sufficient for the stability o f the stationary solution w (x 1 , x 2) [14] (see also [15], where this 
result was generalized). It is interesting to note that in the diffusion case (when B  =  0) the 
zero stationary solution can be both stable and instable, what is determined by the size o f the 
domain Q.
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3. R esu lts and discussion
Let us consider the basic SIR model for the control o f endemic infections (see [1]). This model 
assumes vaccination at birth at constant coverage p, which is reminiscent o f a situation where a 
mandatory immunization program exists. The resulting model is as follows:

dS
—  =  e(1 — p) — eS — pSI ,  (20)

f  =  e S I  — Y1  <21>
dR
—  =  mp  +  ( I  — mR,  (22)

where S, I, R  denote the fractions o f individuals who are, respectively, susceptible to acquiring 
infection, infective, i.e. able to retransmit infection to others, and removed because of e.g. 
immunity acquired after recovery. The infective fraction I is also called the infection prevalence. 
The function f3(t) denotes the transmission rate which is typically time-dependent. The other 
demo-epidemiological parameters are: 7  =  e +  ( ,  e >  0 which denotes both the birth and death
rates, assumed identical to ensure that the population is stationary over time, and (  >  0 which
is the rate o f recovery from infection. The equality

S +  I  +  R  =  1 (23)

allows to omit the third equation. In the most well-known case o f constant transmission rate
^(t)  =  в , the SIR model admits a disease-free equilibrium point DFE =  (1 — p, 0,p),  which is
stable if в (1  — p) < 7  and unstable otherwise.

Taking into account (23), we add the diffusion terms and consider the system

dS
—  =  e(1 — p) — eS — e S I  +  V1A S, (24)

Ц  =  e S I  — 7 I  +  V2 A I ,  (25)

where S =  S (x 1 ,x 2 ,t)  =  S(x , t ) ,  I  =  I (x 1 ,x 2 ,t) =  I ( x , t ) ,

3x\ +  d x 2

is the Laplace operator.
We consider system (24)-(25) in the domain Q с  R 2 bounded by a piecewise smooth contour 

Г =  dQ. Let us introduce the notation u 1 =  u 1 (x , t )  =  S , u2 =  u2 (x , t )  =  I . We will impose 
additional conditions on the solution:

—  boundary conditions

duj
uj  +  П =  Bj (x), p.2 +  rjj >  0 , p,j >  0 , nj >  0 , (26)

хЕдП

—  initial conditions
uj(x ,  0) =  Wj(x),  j  =  1,2. (27)

Here B j (x) £ C (dQ), Wj (x) £ C 2 (Q) П C (Q), j  =  1,2, Q =  Q U d Q .
Let w =  (w1 ( x ) ,w 2(x))  be a stationary solution of system (24)-(25), i.e. the solution o f the 

system

e(1  — p) — ew1 — e w 1w2 +  V1 A w 1 =  0 , (28)
e w 1w 2 — y w 2 +  V2A w 2 =  0 , (29)

6
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satisfying boundary conditions

dwj
i j  wj  +  nj d—1

x€dQ
Bj (x ) ,  fij +  nj2 >  0, i j  >  0, nj >  0, j  _  1, 2 . (30)

Let z _  z(x, t) _  n(x,  t) — w(x)  _  (z1, z2) be a vector o f small deviations from the stationary 
solution. We substitute n _  w +  z in system (24)-(25). Then equation (24) can be rewritten as

dn 1 dS dz 1 . . . . n , s
- d f  _  d t  _  - d f  _  e(1 — p) — e(w1 +  z1) — e (w 1 +  z 1 )(w 2 +  z2) +  tf1 A (w 1 +  z 1 ).

After the obvious identity transformations, we obtain: 

d z 1
—  _  e(1  — p) — e(w 1 +  z 1 ) — /3w 1w2 — f i z w  — (iwz  — (3z 1z2 +  $ 1A w 1 +  $ 1 A z 1 .

Taking into account that the function w 1 satisfies equation (28), we get:

d z 1
~dt  _  —e z 1 (w2 +  e) — e w z  — Pz 1z2 +  # 1 A z 1 . (31)

Multiplying (31) by z1, we obtain:

1 dz 2
2 d t !  _  —e z ‘2(w2 +  e) — e w 1 z 1 z2 — Pz 1 z2 +  t f z A z ! .

Integrating this equality over the domain Q, we get:

1 d
2 dt J  z 2 dx _  J  (y—ez^(w 2 +  e) — f3w1z 1z2 — e z 2z2) dx +  tf1 J  z 1A z 1 dx, (32)

where dx _  dx 1dx2.

1 d
2  d t j z 2 dx _  J  { —fiz2 (w2 +  e) — f3w 1z 1 z2 — e z ‘2z2) d x— 

n n

—tf 1 f  \Vz112 dx — tf 1 (  g 1 d r. (33)
n dn

In equality (33), the function g 1 (x) vanishes on Г when m  _  0 or g 1 _  i 1z ‘2/n1 when m  >  0. 
Using Poincare-Steklov-Friedrichs inequality for (33), we get:

1 d f  2
2  dt J  z 2 dx { —/3z2 (w2 +  e) — e w 1 z 1 z2 — e z 2z2) d x—

n

— Z 1  f  z 2 dx — tf 1 / g 1 dr.  (34)

n n

tf1

n dn
Let us proceed in the same way with equation (25). We obtain inequality

J  z\ dx ^  J  {/3w2z 1z2 +  в (w1 — 7 )z| +  f3z1z2) dx —
2  d t 1 z 2 dx

n n

7
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- «  J  z| dx -  «2  J  g2 dr,  (35)z22
П дП

where, like before, the function g2(x)  vanishes on Г when p 2p2 =  0 or g2 =  p 2z^/n2 when 
р 2р2 >  0. Summing inequalities (34) and (35), we obtain

J  z 2 dx ^  A kj zk zj dx - J  ^ « j gj d r  +  J  (f3z1z| -  e z 2z2) dx, (36)1 д  I 2 ,
z 2 dx ^

2 dt J ,  , . ,  . ,
П П k j = 1 дП j = 1

where
« 1 « 2

A 11 =  - P (w 2 +  e) -  dp , A 22 =  Pw1 -  7  -  dp , (37)

A 12 =  (@w2 -  f3w{)/2. (38)

The last term on the right side o f (36) for small z does not affect the sign o f the entire sum 
and can be omitted. Using the Sylvester criterion, we obtain the following conditions for the 
stability o f the stationary solution:

A 11 =  -  ( @ w 2 +  e +  j  <  0, (39)

A 1 1A 22 -  A 22 =  ( - Pw 2 -  e -  dp ^ ( p w 1 -  7  -  -  4 ft2 (w 2 -  w 1 ) 2 >  0 . (40)

These conditions are verifiable in practice with computer simulations. It should be noted that 
if, within the framework of this model, we consider the trivial stationary solution w 1 =  1 -  p, 
w2 =  0, conditions (39)-(40) can be rewritten as follows:

« 1
d ~2 +  e >  0, (41)

^ « 1  +  e )  ( y  +  « 2  -  в(1 -  p ) )  -  в 2(1 -  P) 2 >  0. (42)

In a model with concentrated parameters, that is, when « 1 =  « 2 =  «3 =  0, condition (42)
is a consequence o f the condition в (1  -  p) < 7 , so it cannot be considered as an improvement
of the result. In a model with distributed parameters, when « 1« 2« 3 >  0, condition (42), taking 
into account the nonnegativity o f the parameters and the equality 7  =  e +  ( , can be rewritten 
in the form

0 <  в (1  -  p) <  2 \/Do -  2 ^e +  , (43)

where

D o = 4 ( e + « Ю  + 4 ( e + « )  ( e + z + « 2 0 . (44)

We must now find out whether condition (43) is improvement (weakening) of the condition 
в(1  -  p) < 7 . This will be the case if the inequality

7 2 -  Ф^ )  <  0 (45)

is satisfied, where

^  =  4  + 3Z« 2  +  4  + 4 ™ -  2C §  . ( « )

8



AMCSM 2020
Journal of Physics: Conference Series

__________________________________________IOP Publishing
1902 (2021) 012041 doi:10.1088/1742-6596/1902/1/012041

Since
lim ФЫ)  =  + ro , 

d^ 0+

condition (45) can be met for domains with a small diameter. For domains with a large diameter, 
this condition is not met. We do not presume to make final conclusions and to interprete their 
content. Let us only assume that for large areas, diffusion (spread o f infection due to migration) 
has a small impact on the stability o f the zero level o f infection, while growth parameters have 
a decisive influence. However, it is possible that these parameters also depend on the diffusion 
conditions. In any case, we have to admit that the models o f the growth and spread of diseases 
are in the active phase o f development.
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