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Abstract: An effect of tempforming on the microstructure, the carbide precipitation, and the strength-
ening mechanisms of high-strength low-alloyed steel has been analyzed. The quenched steel was
subjected to 1 h tempering at a temperature of 873 K, 923 K, or 973 K followed by plate rolling at
the same temperature. Tempforming resulted in the formation of an ultrafine grained lamellar-type
microstructure with finely dispersed carbides of (Nb,V)C, Fe3C and Cr23C6. A decrease in temp-
forming temperature resulted in a reduction of the transverse grain size from 950 nm to 350 nm.
Correspondingly, the size of Fe3C/Cr23C6 particles decreased from 90 nm to 40 nm while the size of
(Nb,V)C particles decreased from 17 nm to 4 nm. Refining the tempformed microstructure with a
decrease in thetempforming temperature provided an increase in the yield strength from 690 MPa to
1230 MPa.

Keywords: high-strength low-alloyed steel; tempforming; microstructure; carbides; strengthening
mechanisms; mechanical behavior

1. Introduction

High-strength low-alloyed (HSLA) steels are widely used structural materials [1–4].
The first generation of HSLA steels exhibited yield strength above 350 MPa [1]. The yield
strength of modern HSLA steels increased up to 700 MPa owing to both the dispersion
hardening provided by Ti, Nb, V, Mo microalloying and the grain refinement due to thermo-
mechanical controlled processing (TMCP) involving accelerated cooling after hot/warm
rolling [2–4]. The dispersion strengthening and the solid solution strengthening due to
both interstitial and substitutional atoms give the major contribution to the overall yield
strength [5]. The grain size strengthening may also play an important role in the strength
of HSLA steels with ultra-fine ferrite grains [3].

The high strength of HSLA steel is especially useful when it is combined with sufficient
fracture toughness. A route of thermo-mechanical processing called tempforming was pro-
posed by Japanese scientists to increase the impact toughness of plain carbon steels at low
temperatures [6]. Tempforming involves tempering followed by large strain warm rolling
at the same temperature and results in the formation of a lamella-type microstructure with
a transverse grain size of about 100 nm and uniform distribution of dispersed particles. Be-
sides the improvement of impact toughness, tempforming strengthens the steels, increasing
their yield strength [6–8]. In contrast to the impact toughness, however, the strengthening
effect of tempforming has not been studied in detail. There are only a limited number of
studies addressing the strengthening mechanisms in hypoeutectoid and eutectoid steels
with lamellar microstructures produced by cold to hot rolling/drawing [9,10]. The grain
size and dislocation strengthening were considered as major contributors to the strength of
medium carbon steels with lamellar microstructure [9,10].

The aim of the present study is to evaluate the strengthening mechanisms in a low
carbon HSLA steel subjected to tempforming. Particular attention is paid to the deformation
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microstructures which evolved in quenched and tempered steel by subsequent warm rolling
and their effect on the yield strength.

2. Materials and Methods

An HSLA steel with a chemical composition of Fe—0.08C—0.17Si—1.16Cr—1.55Mn—
0.03Nb—0.005Al—0.42Mo—0.08V—0.003B—0.003P—0.006S (all in mass%) was water
quenched from 1373K. Next, the steel samples were tempered for 1 h at temperatures
of 873 K, 923 K, or 973 K followed by rolling at the same temperature to a total strain of
1.5 (reduction in thickness of 78%). The microstructural observation was performed on the
RD-ND sections (RD is the rolling direction and ND is the normal direction), using a Quanta
Nova Nanosem 450 scanning electron microscope (SEM) (FEI, Hillsboro, OR, USA) incorpo-
rating an orientation imaging microscopy (OIM) system (EDAX, Inc., Mahwah, NJ, USA).
The fine structures were studied with a JEOL JEM-2100 transmission electron microscope
(TEM) (JEOL Ltd., Tokyo, Japan). The SEM/TEM specimens were electro-polished using an
electrolyte containing 10% perchloric acid and 90% acetic acid at a voltage of 20 V at room
temperature. The OIM images were subjected to a cleanup procedure setting a minimal
confidence index of 0.1. The mean grain and subgrain sizes were evaluated on the OIM
images as average distances between high-angle boundaries (HAB) with misorientations of
θ ≥ 15◦ and low-angle sub-boundaries (2◦ ≤ θ< 15◦), respectively. The second phases were
studied by X-ray diffraction of powder residuals using a SmartLab (Rigaku) diffractometer
(Rigaku Co., Tokyo, Japan). The misorientations between the fine grains/subgrains were
also analyzed by the conventional TEM Kikuchi-line method with a converged beam tech-
nique. The dislocation densities were evaluated by counting individual dislocations inside
the grains/subgrains on at least six representative TEM images. The average size of the
dispersed particles was measured on TEM micrographs counting more than 30 particles
for each data point. The tensile tests were carried out by using an Instron 5882 testing
machine (Illinois ToolWorks Inc., Norwood, MA, USA) on specimens with a gauge length
of 12 mm and cross-section of 3 × 1.5 mm2 at ambient temperature and a crosshead rate of
2 mm/min with the tensile direction parallel to the rolling direction.

3. Results
3.1. Microstructure after Tempforming

Typical microstructures evolved in the steel subjected to tempforming at different
temperatures are shown in Figure 1. The deformation microstructures consist of highly
elongated grains along the rolling direction. The grain boundaries appear as straight lines
parallel to RD on the cross-section of the samples tempformed at 873 K (Figure 1a). In con-
trast, frequently wavy grain boundaries evolve in the sample processed at 973 K (Figure 1c)
which suggests a pronounced recovery at relatively high tempforming temperatures. Thus,
larger grains evolve at higher tempforming temperatures (Table 1). The grain/subgrain
boundary misorientation distributions exhibit a sharp peak against small angles among a
flat-type distribution with almost equal fractions of various HAB (Figure 1). An average
sub-boundary misorientation slightly increases with tempforming temperature while the
fraction of HAB decreases.
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Figure 1. Microstructures developed in an HSLA steel subjected to tempforming at 873 K (a), 923 K (b)
and 973 K (c) along with grain/subgrain misorientation distributions and sections of orientation
distribution functions atϕ2 = 0◦. Colors correspond to the crystallographic direction along the normal
direction (ND). The black and white lines indicate high-angle boundaries (θ ≥ 15◦) and low-angle
sub-boundaries (2◦ ≤ θ < 15◦), respectively. Arrows on the misorientation distributions indicate an
average sub-boundary misorientation.
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Table 1. Some microstructural parameters of an HSLA steel after tempforming.

Tempforming temperature, K 873 923 973

Transverse grain size, nm 350 ± 50 650 ± 50 950 ± 50

Longitudinal grain size, nm 630 ± 50 750 ± 50 1150 ± 50

Transverse subgrain size, nm 90 ± 10 100 ± 10 190 ± 10

Dislocation density in
subgrain interiors, m−2 9 ± 0.5 × 1014 8 ± 0.5 × 1014 2 ± 0.5 × 1014

Average sub-boundary
misorientation, degree 5 5.5 6

Sub-boundary area per unit
volume, m−1 4.2 × 106 3.4 × 106 2.1 × 106

Cr23C6/Fe3C: particle
size/volume fraction, nm/% 40/0.85 50/0.91 90/0.94

(Nb,V)C: particle size/volume
fraction, nm/% 4/0.129 7/0.133 17/0.135

The sections of orientation distribution functions (ODF) at ϕ2 = 0◦ are also shown in
Figure 1. The deformation textures evolved after tempforming include a strong {001}<110>
(rotated cube) component, which has been frequently observed in plate-rolled bcc metals
and alloys [11,12]. Rather strong {001}<110> texture component in the sample rolled
at the lowest temperature of 873 K may be associated with strain accumulation under
conditions of suppressed recovery [13]. An increase in the grain size with increasing
tempforming temperature is accompanied by a weakening of the crystallographic texture.
The maximal intensity of the deformation texture decreases almost threefold with an
increase in rolling temperature.

Representative TEM images of the fine substructures that developed during tempform-
ing are shown in Figures 2–4. The transverse size (measured along ND) of deformation sub-
grains increases from 90 nm to 190 nm with an increase in temperature from 873 K to 973 K,
whereas the dislocation density in grain/subgrain interiors decreases from 9 × 1014 m−2 to
2 × 1014 m−2 (Table 1). The relationship between these two substructural parameters is
represented in Figure 5. It is clearly seen in Figure 5 that the transverse subgrain size can be
related to the dislocation density inside subgrains through a power law function with an
exponent of −0.5 much similar to other numerous studies on the dislocation substructures
evolved in various metals and alloys during hot working [14–16]. It should be noted that
the effect of tempforming temperature on the dislocation density and the subgrain size
becomes stronger as temperature increases.
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The martensite in the as-quenched steel was characterized by an average block size of
1.5 µm [8]. Rolling reduction in thickness of 78% suggests reducing the HAB spacing from
1.5 µm to 330 nm that is close to the transverse grain size evolved by tempforming at 873 K.
However, the transverse grain size in the samples tempformed at higher temperatures is
remarkably larger that implies grain/subgrain coarsening during tempforming, similar
to that occurring upon continuous dynamic recrystallization when the grain size is solely
controlled by deformation conditions [17]. Figure 6 shows the relationship between the
transverse grain size and temperature-compensated strain rate during tempforming, using
activation energy for self-diffusion inα–iron, Q = 239 kJ mol−1, for the sake of simplicity [18].
The present results are close to those obtained by Murty et al. for low-carbon steel processed
under similar conditions [19]. Somewhat stronger temperature/strain rate dependence
with an exponent of −0.3 observed in the present study as compared to that of about −0.1
observed in other steels during warm rolling [20] may result from Zener drag force exerted
by the second phase particles.
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tempforming (black symbols) and low carbon steel after large strain compression (open symbols) [19].

The X-ray diffraction analysis of the powder residuals from the tempformed specimens
suggests the presence of dispersed Fe3C and M23C6 particles (Figure 7); and the volume
fraction of Cr23C6 phase increases from 0.15 to 0.6 in overall powder residual with an
increase in the tempforming temperature from 873 to 973 K. Therefore, the following
temperature precipitation sequence takes place:

M3C→M23C6 (1)
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According to Thermo-Calc, the fraction of M23C6 carbides is about 0.012 at 873 K
and decreases as temperature increases down to full disappearance at 973 K. Thermo-Calc
expects precipitation of M7C3 (0.3% at 923 K and 0.7% at 973 K), i.e.,

M23C6→M7C3 (2)

Moreover, Thermo-Calc does not predict cementite at T ≥ 873 K. However, the re-
placement of M23C6 by M7C3 through the precipitation sequence (2) was not confirmed in
the present study. It is apparent that M3C and M23C6 carbides possess fast precipitation
kinetics and precede M7C3 even at a relatively high temperature of 973 K. Besides M23C6,
Thermo-Calc predicts the precipitation of NbC and VC with volume fractions of about
0.0004 and 0.0009, respectively (total of about 0.0013 in Table 1). The small fraction of
(Nb,V)C is below the critical limit for conventional X-ray diffraction analysis. However,
both NbC and VC carbides were observed as tiny particles on TEM images, especially, at
temperatures below 973 K (Figures 2 and 3). Commonly, V-rich carbides exhibit plate-like
or disc-type shapes and Nb-rich dispersoids are spherical in low-alloyed steels [5,21]. The
TEM observations did not reveal any remarkable difference in the appearance of NbC and
VC particles in the present study (Figures 2–4). Therefore, both carbides were taken into
account as (Nb,V)C particles for the strength calculation.

Characteristic examples of dispersed particles in the tempformed samples are shown
in Figures 2–4. The dispersed particles can be categorized into two size domains irrespective
of processing temperature (Table 1). The fine particles are (Nb,V)C-type carbides with an
average size of 4 to 17 nm depending on the temperature of tempforming. The coarse
particles are represented by Fe3C and Cr23C6 carbides. The average size of the coarse
particles increases from 40 nm to 90 nm with an increase in tempering temperature. The
volume fractions of coarse particles in Table 1 (FCr23C6 and FFe3C) were calculated taking
into account their relative fraction observed by X-ray diffraction (FCr23C6 X-ray/FFe3C X-ray)
and assuming that their relative precipitation kinetics corresponds to the ratio of their
possible volume fractions predicted by Thermo-Calc (FCr23C6 ThermoCalc/FFe3C ThermoCalc)
assuming the presence of either Cr23C6 or Fe3C, i.e.:

(FCr23C6 ThermoCalc KCr23C6)/(FFe3C ThermoCalc KFe3C) = FCr23C6 X-Ray/FFe3C X-Ray
where KCr23C6 + KFe3C = 1

and FCr23C6 = FCr23C6 ThermoCalc KCr23C6, FFe3C = FFe3C ThermoCalc KFe3C

(3)

The volume fraction of the relatively coarse Fe3C and Cr23C6 particles calculated
using X-ray data slightly decreases with a decrease in tempforming temperature. This
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may be attributed to incomplete precipitation at rather low tempering temperatures. In-
complete precipitation of Cr23C6-type carbide was observed in martensitic steel even at
high-temperature tempering at 1023 K [22]. Therefore, the precipitation kinetics seems
to be responsible for the suppression of Cr7C3 precipitation along with an increase in the
fraction of Fe3C particles and a decrease in the volume fraction of coarse particles with a
decrease in the tempforming temperature. On the other hand, the volume fraction of the
finely dispersed (Nb,V)C particles is almost the same at all temperatures of tempforming,
while their size fourfold decreases with a decrease in temperature from 973 K to 873 K.
Hence, significant strengthening is expected from the finely dispersed (Nb,V)C particles,
especially, at relatively low temperatures of tempforming. It is worth noting that the fine
particles of MX carbides are uniformly spaced throughout ferrite, while the coarse particles
of cementite and M23C6 are frequently located at low-angle sub-boundaries. Such distri-
bution of dispersed particles suggests an Orowan mechanism for moving dislocations to
interact with both fine and coarse particles.

3.2. Tensile Test

Engineering stress—strain curves are shown in Figure 8. Both the yield strength (σ0.2)
and ultimate tensile strength (UTS) decrease while elongation increases with an increase
in temperature of tempforming (Table 2). The steel processed at 873 K is characterized
by a quite short stage of uniform elongation similar to those observed in work-hardened
steels and alloys subjected to cold deformation [23,24]. Namely, following yielding at
1230 MPa, the tensile stress rapidly attains UTS of 1250 MPa and then gradually decreases
upon necking. In contrast, the steel sample processed at 973 K exhibits remarkable strain
hardening up to an elongation of 8%, although σ0.2 of 690 MPa and UTS of 760 MPa
are relatively low. The steel tempformed at 923 K exhibits rather high σ0.2 and UTS of
1090 MPa and 1110 MPa, respectively, combined with a sufficient 5% uniform elongation
and an elongation-to-failure of 10%. It is worth noting that the strength properties of the
present steel samples are close to those observed in 0.4C-0.7Mn-0.24Si steel subjected to
tempforming at 773 K followed by additional tempering at 823–973 K [25,26].
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Table 2. Yield strength, UTS and total elongation after tempforming at different temperatures.

Tempforming
temperature, K 873 923 973

Yield Strength, MPa 1230 1090 690

UTS, MPa 1250 1110 760

Elongation-to-failure, % 7.5 10 15

4. Discussion

Tempforming of the present HSLA steel results in significant strengthening as revealed
by the tensile tests along RD. Note here, the tensile strength along RD and TD was shown
to be almost the same for various steels subjected to large strain cold to warm plate
rolling [27,28]. Therefore, the strengthening of the present steel samples can be roughly
attributed to the developed microstructures that are characterized by the dispersed particles,
the dislocation density, the transverse grain/subgrain size. Several different strengthening
mechanisms may contribute to the yield strength of HSLA steels [2,3,5,29,30]. Among
those, the grain size strengthening (σG), the dislocation strengthening (σρ), the dispersion
strengthening (σOr), and the lattice friction including solid solution strengthening (σ0 + σSS)
are to be considered for the present steel. The grain size strengthening can be expressed by
the second term of the well-known Hall-Petch relationship [31,32].

σG = kyD−0.5 (4)

where D is the mean grain size and ky is the grain boundary strengthening factor of about
0.24 MPa m0.5 for low-carbon steels [29,33]. The dislocation strengthening, which is also
known as work hardening, should obey the Taylor-type relationship [5,9,30].

σρ = αGbρ0.5 (5)

Here α is a constant of about 0.9 for low-alloyed steels [34], G and b are the shear
modulus and the Burgers vector (81 GPa and 0.248 nm, respectively [18]), and ρ is the
dislocation density. The strengthening by dispersed hard particles is generally attributed to
an Orowan mechanism and can be evaluated by the following equation [35].

σOr = 0.2 MGb λ−1 (ln(d*/r0) + 0.7) (6)

where λ = 0.2dP (π/FV)0.5 is the particle spacing for precipitates with an average size of
dP and volume fraction of FV, M is the Taylor factor (2.75 for bcc-lattice), d* depends on
the ratio between dP and λ and can be calculated as d* = (dP

−1 + λ−1)−1, and r0 is the
dislocation core size of approx. 2b. The strengthening from different types of precipitates
can be evaluated as a square root of a sum of squares [36], i.e., σOr = (σOr1

2 + σOr2
2)0.5.

The friction stress of σ0 = 45 MPa is usually adopted for yield strength calculation [5] and
the solid solution strengthening of the present steel can be evaluated using Pickering’s
empirical equation [5,37].

σSS = 32 Mn − 31 Cr +11 Mo + 5544 C (7)

In this expression, the concentrations are expressed in wt.%. Other elements were not
taken into account since their portions were negligibly small. The contents of carbon and
substitutional solutes in ferrite were obtained by ThermoCalc.

The individual strengthener contributions calculated by Equations (4)–(7) are pre-
sented in Table 3. Irrespective of tempforming temperature, the highest contribution to the
strength is provided by the dispersed particles. The total dispersion strengthening com-
prises 76% or 52% of the experimental yield strength after tempforming at 873 K, or 973 K.
Note here that finely dispersed (Nb,V)C particles provide the major contribution to the
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total dispersion strengthening. The high dispersion strengthening is especially important
for the steels intended for welded constructions because dispersed particles are favorable to
stabilize the microstructures and properties in heat-affected zones of weld joints. Assuming
that all strengthening mechanisms above are independent and linearly additive the yield
strength could be calculated by a summation of all strengthening contributors. Such an
approach gives a good correspondence between the calculated and experimental yield
strengths for various annealed/recrystallized steels and alloys [5,10,30,38]. It is clear from
Table 3, however, that this simple summation of all strengthening contributions results in
significant (by about 1.5 times) overestimation of the yield strength. Moreover, the disloca-
tion strengthening was calculated using only dislocations inside subgrains (indicated in
Table 1), although it should take into account dislocations in low-angle sub-boundaries as
well. The correct calculation of the dislocation strengthening can be carried out by using
the following equation [39].

σρ* = αGb(1.5Svθ/b + ρ)0.5 (8)

Table 3. Contribution of different strengthening mechanisms to overall yield strength of the steel
processed by tempforming at different temperatures.

Tempforming temperature, K 873 923 973

Grain size strengthening, σG (MPa) 343 287 234

Dislocation strengthening (dislocations inside
subgrains), σρ (MPa) 547 515 258

Dispersion strengthening by (Nb,V)C, 821 577 305

Dispersion strengthening by Cr23C6/Fe3C, (MPa) 456 399 253

Total dispersion strengthening, σOr (MPa) 939 701 396

Solid solution strengthening, σSS (MPa) 31 35 47

Dislocation strengthening including dislocations
in subboundaries, σρ* (MPa) 1017 955 715

Here θ and Sv are an average sub-boundary misorientation and the sub-boundary
area per unit volume, respectively, and ρ is the dislocation density in subgrain interiors.
Then, all strength contributions with the dislocation strengthening by Equation (8) give
almost a twofold overestimation of the yield strength.

Recently, Takaki et al. concluded that the strengthening of work hardened steels is
solely controlled by the dislocation density, which, in turn, depends on other strengthening
factors [34]. It should be noted in Table 3 that the dislocation strengthening calculated by
Equation (8) is almost the same as a sum of the grain size and dispersion strengthening.
The yield strength, therefore, can be related to the dislocation strengthening or all other
strengthening contributors, i.e., the grain size and dispersed particles in the present steel.
Warm rolling upon tempforming is accompanied by an increase in the dislocation density,
which controls the flow stress during warm deformation. On the other hand, strain harden-
ing, i.e., increasing the dislocation density, depends on other strengthening mechanisms
like grain boundaries and dispersed particles. In fact, the essence of strengthening is retar-
dation of dislocation motion. The operation of various strengthening mechanisms provides
a corresponding strain hardening rate lifting the dislocation density to a certain level,
which determines the flow stress during plastic deformation. Considering the relationship
between the grain size and the dislocation density of severely strained metals, Starink
also suggested relating the strengthening with either the dislocation density or the grain
size [40]. Thus, the strengthening of the present steel samples subjected to tempforming can
be fairly evaluated by either a summation of the grain size and dispersion strengthening or
just the dislocation strengthening.
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5. Conclusions

The effect of tempforming (warm plate rolling following tempering) on the microstruc-
ture and tensile behavior of a low carbon HSLA steel was studied. The main results can be
summarized as follows.

• The tempformed steel samples were characterized by a lamellar-type microstructure
composed of highly flattened grains with uniform distribution of dispersed carbide
particles. An increase in tempforming temperature from 873 K to 973 K resulted in
an increase in the transverse grain size from 350 nm to 950 nm in accordance with a
power-law function of temperature-compensated strain rate. Correspondingly, the
mean size of Cr23C6 and Fe3C carbide particles increased from 40 nm to 90 nm, while
that of (Nb,V)C carbide particles increased from 4 nm to 17 nm.

• The temperature of tempforming significantly affected the strength. Decreasing tem-
perature from 973 to 873 K increased the yield strength from 690 MPa to 1230 MPa
and the ultimate tensile strength from 760 MPa to 1250 MPa. The strengthening can
be fairly expressed through either the dislocation density or the grain size and the
dispersed particles.
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