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Abstract: The present study aimed to investigate the possibility of using hyperspectral imaging
data to identify the invasive and weed species in agrocenoses ecosystem. The most common weeds
in grain agrocenoses, i.e., Ambrosia artemisiifolia L., Euphorbia seguieriana Neck., Atriplex tatarica L.,
Glycyrrhiza glabra L., Setaria pumila (Poir.) Roem. and Schult, served as objects. The population of
weeds, especially Ambrosia artemisiifolia is invasive for the selected region of study. Therefore, the
shooting of objects was carried out with a hyperspectral camera, Cubert UHD185, and the values
of 100 spectral channels were obtained from hyperspectral images. The values of 80 vegetation
indices (VIs) were calculated. The material was processed using mathematical statistics (analysis of
variance, t-test) and search methods of data analysis (principal component analysis, decision tree, and
random forest). Using statistical methods, the simultaneous use of several VIs differentiated between
species more deliberately and precisely. The combination of VIs Derivative index (D1), Chlorophyll
content index (Datt3), and Pigment specific normalized difference (PSND) can be used for weeds
identification. Using the decision tree method, VIs established a good division of weeds into groups;
(1) perennial rhizomatous weeds (Euphorbia seguieriana, and Glycyrrhiza glabra), and (2) annual weeds
(A. artemisiifolia, A. tatarica, and S. pumila); These Vis are Chlorophyll index (CI), D1, and Datt3. Using
the random forest method, the VIs that have the greatest impact on Mean Decrease Accuracy and
Mean Decrease Gini are D1, Datt3, PSND, and Double Peak Index (DPI). The use of spectral channel
values for the identification of plant species using the principal component analysis, decision tree,
and random forest methods showed worse results than when using VIs. A great similarity of the
results was obtained with the help of statistical and search methods of data analysis.

Keywords: invasive species; weeds; hyperspectral imaging; vegetation indices; species identification;
agrocenosis

1. Introduction

The effect of alien organisms on the flora, fauna, and society is gaining global sig-
nificance, since the problems associated with their distribution in the world currently
can be addressed only at the international level [1–5]. The global agricultural sector is
facing increasing challenges posed by a range of stressors, including a rapidly growing
population, the depletion of natural resources, environmental pollution, crop diseases,
and climate change [6]. Under the conditions of agrarially developed regions, invasive
species become an integral component of the weed flora of agrophytocenoses. An impor-
tant task of preventing invasions within vast plowed areas is the identification of invasive
and weedy plants.
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Weed vegetation is an inherent natural component of agrocenoses which grows and
spreads rapidly within fields. It becomes a rival to grain crops when it requires physical
space, nutrients, sunlight, and water [7]. This rivalry has a great impact on harvest. Weed
spread is usually controlled mechanically or chemically with herbicides. A large proportion
of herbicides end up on crops or soil, and only a small percentage of herbicides reach
the weeds themselves [8]. Apart from being potentially harmful to the environment and
human health, herbicides and their usage cost a lot of money in terms of the production
of agricultural products. That is why the latest technologies aimed to control and fight
with weeds are very important in ecological and economical spheres. Due to that fact, the
understanding of weed spreading and their timely identification within a field for using
plant protection products is crucial. Earth remote sensing provides great prospects for
weed vegetation foci detection [9,10].

Earth remote sensing is one of the most important tools in the study of agricultural
lands. Its advantage is the possibility to obtain profound information about the qualitative
and quantitative state of the agricultural land quickly and accurately [11,12]. Earth remote
sensing is a valuable tool in predicting the occurrence of possible stress conditions and
monitoring the state of the agricultural crops, soil, identifying plant diseases, identifying
water shortages, weeds, damage to plants caused by insects, hail, and wind [13,14].

The works which connect the hyperspectral method study of plants and agrocenosis
ecosystems usually analyze the main following topics: (a) crop management and produc-
tivity, (b) disease detection, (c) weed and alien species detection, (d) crop (seed) quality,
(e) and environment management [15].

Crop management and productivity is readily reduced by competition from weeds. It
is particularly important to control weeds early to prevent yield losses. Limited herbicide
choices and increasing costs of weed management are threatening the profitability of crops.
The most important thing for an automatic system to remove weeds within crop rows is to
utilize reliable sensing technology to achieve accurate differentiation of weeds and crops at
specific locations in a field. Currently, weeds within crop rows still rely on manual removal
in many cases, but manual weeding is a less efficient method. Its cost can be more than five
times the cost of the former [16].

The literature related to the research direction present data on the use of sensing meth-
ods including spectroscopy, color imaging, and hyperspectral imaging in the discrimination
of crops and weeds [17]. Image segmentation between crop and weed is useful for selective
weeding using a pixel discriminant model generated from hyperspectral images [17,18].

Hyperspectral imaging combines the main features of imaging and spectroscopy to
collect spectral information over the full wavelength range for each pixel of the acquired
image [19]. Smart agriculture can use intelligent technology to accurately measure the
distribution of weeds in the field and perform weed control tasks in selected areas, which
can not only improve the effectiveness of pesticides, but also increase the economic benefits
of agricultural products [17,20]. Related food safety risks have aroused growing interest in
organic foods. The total production of organic foods has increased significantly in recent
years, especially in Europe [21].

Hyperspectral imaging is expected to become a powerful technology for the detection
and control of weeds and alien species. To perform this, it is necessary to differentiate
weeds from agricultural plants. For this, different approaches are used [22]. Noble and
Crowe (2001) classified six plant species using the UVVis-NIR (250–2500 nm) spectropho-
tometer [23]. Terawaki et al. (2002) discriminated between sugar beet and weeds using RGB
color and leaf shapes [24]. Some studies proposed a portable hyperspectral imaging system
using; this technique is expected to be applied to future automatic mechanical weeding
systems [25]. Results of the research were carried out depend on image processing for
different species weed detection [26]. There are a lot of very perspective and reliable results
which testify the new possibilities in identification of many alien plant species [3,27–29].

The first step required to distinguish spectrally between invasive species, weeds, and
crops is to obtain a spectrum of individual plants for each species or group of species. This
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can be performed with high spatial and spectral resolutions [12,30]. To combat invasive and
weedy species, it is important to have a method for identifying plants for their simultaneous
recognition and destruction using unmanned aerial vehicles (UAVs). In this regard, the
purpose of the study was to identify alien species and weeds according to the data of a
hyperspectral survey of agricultural fields after the harvest of winter wheat. Thus, the
research objectives were: (1) conduct hyperspectral imaging of such species as Ambrosia
artemisiifolia L., Atriplex tatarica L., (invasive species), Euphorbia seguieriana Neck., Glycyrrhiza
glabra L., and Setaria pumila (Poir.) Roem. and Schult (weeds), (2) calculate the values of
vegetation indices, (3) evaluate the efficiency of using spectral indices and spectral channels
to identify different types of weeds, (4) and use analysis of variance (ANOVA), t-test,
random forest (RF), decision tree (DT), and principal component analysis (PCA) methods
to select the most informative VIs for identifying weed species.

2. Materials and Methods
2.1. Research Region

The study of samples of weed species was carried out in the Rostov region 7◦16′25.63′ ′N;
39◦19′13.59′ ′E on the territory of the educational and experimental farm “Nedvigovka” of
the Southern Federal University (SFedU), Rostov-on-Don, Russia (Figure 1). The climate of
this region is moderately continental and dry. The average annual precipitation is 548 mm,
most of it falls during the frost-free period. Summer is hot, the average temperature in July
is + 22 to + 23 ◦C, the maximum temperature is +40 ◦C. Winter is moderately mild, the
average temperature in January is −5 ◦C, the average absolute minimum air temperature
is −20 to −25 ◦C, the absolute minimum temperature is −32 ◦C. The growing season lasts
216 days (from 1 April to 4 November), the frost-free period lasts 258 days [31].
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Figure 1. Location of the study site.

2.2. Research Methods

Five of the most common weed species found in agrocenoses of grain crops were
selected as objects of research: A. artemisiifolia L., E. seguieriana Neck., A. tatarica L., G. glabra
L., and S. pumila (Poir.) Roem. and Schult. (Figure 2).

The spectral characteristics of the selected objects were studied using a Cubert UHD185
frame hyperspectral camera [32,33] (Figure 3 and Table 1).

Weeds were removed in 2020 a month after harvesting winter wheat. The hyperspec-
tral survey was carried out in the daytime in sunny and cloudless weather. The objects
were mostly illuminated by the sun and were selected for shooting, for which the camera
was located from the southeast side of the object at a distance of 90 cm. The reflected
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electromagnetic radiation from the range in the range of 450–950 nm was recorded. A
white reference panel was used to calibrate the reflectance. Each species is represented by
20 samples randomly selected from the group and each sample is represented by 5 images.
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Figure 3. Collecting spectral characteristics of weed plant species (right) using a Cubert UHD
185 hyperspectral camera (left).

Table 1. Characteristics of the Cubert UHD 185 hyperspectral camera.

Technology MPS

The number of spectral channels 125
Spectral productivity 2500 spectra

Spectral range 450–950 nm
Spectral resolution 4 nm
Type of the camera Frame

Sensor type Si CCD
Signal width 12 bit

Signal to noise ratio 58 dB
Dynamic range 68 dB

Focal length 10 mm

Data are recorded in the form of 1000 px × 1000 px panchromatic images and
50 px × 50 px images for each hyperspectral channel. The spectral profile of the sample
was calculated using the Cube-Pilot program, developed specifically for the hyperspectral
camera Cubert UHD-185.
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To assess the possibilities of using VIs, calculated according to hyperspectral survey
data for remote detection of certain invasive and quarantine plant species, a list of 80 VIs
was compiled from literature data (Table 2).

Table 2. VIs tested for their ability to distinguish target weeds of this study.

Index Name Formula for Calculating References

Boochs D703 [34]
Boochs2 D720 [34]

CARI R700 × abs(a × 670 + R670 + b)/R670 × (a2 + 1) × 0.5 a =
(R700 × R550)/150, b = R550 − (a × 550) [35]

Carter2 R695/R760 [36]
Carter3 R605/R760 [36]
Carter4 R710/R760 [36]
Carter5 R695/R670 [36]
Carter6 R550 [36]

CI R675 × R690/R2
683 [37]

CI2 R760/R700 − 1 [38]
ClAInt

∫ 735nm
600nm R [39]

CRI1 1/R515 − 1/R550 [38]
CRI2 1/R515 − 1/R770 [38]
CRI3 1/R515 − 1/R550 × R770 [38]
CRI4 1/R515 − 1/R700 × R770 [38]
D1 D730/D706 [37]
D2 D705/D722 [37]

Datt (R850 − R710)/(R850 − R680) [40]
Datt2 R850/R710 [40]
Datt3 D754/D704 [40]
Datt4 R672/(R550 × R708) [41]
Datt5 R672/R550 [41]
Datt6 R860/R550 × R708 [41]
DD (R749 − R720) − (R701 − R672) [42]

DDn 2 × (R710 − R660 − R760) [42]
DPI D688 × D710/D2

697 [37]
DWSI4 R550/R680 [43]

EGFN (max(D650:750) + max(D500:550))/(max(D650:750) +
max(D500:550)) [44]

EGFR max(D650:750)/max(D500:550) [44]
EVI 2.5 × ((R800 − R670)/(R800 − 6 × R670 − 7.5 × R475 + 1)) [45]
GI R554/R677 [46]

Gitelson 1/R700 [47]
Gitelson2 (R750 − R800/R695 − R740) − 1 [38]

GMI1 R750/R550 [38]
GMI2 R750/R700 [38]

Green NDVI (R800 − R550)/(R800 + R550) [48]
Maccioni (R780 − R710)/(R780 − R680) [49]
MCARI ((R700 − R670) − 0.2 × (R700 − R550)) × (R700 − R670) [50]

MCARI2 ((R700 − R670) − 0.2 × (R700 − R550)) × (R700/R670) [50]
MPRI (R515 − R530)/(R515 + R530) [51]

MSAVI 0.5 × (2 × R800 + 1 − ((2 × R800 + 1)2 − 8 × (R800 −
R670))0.5) [52]

mSR2 (R750/R705) − 1/(R750/R705 + 1) × 0.5 [53]
MTCI (R754 − R709)/(R709 − R681) [54]
MTVI 1.2 × (1.2 × (R800 − R550) − 2.5 × (R670 − R550)) [55]
NDVI (R800 − R680)/(R800 + R680) [56]

NDVI2 (R750 − R705)/(R750 + R705) [57]
NDVI3 (R682 − R553)/(R682 + R553) [58]
OSAVI (1 + 0.16) × (R800 − R670)/(R800 + R670 + 0.16) [59]

OSAVI2 (1 + 0.16) × (R750 − R705)/(R750 + R705 + 0.16) [60]
PARS R746/R513 [61]
PRI (R531 − R570)/(R531 + R570) [62]
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Table 2. Cont.

Index Name Formula for Calculating References

PRI_norm PRI × (−1)/(RDVI × R700/R670) [63]
PRI*CI2 PRI × CI2 [64]

PSRI (R678 − R500)/R750 [65]
PSSR R800/R635 [66]
PSND (R800 − R470)/(R800 − R470) [66]
RDVI (R800 − R670)/(R800 + R670)0.5 [67]

REP_Li 700 + 40 × ((Rre − R700)/(R740 − R700)Rre = (R670 − R780)/2 [68]
SAVI (1 + L)/(R800 − R670)/(R800 + R670 + L) [69]
SPVI 0.4 × 3.7 × (R800 − R670) − 1.2 × ((R530 − R670)2) × 0.5 [70]
SR R800/R680 [71]
SR1 R750/R700 [72]
SR2 R752/R690 [72]
SR3 R750/R550 [72]
SR4 R700/R670 [73]
SR5 R675/R700 [61]
SR6 R750/R710 [74]
SR8 R515/R550 [75]

Sum_Dr1 795
∑

i=626
D1i

[76]

Sum_Dr2 780
∑

i=680
D1i

[77]

TCARI 3 × ((R700 − R670) − 0.2 × (R700 − R550) × (R700/R670)) [55]
TCARI/OSAVI TCARI/OSAVI [55]

TCARI2 3 × ((R750 − R705) − 0.2 × (R750 − R550) × (R750/R705)) [60]
TCARI2/OSAVI2 TCARI2/OSAVI2 [60]

TGI –0.5 × (190 × (R670 − R550) − 120 × (R670 − R480)) [78]
TVI 0.5 × (120 × (R750 − R550) − 200 × (R670 − R550)) [79]

Vogelmann R740/R720 [80]
Vogelmann2 (R734 − R747)/(R715 + R726) [80]
Vogelmann3 D715/D705 [80]
Vogelmann4 (R734 − R747)/(R715 + R720) [80]

Rxxx: reflectance at the wavelength “xxx”; Dxxx: first derivation of reflectance values at the wavelength “xxx”.

For the analysis, the values of the VIs were calculated for each specimen from the
studied species, as shown in Table 2. A Savitsky–Golay filter (length 12 nm) was used
as a preprocessing step to reduce the measurement error and remove artifacts in the
spectral data. The processing of the hyperspectral survey results was carried out in the
environment for statistical calculations R (R Core Team), using the hsdar package [81]. The
normal VIs distribution was tested using Shapiro–Wilk, Pearson’s chi-square, Lilliefors,
and Cramer von Mises tests (Supplementary Table S1) to select the method of statistical
data analysis methods (parametric and non-parametric). To determine VIs, the values of
which to the greatest extent and reliability depend on the species of weeds, a one-way
analysis of variance (ANOVA) and an independent two-sample t-test were used. Weeds
were identified using data analysis methods: principal component analysis (PCA), decision
tree (DT), and random forest (RF).

3. Results
3.1. Statistical Methods of Data Analysis

It was found that the values of all VIs of all studied species were distributed according
to the value as per normal law (Figure 4).

The one-way analysis of variance showed that the value of 76 VIs significantly depends
on the species of plant samples; the intergroup variance significantly exceeds the intragroup
variance (Figure 5, Supplementary Table S2). The values of the four VIs (MPRI, Gitelson,
Carter6, and ClAInt) do not depend significantly on the “species” factor and are associated
with the influence of random factors (Figure 6, Supplementary Table S2).
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Figure 6. Boxplot of VIs MPRI, Gitelson, Carter6 and ClAInt for Ambrosia artemisiifolia, Atriplex
tatarica, Glycyrrhiza glabra, Euphorbia seguieriana, and Setaria pumila.

The VIs group, the average values of which significantly differed in the compared
species according to an independent two-sample t-test, is presented in Tables 3, 4 and S3.

Table 3. Significantly different VIs between compared pairs of species according to an independent
two-sample t-test.

Species Ambrosia Atriplex Euphorbia Glycyrrhiza Setaria

Ambrosia - 50 69 76 40
Atriplex 50 - 57 65 54

Euphorbia 69 57 - 54 61
Glycyrrhiza 76 65 54 - 68

Setaria 40 54 61 68 -

Table 4. VIs suitable to distinguish species.

Compared Species Vegetation Index (VI)

Ambrosia vs. Atriplex

Boochs2, CARI, Carter2, Carter3, Carter4, Carter5, CI, CI2, CRI3, CRI4, D1, D2,
Datt, Datt2, Datt4, Datt6, DD, EGFN, EGFR, Gitelson, GMI1, GMI2, Green_NDVI,
Maccioni, MCARI, MCARI2, mSR2, MTCI, NDVI, NDVI2, OSAVI2, PRI.CI2, PSRI,
PSSR, REP_Li, SR, SR1, SR2, SR3, SR4, SR6, SR8, TCARI, TCARI.OSAVI, TCARI2,

TGI, Vogelmann, Vogelmann2, Vogelmann3, and Vogelmann4
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Table 4. Cont.

Compared Species Vegetation Index (VI)

Ambrosia vs. Euphorbia

Boochs, Boochs2, Carter2, Carter3, Carter4, CI, CI2, CRI1, CRI3, CRI4, D1, D2, Datt,
Datt2, Datt3, Datt4, Datt5, Datt6, DD, DDn, DPI, DWSI4, EGFN, EGFR, EVI, GI,

Gitelson2, GMI1, GMI2, Green_NDVI, Maccioni, MCARI, MCARI2, MSAVI, mSR2,
MTCI, MTVI, NDVI, NDVI2, NDVI3, OSAVI, OSAVI2, PARS, PRI, PRI.CI2,

PRI_norm, PSND, PSRI, PSSR, RDVI, REP_Li, SAVI, SPVI, SR, SR1, SR2, SR3, SR4,
SR5, SR6, SR8, Sum_Dr1, Sum_Dr2, TCARI2, TCARI2.OSAVI2, TVI, Vogelmann,

Vogelmann2, and Vogelmann4

Ambrosia vs. Glycyrrhiza

Boochs, Boochs2, Carter2, Carter3, Carter4, Carter5, Carter6, CI, CI2, ClAInt, CRI1,
CRI2, CRI3, CRI4, D1, D2, Datt, Datt2, Datt3, Datt4, Datt5, Datt6, DD, DDn, DPI,
DWSI4, EGFN, EGFR, EVI, GI, Gitelson, Gitelson2, GMI1, GMI2, Green_NDVI,

Maccioni, MCARI, MCARI2, MPRI, MSAVI, mSR2, MTCI, MTVI, NDVI, NDVI2,
NDVI3, OSAVI, OSAVI2, PARS, PRI, PRI.CI2, PRI_norm, PSND, PSRI, PSSR, RDVI,
REP_Li, SAVI, SPVI, SR, SR1, SR2, SR3, SR4, SR5, SR6, SR8, Sum_Dr1, Sum_Dr2,

TCARI.OSAVI, TCARI2, TVI, Vogelmann, Vogelmann2, Vogelmann3, and
Vogelmann4

Ambrosia vs. Setaria

Boochs, CARI, Carter5, D1, D2, Datt, Datt2, Datt3, Datt4, Datt5, Datt6, DD, DPI,
DWSI4, EGFN, EGFR, GI, Maccioni, MCARI, MTCI, MTVI, NDVI3, PRI, PRI.CI2,
PRI_norm, PSRI, RDVI, REP_Li, SPVI, SR4, SR5, Sum_Dr2, TCARI, TCARI.OSAVI,

TCARI2.OSAVI2, TGI, TVI, Vogelmann, Vogelmann2, and Vogelmann4

Atriplex vs. Euphorbia

Boochs, Boochs2, CARI, Carter3, Carter5, Carter6, CI, CRI1, D1, D2, Datt, Datt3,
Datt4, Datt5, DD, DPI, DWSI4, EGFN, EGFR, EVI, GI, Gitelson, Gitelson2,

Maccioni, MCARI, MCARI2, MSAVI, MTCI, MTVI, NDVI, NDVI3, OSAVI, PARS,
PRI, PRI.CI2, PRI_norm, PSND, PSRI, PSSR, RDVI, REP_Li, SAVI, SPVI, SR, SR2,

SR4, SR5, SR8, Sum_Dr1, Sum_Dr2, TCARI, TCARI. OSAVI, TCARI2,
TCARI2.OSAVI2, TGI, TVI, and Vogelmann3

Atriplex vs. Glycyrrhiza

Boochs, Boochs2, CARI, Carter2, Carter3, Carter4, Carter5, CI, CI2, CRI1, CRI2,
CRI3, CRI4, D2, Datt2, Datt3, Datt4, Datt5, DPI, DWSI4, EGFN, EGFR, EVI, GI,
Gitelson2, GMI1, GMI2, Green_NDVI, MCARI, MCARI2, MPRI, MSAVI, mSR2,
MTVI, NDVI, NDVI2, NDVI3, OSAVI, OSAVI2, PARS, PRI, PRI.CI2, PRI_norm,

PSND, PSRI, PSSR, RDVI, SAVI, SPVI, SR, SR1, SR2, SR3, SR4, SR5, SR6, SR8,
Sum_Dr1, Sum_Dr2, TCARI, TCARI2, TGI, TVI, Vogelmann, and Vogelmann3

Atriplex vs. Setaria

Boochs, Boochs2, Carter2, Carter3, Carter4, Carter5, CI, CI2, CRI3, CRI4, D1, Datt3,
Datt4, Datt5, DPI, DWSI4, EGFN, EGFR, EVI, GI, GMI1, GMI2, MCARI, MCARI2,

MSAVI, mSR2, MTVI, NDVI, NDVI2, NDVI3, OSAVI, OSAVI2, PRI, PRI.CI2,
PRI_norm, PSRI, PSSR, RDVI, SAVI, SPVI, SR, SR1, SR2, SR3, SR4, SR5, SR6, SR8,

Sum_Dr1, Sum_Dr2, TCARI, TCARI2, TVI, and Vogelmann3

Euphorbia vs. Glycyrrhiza

Boochs2, Carter2, Carter3, Carter4, Carter5, Carter6, CI2, ClAInt, CRI1, CRI2, CRI3,
CRI4, D2, Datt, Datt2, Datt3, Datt6, DD, DPI, EVI, Gitelson, GMI1, GMI2,

Green_NDVI, Maccioni, MCARI2, MPRI, MSAVI, mSR2, MTCI, NDVI, NDVI2,
OSAVI, OSAVI2, PARS, PSND, PSSR, RDVI, REP_Li, SAVI, SR, SR1, SR2, SR3, SR4,

SR5, SR6, SR8, TCARI.OSAVI, TCARI2.OSAVI2, Vogelmann, Vogelmann2,
Vogelmann3, and Vogelmann4

Euphorbia vs. Setaria

Boochs, Boochs2, CARI, Carter2, Carter3, Carter4, Carter5, CI, CI2, CRI1, CRI3,
CRI4, D1, Datt, Datt4, Datt5, DDn, DWSI4, EVI, GI, Gitelson2, GMI1, GMI2,

Green_NDVI, MCARI, MCARI2, MSAVI, mSR2, MTVI, NDVI, NDVI2, NDVI3,
OSAVI, OSAVI2, PARS, PRI, PRI.CI2, PRI_norm, PSND, PSRI, PSSR, RDVI, SAVI,

SPVI, SR, SR1, SR2, SR3, SR4, SR5, SR6, SR8, Sum_Dr1, Sum_Dr2, TCARI,
TCARI.OSAVI, TCARI2, TCARI2.OSAVI2, TGI, TVI, and Vogelmann

Glycyrrhiza vs. Setaria

Boochs, Boochs2, CARI, Carter2, Carter3, Carter4, Carter5, CI, CI2, ClAInt, CRI1,
CRI2, CRI3, CRI4, D1, Datt, Datt2, Datt3, Datt4, Datt5, Datt6, DDn, DPI, DWSI4,

EVI, GI, Gitelson2, GMI1, GMI2, Green_NDVI, MCARI, MCARI2, MPRI, MSAVI,
mSR2, MTVI, NDVI, NDVI2, NDVI3, OSAVI, OSAVI2, PARS, PRI, PRI.CI2,

PRI_norm, PSND, PSRI, PSSR, RDVI, SAVI, SPVI, SR, SR1, SR2, SR3, SR4, SR5, SR6,
SR8, Sum_Dr1, Sum_Dr2, TCARI, TCARI2, TCARI2.OSAVI2, TGI, TVI,

Vogelmann, and Vogelmann3
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Nineteen VIs significantly differed between A. artemisiifolia and all other species,
20 differed between A. tatarica and E. seguieriana and all other species, 40 differed between
G. glabra and all other species, 21 differed between S. pumila and all other species, and only
1 vegetation index (VI) significantly differed between species in their values simultaneously
in all pairs; which can be observed in SR4 (Figure 7). The critical confidence level for the
Ambrosia vs. Atriplex and Euphorbia vs. Glycyrrhiza pairs is 0.04 (Supplementary Table S3).
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Figure 7. Boxplot of VI SR4.

The result of the analysis showed that the usage of several values of the vegetation VIs
for different species at the same time makes it possible to divide them into groups more
deliberately than when using only one VI (Figures 6 and 8).
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Figure 8. Ambrosia artemisiifolia, Euphorbia seguieriana, Atriplex tatarica, Glycyrrhiza glabra и Setaria
pumila in the range of VIs D1, Datt3, and PSND.

It should be noted that a clear division of weeds by species using combinations of
VIs was obtained after harvesting an agricultural crop against a stubble background. This
makes it possible to conduct a relative assessment of the degree of weediness in the fields
and determine the weed control strategy for the next season.



Remote Sens. 2022, 14, 2442 11 of 23

3.2. Search Methods of Data Analysis

When using probabilistic-statistical methods, it is possible to establish the accuracy
of the results and obtained conclusions. However, they are not well-suited for solving
problems of identifying objects, especially with a large number of features. Therefore,
additional methods of data analysis were used in the study: PCA, DT, and RF. The VIs
values and the values of the spectral channels were used as data (the spectral range from
470 to 866 nm was used in the calculations).

3.2.1. Principal Component Analysis (PCA)

The PCA results for the spectral channels are presented in Figure 9.
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Figure 9. Projection of 100 spectral bands for Ambrosia artemisiifolia, Atriplex tatarica, Glycyrrhiza glabra,
Euphorbia seguieriana, and Setaria pumila.

The projection of spectral channel values shows that G. glabra separates from S. pumila,
A. artemisiifolia, and A. tatarica. At the same time, Setaria pumila is separated from E.
seguieriana and G. glabra. The projection of the values of the spectral channels is extended
along the second component, the extreme positions are occupied by S. pumila and G. glabra.
This is due to the fact that at the time of the survey, G. glabra was in the stage of active
regeneration after mowing, and S. pumila was at the stage of an old generative individual.

It was noted that the first two principal components account for 96% of the dispersion
of values (Table 5 and Table S4). The factors are limited to four components (in accordance
with the Kaiser criterion). However, the factor loads of the spectral channels for all selected
components are very low and practically do not differ. It is possible to single out a group
of channels from 510 to 594 with conditionally high factor loadings. These channels corre-
spond to the green and yellow parts of the visible region of the electromagnetic spectrum.

PCA results for VIs are similar to those for spectral channels (Figure 10, Tables 6 and S5).
Differences are observed in the proportion of dispersions of the first and second components;
in the case of VI, the proportion of the dispersion of the first component is higher. VIs have a
low factor load. For the first principal component, the factor loading does not exceed 0.142.
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Table 5. The value of the dispersion of the main components of the PCA of the spectral channels for
Ambrosia artemisiifolia, Atriplex tatarica, Glycyrrhiza glabra, Euphorbia seguieriana, and Setaria pumila.

Statistics Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 7.52233 6.207426 1.448625 1.175973 0.51599
Proportion of variance 0.57157 0.389214 0.021197 0.013969 0.002689
Cumulative proportion 0.57157 0.960784 0.981981 0.99595 0.998639
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Figure 10. Projection of 80 VI values for Ambrosia artemisiifolia, Atriplex tatarica, Glycyrrhiza glabra,
Euphorbia seguieriana, and Setaria pumila.

Table 6. The value of the dispersion of the main components of the VIs Ambrosia artemisiifolia, Atriplex
tatarica, Glycyrrhiza glabra, Euphorbia seguieriana, and Setaria pumila.

Statistics Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6

Standard deviation 6.96777 4.118203 2.448039 2.019743 1.087375 0.979837
Proportion of Variance 0.613003 0.214136 0.075668 0.051507 0.014929 0.012122
Cumulative Proportion 0.613003 0.827139 0.902807 0.954314 0.969243 0.981365

It is possible to single out VIs that simultaneously have a factor load on the first
and second principal components. These are Boochs, Datt2, MCARI, PRI*CI2, SR8, TVI,
Vogelmann2, and Vogelmann4. The PCA of these VIs allows us to more clearly divide
weeds into two groups: G. glabra, A. artemisiifolia, and E. seguieriana; and S. pumila and
A. tatarica (Figure 11, Tables 7 and 8). In the first group, long-term vegetative species
are capable of active regeneration after mowing, among them are two perennial weeds
(G. glabra, E. seguieriana); in the second group are short-vegetating annual weed S. pumila
and long-term vegetative annual weed A. tatarica. The A. tatarica has a reflective pubescence
of shoots, which probably affects its spectral characteristics.

It was shown that the low and slightly different factor loadings of VIs and spectral
channels on the main components do not allow using PCA to solve the main problem; to
identify the most effective VIs types for separation.
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Figure 11. Projection of Boochs, Datt2, MCARI, PRI*CI2, SR8, TVI, Vogelmann2, Vogelmann4 values
for Ambrosia artemisiifolia, Atriplex tatarica, Glycyrrhiza glabra, Euphorbia seguieriana, and Setaria pumila.

Table 7. Variance value of the principal components of Boochs, Datt2, MCARI, PRI*CI2, SR8, TVI,
Vogel-mann2, Vogelmann4 Ambrosia artemisiifolia, Atriplex tatarica, Glycyrrhiza glabra, Euphorbia seguieri-
ana, and Setaria pumila.

Statistics Comp.1 Comp.2 Comp.3

Standard deviation 2.27126 1.503265 0.521665
Proportion of variance 0.651341 0.285329 0.03436
Cumulative proportion 0.651341 0.93667 0.97103

Table 8. VIs factor loadings on the main components for Ambrosia artemisiifolia, Atriplex tatarica,
Glycyrrhiza glabra, Euphorbia seguieriana, and Setaria pumila.

VI Comp.1 Comp.2

Boochs 0.405 0.191
Datt2 0.331 −0.427

MCARI 0.367 0.336
PRI*CI2 0.379 0.233

SR8 −0.364 −0.219
TVI 0.417 0.124

Vogelmann2 −0.263 0.528
Vogelmann4 −0.269 0.521

3.2.2. Decision Tree (DT)

To avoid a subjective approach when choosing VIs and spectral channels, the DT
method was used (Figure 12). This method, according to VIs, without alternative (di-
chotomously), divided weeds into two groups in three stages: perennial weeds (G. glabra,
E. seguieriana) and annual weeds (A. artemisiifolia, S. pumila, A. tatarica). The division of
species occurred according to the values of only three Vis: CI, D1, and Datt3.
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The PCA for these VIs provides good results (Figure 13, Tables 9 and 10). The variance
is relatively evenly distributed over two main components and amounts to 89%; VIs have
medium and high factor loadings (Table 10). The projection of VIs values shows a good
differentiation of the group of perennial weeds from the group of annual weeds (Figure 13).
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Table 9. The value of the dispersion of the principal components of the projection CI, D1, Datt3
Ambrosia artemisiifolia, Atriplex tatarica, Glycyrrhiza glabra, Euphorbia seguieriana, and Setaria pumila.

Statistics Comp.1 Comp.2 Comp.3

Standard deviation 1.282888 1.00116 0.567342
Proportion of variance 0.554142 0.337482 0.108376
Cumulative proportion 0.554142 0.891624 1

Table 10. Factor loads on the main components for Ambrosia artemisiifolia, Atriplex tatarica, Glycyrrhiza
glabra, Euphorbia seguieriana, and Setaria pumila.

VI Comp.1 Comp.2

CI 0.401 0.818
D1 0.578 −0.576

Datt3 −0.710 0

The DT method divided the weed species according to the values of the spectral
channels in four stages (Figure 14). The species were separated according to wavelengths:
454 nm, 510 nm, 514 nm, 526 nm, 738 nm, 886 nm, 902 nm, 914 nm, and 962 nm. These
channels correspond to the blue (2 channels), green (3 channels), far red (1 channel),
and near infrared (3 channels) parts of the electromagnetic spectrum. When divided
into clusters, weed species had an alternative. Thus, E. seguieriana simultaneously fell
into different clusters of the higher hierarchy, while other species (A. artemisiifolia and
A. tatarica) ended up simultaneously in different clusters of the lower hierarchy. This nature
of the separation of objects does not correspond to the purpose of the experiment; the
differentiation of weed species. Visualization of the result of species differentiation using
PCA by spectral channels is shown in Figure 15 and in Tables 11 and 12. Provided that
the variance of the first two principal components is high (91%), the factor loadings of the
spectral channels on the components are low. This result does not meet the requirements of
the experimental work.
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Figure 14. Wavelength DT for Ambrosia artemisiifolia, Atriplex tatarica, Glycyrrhiza glabra, Euphorbia
seguieriana, and Setaria pumila.

Table 11. The value of the dispersion of the main components of the projection at wavelengths of
454 nm, 510 nm, 514 nm, 526 nm, 738 nm, 886 nm, 902 nm, 914 nm, 962 nm for Ambrosia artemisiifolia,
Atriplex tatarica, Glycyrrhiza glabra, Euphorbia seguieriana, and Setaria pumila.

Statistics Comp.1 Comp.2 Comp.3

Standard deviation 2.2567781 1.7478754 0.77501095
Proportion of variance 0.5716103 0.3428809 0.06741212
Cumulative proportion 0.5716103 0.9144911 0.98190325
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Figure 15. Wavelength projection 454 nm, 510 nm, 514 nm, 526 nm, 738 nm, 886 nm, 902 nm, 914 nm,
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Table 12. Factor loadings by spectral channels on significant components for Ambrosia artemisiifolia,
Atriplex tatarica, Glycyrrhiza glabra, Euphorbia seguieriana, and Setaria pumila.

Wavelength, nm Comp.1 Comp.2

886 0.357 0.313
738 0.355 0.208
454 0.309 −0.384
914 0.356 0.325
514 0.301 −0.413
902 0.358 0.328
962 0.315 0.195
510 0.287 −0.429
526 0.351 −0.326

3.2.3. Random Forest (RF)

The next method used to separate species is random forest. The compilation of the
confusion matrix for the separation of weeds was carried out by specimens (each species is
represented by 20 specimens). Each weed specimen was characterized by 80 VIs values.
Weed identification prediction errors based on 80 VIs values are presented in Table 13.

Table 13. Confusion matrix for weed identification, 80 VI.

Confusion Matrix Ambrosia Atriplex Euphorbia Glycyrrhiza Setaria Class
Error

Ambrosia 20 0 0 0 0 0
Atriplex 0 20 0 0 0 0

Euphorbia 0 1 16 3 0 0.2
Glycyrrhiza 0 0 1 19 0 0.05

Setaria 0 1 0 0 19 0.05
Number of trees: 500; No. of variables tried at each split: 8; OOB estimate of error rate: 6%.
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In this case, out-of-bag (OOB) error is 6%. The RF method also makes it possible to
determine VIs that are most suitable for species identification. In Figure 16 VIs are arranged
depending on their influence on the error value and the Gini criterion.
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The most significant VIs are D1, Datt3, PSND, and DPI.
Next, a confusion matrix was compiled for weed separation using the most significant VIs.
The first option is D1, Datt3, and CI (according to the results of DT) (Table 14).
The second option is D1, Datt3, PSND, and DPI (based on RF results) (Table 15).
The third option is D1, Datt3, and PSND (according to the results of paired comparison

using t-test) (Table 16).

Table 14. Confusion matrix for weed identification by D1, Datt3, and CI.

Confusion Matrix Ambrosia Atriplex Euphorbia Glycyrrhiza Setaria Class Error

Ambrosia 20 0 0 0 0 0
Atriplex 0 20 0 0 0 0

Euphorbia 0 0 18 2 0 0.10
Glycyrrhiza 0 0 2 18 0 0.10

Setaria 0 0 0 0 20 0
Number of trees: 500; No. of variables tried at each split: 1; OOB estimate of error rate: 4%.

Table 15. Confusion matrix for weed identification by D1, Datt3, PSND, and DPI.

Confusion Matrix Ambrosia Atriplex Euphorbia Glycyrrhiza Setaria Class Error

Ambrosia 20 0 0 0 0 0
Atriplex 0 20 0 0 0 0

Euphorbia 0 0 18 2 0 0.10
Glycyrrhiza 0 0 1 19 0 0.05

Setaria 0 0 1 0 19 0.05
Number of trees: 500; No. of variables tried at each split: 2; OOB estimate of error rate: 4%.

Table 16. Confusion matrix for weed identification by D1, Datt3, and PSND.

Confusion Matrix Ambrosia Atriplex Euphorbia Glycyrrhiza Setaria Class Error

Ambrosia 20 0 0 0 0 0
Atriplex 0 20 0 0 0 0

Euphorbia 0 0 19 1 0 0.10
Glycyrrhiza 0 0 1 19 0 0.05

Setaria 0 0 2 0 18 0.05
Number of trees: 500; No. of variables tried at each split: 1; OOB estimate of error rate: 4%.
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Thus, the number of VIs for separating A. artemisiifolia, A. tatarica, G. glabra, E. seguieri-
ana, and S. pumila can be significantly reduced.

4. Discussion

The use of vegetation indices calculated from hyperspectral survey data has great
prospects for precision agriculture [82]. It is possible to detect perennial weeds in real time
and selectively destroy them with herbicides [9].

4.1. Using Spectral Channels and Vis

In several studies, it is recommended to use spectral channels to identify weeds
according to hyperspectral survey data [83,84]. In the present study, a comparison was
made of the efficiency of using spectral channels and VIs for the identification of weeds. The
results obtained showed better results when using VIs than when using spectral channels.
This can be explained by the fact that VIs carry more information than spectral channels. In
addition, VIs values correlate with specific physiological characteristics of plants. [85].

4.2. Comparison of the Result Obtained by Different Methods

The results obtained by data analysis methods (PCA, DT, and RF) were compared
with the results obtained by mathematical statistics methods (Supplementary Table S3,
Figure 13). To perform this, consider a paired comparison of weed species using the t-test
(Supplementary Table S3). All pairs of species are significantly different in VI CI value
(«Ambrosia vs. Atriplex», «Ambrosia vs. Euphorbia», «Ambrosia vs. Glycyrrhiza», «Atriplex vs.
Euphorbia», «Atriplex vs. Glycyrrhiza», «Atriplex vs. Setaria», «Euphorbia vs. Setaria», and
«Glycyrrhiza vs. Setaria»), except for «Ambrosia vs. Setaria» and «Euphorbia vs. Glycyrrhiza».
In terms of Datt3 VI, the difference between the «Ambrosia vs. Atriplex» and «Euphorbia vs.
Setaria» pairs is not statistically significant; however, the difference in the «Euphorbia vs.
Glycyrrhiza» pair is highly significant. According to the D1 value, the pairs «Ambrosia vs.
Atriplex», «Ambrosia vs. Glycyrrhiza», and «Atriplex vs. Setaria» are statistically significantly
different, and the pairs «Atriplex vs. Glycyrrhiza» and «Euphorbia vs. Glycyrrhiza» do not
differ. This is in complete agreement with the results of the DT analysis. Thus, it was shown
that with the help of statistical methods, the fineness of division into clusters by the DT
method can be estimated.

Good results for the identification of species according to hyperspectral survey data
are obtained by the RF method [86–89]. It is shown that if VIs are selected that significantly
affect Mean Decrease Accuracy and Mean Decrease Gini (D1, Datt3, PSND, DPI), then
OOB error decreases compared with using all 80 VIs. This method distinguishes well all
species except E. seguieriana. The methods used, with the exception of PCA, showed good
agreement between the results of selecting VIs that are effective for identifying weeds in
agrocenoses of grain crops when surveying from a short distance (Table 17).

Table 17. Best VIs for weeds identification.

Analysis Method VI

ANOVA, t-критерий D1, Datt3, PSND

Principal component analysis Boochs, Datt2, MCARI, PRI*CI2, SR8, TVI,
Vogelmann2, Vogelmann4

Decision tree CI, D1, Datt3
Random forest D1, Datt3, PSND, DPI.

Reducing the number of VIs reduces the number of spectral channels. This makes it
possible to create simpler and cheaper sensors for solving problems of weeds identification.

4.3. Significance of Weed and Invasive Species Identification Results

The obtained results can be of practical use. It is advisable to treat fields with herbi-
cides after harvesting cultivated plants only against perennial rhizomatous (G. glabra) and
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rhizomatous weeds (E. seguieriana). Annual segetal weeds, as a rule, have time to form
and spread many seeds during the growing season of a cultivated plants (A. artemisiifolia,
S. pumila). They are characterized by perennial soil seed banks. Controlling them with
herbicides after harvesting crops is not effective. Rhizome and root offspring perennial
weeds produce few seeds under culture conditions (or do not have time to form seeds at
all) and spread mainly vegetatively, often with mechanized tillage. When using remote
sensing means, it becomes possible to identify perennial weeds in real time and selectively
destroy them with herbicides.

Hyperspectral cameras are currently expensive devices and cannot be widely used in
agriculture. It is necessary to design multispectral cameras with specified characteristics.
So, when designing multispectral cameras for remote sensing, one can use spectral channels
that are used to calculate VIs that best separate weed species.

5. Conclusions

The results of the study showed the high efficiency of using VIs calculated from
hyperspectral survey data to identify various types of weeds in agrocenoses of grain crops
when shooting from a short distance. Using the methods of mathematical statistics (ANOVA
and t-test) and search methods of analysis (principal component analysis, decision tree,
and random forest), a group of VIs was determined that allow a good separation of weeds.

The combination of PCA and DT methods allows us to well-differentiate weeds into
groups: perennial weeds (Glycyrrhiza glabra and Euphorbia seguieriana) and annual weeds
(Ambrosia artemisiifolia, Atriplex tatarica, and Setaria pumila).

Using the RF method, the Vis that have the greatest impact on the Mean Decrease
Accuracy and Mean Decrease Gini were identified. These are D1, Datt3, PSND, and DPI.
A great similarity of the results obtained with the help of statistical methods and search
methods of data analysis was noted.

When differentiating weed species, VIs showed a better result than spectral channels.
This can be explained by the fact that VIs carries more information than spectral channels.
VIs values are associated with specific physiological characteristics of plants. Weeds were
in different qualitative states: different stages of ontogenesis and regeneration. We believe
that it was for this reason that weeds were successfully differentiated into species. The
use of VIs for species differentiation may not be effective for plants of the same life form,
similar ontogenesis, and phenology.

The ability to divide weeds into perennial rhizomatous, rhizomatous plants, and
annual weeds is of great practical importance. After harvesting cultivated plants, it is
advisable to control only perennial weeds. The use of remote sensing tools, if possible, to
identify perennial weeds in real time makes it possible to selectively destroy them with
herbicides. Additional experiments are necessary to determine the repeatability obtained
across seasons and the optimum distance to the imaging target (i.e., altitude of a UAV).
Additionally, we will increase the number of species under consideration and create a
spectral library of weed species.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14102442/s1, Supplementary Table S1. Shapiro–Wilk (1), Pear-
son’s chi-squared (2), Lilliefors (3), Cramér–von Mises (4) norm tests of invasive and weed species;
Supplementary Table S2. ANOVA test of invasive and weed species; Supplementary Table S3. Paired
comparison of invasive and weed species using t-test; Supplementary Table S4. Factor loads on 4
significant components for Ambrosia artemisiifolia, Atriplex tatarica, Glycyrrhiza glabra, Euphorbia
seguieriana, Setaria pumila; Supplementary Table S5. Factor loads on 5 significant components for
Ambrosia artemisiifolia, Atriplex tatarica, Glycyrrhiza glabra, Euphorbia seguieriana, Setaria pumila.
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