

УДК 581.4:58.522.4

CEMEHHAЯ ПРОДУКТИВНОСТЬ *PRIMULA MACROCALYX* BUNGE В ЦСБС СО РАН

Н.Ю. Курочкина

Центральный сибирский ботанический сад СО РАН, 630090, г. Новосибирск, ул. Золотодолинская, 101

e-mail: polemonium@yandex.ru Изучена семенная продуктивность *Primula macrocalyx* Bunge в условиях культуры в Центральном сибирском ботаническом саду СО РАН. Установлено, что семенная продуктивность в агропопуляциях значительно меняется по годам.

Ключевые слова: *Primula macrocalyx*, семенная продуктивность, агропопуляция.

Введение

Первоцвет крупночашечный (*Primula macrocalyx* Bunge) — лекарственное растение, широко применяющееся в народной медицине. Галеновые препараты из надземной и подземной части растений оказывают отхаркивающее, седативное, спазмолитическое и диуретическое действие, принимаются и при авитаминозах [1].

При исследованиях вида, проведенных в природных популяциях, в надземной и подземной части растений выявлены соединения, которые позволяют расширить его использование [2, 3].

Поскольку в естественных условиях вид не образует крупных зарослей, актуальным является выращивание $P.\ macrocalyx$ в условиях культуры.

Одним из наиболее важных показателей, характеризующих состояние растений при интродукции, является семенная продуктивность. Семенная продуктивность подразделяется на 2 категории: потенциальная и реальная семенная продуктивность.

Потенциальная семенная продуктивность (ПСП) — максимально возможное количество семян, которое способно производить растение, популяция и фитоценоз за определенный промежуток времени при условии, что все заложенные в цветках семязачатки смогут сформировать зрелые семена [4]. Реальная семенная продуктивность (РСП) — количество полноценных семян, производимое растением в расчете на одну особь [5,6].

Для более полной характеристики репродуктивного процесса растений используется коэффициент продуктивности (K_{np}). Коэффициент продуктивности отражает характер взаимодействия организма и условий обитания [7].

Семенная продуктивность *P. macrocalyx* в природе изучена Э.М. Гонтарь и Ю.А. Пшеничкиной [8].

Задача данного исследования – изучить семенную продуктивность *P. macro- calyx* в условиях культуры.

Материал и методы

P. macrocalyx – многолетнее розеточное короткокорневищное растение. Вид распространен в южных областях Западной и Средней Сибири [9]; произрастает в разных типах леса (кроме черневого), на лугах, в луговой степи [10].

Сбор семенного материала производился в природных ценопопуляциях (ЦП) Горного Алтая: ЦП 1 — окр. г. Горно-Алтайск, злаково-разнотравный лесной суходольный луг, ЦП 2 — окр. п. Анос, редкостойный березовый лес со злаково-осоковоразнотравным покровом.

Семена высеяны в 2004 г. на экспериментальном участке ЦСБС СО РАН. Посев проводился в первой декаде октября, рядовым способом, с междурядьями 70 см, с одинаковой нормой высева (около 500 семян на погонный метр).

Семенная продуктивность исследовалась в агропопуляциях в 2006-2010 гг., в соответствии с методикой И. В. Вайнагий [7] и Р. Е. Левиной [5].

В каждой агропопуляции (АП) отбирались 25 генеративных побегов в фазе молочно-восковой спелости семян. На каждом побеге подсчитывалось число цветков и плодов, а также число семязачатков и сформировавшихся семян. ПСП определялась как число семязачатков на побег, РСП — как число семян на побег. Коэффициент семенной продуктивности ($K_{\rm пр}$) определялся как отношение показателей РСП к ПСП, выраженное в процентах.

Результаты и их обсуждение

P. macrocalyx в условиях культуры — многолетнее розеточное короткокорневищное растение с безлистными цветоносными побегами-стрелками. Соцветие — щитковидный зонтик с 6-13 цветками, плод — коробочка с 10-35 семенами.

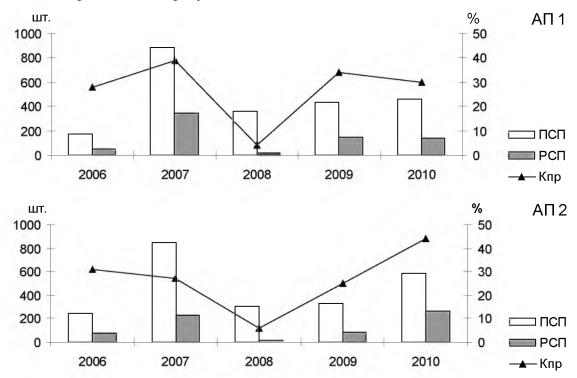
При подзимнем посеве всходы появляются в начале мая года следующего года. В первый год жизни в течение вегетационного сезона значительная часть растений проходит все прегенеративные возрастные состояния. В генеративный период значительная часть особей вступает на второй год существования агропопуляций, на третий год растения переходят в средневозрастное генеративное состояние [11].

Цветение P. macrocalyx в условиях экспериментального участка ЦСБС СО РАН приходится на первую-вторую декаду мая. В первый год цветения (2006) для обеих исследованных агропопуляций отмечено минимальное число цветков на побег, 6.3±0.7 для АП 1 и 7.8±1.0 для АП 2 (таблица). Вероятно, это связано с тем, что растения в молодом генеративном состоянии формируют меньшее число цветков по сравнению с растениями, которые находятся в средневозрастном генеративном состоянии. В 2007-2010 число цветков на побег колеблется от 9.0±0.8 до 15.4±1.8 для АП 1, и от 8.6±0.6 до 16.4±1.9 для АП 2. Максимальное число цветков для обеих АП отмечено в 2007 году.

Таблица
Элементы семенной продуктивности Primula macrocalyx
в агропопуляциях

	1				
АΠ	Год	Число цветков	Число плодов	Число семя-зачатков	Число семян
		(на побег)	(на побег)	(на цветок)	(на плод)
1	2006	6.3±0.7	3.9±0.6	27.8±1.8	12.6±2.3
	2007	15.4±1.8	10.4±1.3	57.6±2.8	33.1±2.1
	2008	9.6±1.4	1.3±0.6	37.4±2.5	9.8±2.5
	2009	9.0±0.8	6.5±0.8	48.2±1.5	22.4±2.6
	2010	13.4 ± 2.3	9.0±2.5	33.5±1.4	15.3±1.8
2	2006	7.8±1.0	5.0±0.8	31.4±5.4	15.2±5.6
	2007	16.4±1.9	7.3±0.6	51.9±1.9	32.0±1.8
	2008	8.8±1.1	1.8±0.4	35.1±2.2	10.3±1.4
	2009	8.6±0.6	4.7±0.5	38.2±1.1	17.4±2.9
	2010	11.4±1.5	7.2±0.8	51.5±3.2	35.9±2.9

Число семязачатков также минимально в 2006 году, 27.8 \pm 1.8 для АП 1 и 31.4 \pm 5.4 для АП 2. В последующие годы число семязачатков колеблется от 33.5 \pm 1.4 до 57.6 \pm 2.8 для АП 1 и от 35.1 \pm 2.2 до 51.9 \pm 1.9 для АП 2, наибольшие показатели отмечаются для АП 1 в 2007 году, для АП 2 в 2007 и 2010 годах.


Семена *P. macrocalyx* созревают к середине июля.

Минимальное число плодов на побег для обеих агропопуляций отмечено в 2008 году, что связано с неблагоприятными погодными условиями в период массового цветения растений. Для АП 1 число плодов составило 1.3 \pm 0.6 шт. на побег, для АП 2 - 1.8 \pm 0.4. Максимальное число плодов отмечается для обеих агропопуляций в 2007 и в 2010 годах - до 10.4 \pm 1.3 в АП 1 и 7.3 \pm 0.6 в АП 2.

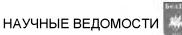
Число семян в плоде, как и число плодов, самое низкое в 2008 году -9.8 ± 2.5 в АП 1 и 10.3 ±1.4 в АП 2. Максимальные значения данного показателя отмечены для АП 1 в 2007 г. -33.1 ± 2.1 шт., для АП 2 в 2007 и 2010 гг. -32.0 ± 1.8 и 35.9 ±2.9 шт. соответственно.

Значения потенциальной и реальной семенной продуктивности существенно меняются в разные годы (рисунок).

Puc. Семенная продуктивность Primula macrocalyx в агропопуляциях

Потенциальная семенная продуктивность зависит как от числа цветков на генеративном побеге, так и от числа семязачатков. ПСП для обеих АП минимальна в 2006 г. (175 и 244), максимальна в 2007 г. (887 и 851 соответственно).

Значения реальной семенной продуктивности колеблются в зависимости от числа плодов на побег, а также от числа семян в плоде. РСП для обеих АП минимальна в 2008 г. (13 и 19), максимальна для АП 1 в 2007 г. (344), для АП 2 — в 2010 г. (259).


Значения коэффициента продуктивности в разные годы — 28-34 % для АП 1 и 27-44 %для АП 2. В обеих агропопуляциях наиболее низкий $K_{\rm np}$ отмечен в 2008 г. (4 и 6 %), что связано с неблагоприятными метеорологическими условиями в период цветения растений, и соответственно с низкой активностью насекомых-опылителей.

Заключение

Исследована семенная продуктивность *Primula macrocalyx* Bunge в двух агропопуляциях. Установлено, что потенциальная и реальная семенная продуктивность существенно меняются в разные годы. Колебание значений потенциальной семенной продуктивности связано с варьированием таких показателей, как число цветков на побег и число семязачатков; реальной семенной продуктивности — с изменением значений числа плодов и числа семян.

Список литературы

1. Растительные ресурсы СССР. Цветковые растения, их химический состав, использование. Семейства *Thyelaeaceae – Paeoniaceae*. Л., 1986. – 336 с.

Primula macrocalyx Bge // Химия прир. соед. 2007. – Вып. 6. – С. 712-713.

- 2. Косенкова Ю.С. Половинка М.П., Корчагина Д.В., Комарова Н.И., Курочкина Н.Ю., Черемушкина В.А., Салахутдинов Н.В. Риккардин С соединение бисбибензильного типа из
- 3. Косенкова Ю.С., Половинка М.П., Комарова Н.И., Корчагина Д.В., Курочкина Н.Ю., Черемушкина В.А., Салахутдинов Н.Ф Вторичные метаболиты из экстрактов *Primula macro-calyx* Вде. // Химия прир. соед., 2008.- Вып 5. С. 457-460.
- 4. Злобин Ю. А. Потенциальная семенная продуктивность // Эмбриология цветковых растений. Терминология и концепция. СПб.: Мир и семья, 2000. –Т. 3. С. 258-260.
- 5. Левина Р. Е. Репродуктивная биология семенных растений. Обзор проблемы / Р.Е. Левина. М.: Наука, 1983. 96 с.
- 6. Злобин Ю. А. Реальная семенная продуктивность // Эмбриология цветковых растений. Терминология и концепция. СПб., 2000 Т. 3. С. 260 262.
- 7. Вайнагий И. В. Методика статистической обработки материала по семенной продуктивности на примере *Potentilla aurea* L. Раст. ресурсы. 1973. Т. 9. Вып. 2. С. 287-296.
- 8. Гонтарь Э.М, Пшеничкина Ю.А Семенная продуктивность первоцвета крупночашечного // Бюлл. ГБС, 1987 Вып.144 С. 87-91.
- 9. Флора Сибири. Т.11. Pyrolaceae Lamiaceae (Labiatae). Новосибирск: Наука, 1997. 294 с.
- 10. Куминова А. В. Растительный покров Алтая. Новосибирск: Изд.-во СО АН СССР, 1960. 450 с.
- 11. Курочкина Н.Ю. Интродукционные популяции *Primula macrocalyx* Bunge в ЦСБС СО РАН // Проблемы изучения растительного покрова Сибири. IV международная конференция. Томск, 2010. С. 257-259.

SEED PRODUCTIVITY OF *PRIMULA MACROCALYX* BUNGE IN CENTRAL SIBERIAN BOTANICAL GARDEN

N.Yu. Kurochkina

Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Zolotodolinskaya st., 101

e-mail: polemonium@yandex.ru

Data on seed productivity of *Primula macrocalyx* Bunge under cultivation in Central Siberian botanical garden are given. Indices of potential and real seed productivity of agropopulations vary from year to year.

Key words: $Primula\ macrocalyx$ Bunge, seed productivity, agropopulation.