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Abstract—A certain conjugation problem for an elliptic pseudo-differential equation in a plane
sector is studied in Sobolev–Slobodetskii spaces. Using wave factorization for an elliptic symbol
with concrete index we consider Dirichlet and Neumann conditions on sector sides. It permits
to reduce the considered boundary value problem to a system of one-dimensional linear integral
equations. For a special case it is possible further to reduce the mentioned system to a system of
linear algebraic equations with respect to 8 unknown functions.
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1. INTRODUCTION

The history of pseudo-differential equations is not so long since the term “pseudo-differential
operator” has appeared in 60th last century. Now we have a lot of results which are related to such
operators and equations [1–4, 7]. These studies are related as a rule to two main problems: boundedness
of pseudo-differential operators in different functional spaces and a solvability of corresponding pseudo-
differential equations. The second problem is more actual since such equations and related boundary
value problems arise in many physical studies.

A theory of boundary value problems for elliptic pseudo-differential equation on manifolds with a
smooth boundary was constructed in papers of M. I. Vishik and G. I. Eskin [7]. Unfortunately, it is not
applicable for situations of manifolds with a non-smooth boundary. New approaches [5, 6, 12, 15] have
appeared for studying equations in non-smooth situations from different points of view and all methods
are concentrated around studying model operators near singular points. One of such approaches was
developed by the first author, and it is based on a special factorization of an elliptic symbol [15]. This
method was used in different situations related to boundary value problems for elliptic pseud-differential
equations in canonical non-smooth domains [18–20].

In this paper we use this method for studying one conjugation problem. The problem is a generaliza-
tion (in some sense) of classical Riemann boundary value problem for analytic functions [9, 10]. Such
problems were considered in some papers [12, 13] but the authors have considered partial differential
equations only.
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1.1. Pseudo-Differential Equations and a Conjugation Problem

We consider the following problem in Sobolev–Slobodetskii spaces Hs [7]: find the function

U(x) =

{
u+(x), x ∈ Ca

+,

u−(x), x ∈ R
2 \ Ca

+,

such that u+ ∈ Hs(Ca
+), v− ∈ Hs(R2 \ Ca

+) satisfying the equations{
(Au+)(x) = 0, x ∈ Ca

+,

(Au−)(x) = 0, x ∈ R
2 \ Ca

+,
(1)

where Ca
+ = {x ∈ R

2 : x2 > a|x1|, a > 0}, Γ = ∂Ca
+, A is elliptic pseudo differential operators with

symbol A(ξ) satisfying the condition

c1 ≤ |A(ξ)(1 + |ξ|)−α| ≤ c2. (2)

The condition (2) means strong ellipticity of the operator A, bit it is not enough for a solvability of
equations (1) [7, 15]. We need to describe solvability conditions and possible boundary conditions to
guarantee a unique solvability of boundary value problem in a certain Sobolev–Slobodetskii space.

Such problem was first considered in [16] and it was reduced to a system of linear integral equations.
The authors have considered special additional conditions and homogeneous symbols to reduce the latter
system of linear integral equations to a system of linear algebraic equations [17]. Here we develop and
refine the results [16] for homogeneous symbols applying the Mellin transform [11] to obtained system
of linear integral equations.

We remind here some definitions related to functional spaces and operators under consideration.

The space Hs(R2) is a Hilbert space with the norm

||f ||s =

⎛
⎝∫
R2

|f̃(ξ)|2(1 + |ξ|)2sdξ

⎞
⎠

1/2

,

where f̃ denotes the Fourier transform f̃(ξ) =
∫
R2

e−ix ξf(x)dx. If D ⊂ R
2 is a domain then Hs(D) is a

subspace of Hs(R2) consisting of functions with supports in D.

Let A(ξ) be a measurable function defined in R
2. A pseudo-differential operator A with the symbol

A(ξ) defined in a domain D is called the following operator

(Au)(x) =

∫
R2

eix ξA(ξ)ũ(ξ)dξ, x ∈ D.

1.2. Wave Factorization of an Elliptic Symbol and a General Solution

We need some new objects related to complex analysis.

The symbol
∗
Ca
+ denotes a conjugate cone for Ca

+:
∗
Ca
+= {x ∈ R

2 : x = (x1, x2), ax2 > |x1|}, Ca
− ≡

−Ca
+, T (C

a
+) denotes radial tube domain over the cone Ca

+, i.e. domain in a complex space C
2 of the

type R
2 + iCa

+ [8].
To describe the solvability picture for the equations (1) we will introduce the following

Definition 1. Wave factorization for the symbol A(ξ) with respect to the cone Ca
+ is called its repre-

sentation in the form A(ξ) = A�=(ξ)A=(ξ), where the factors A�=(ξ), A=(ξ) must satisfy the following
conditions:

1) A�=(ξ), A=(ξ) are defined for all admissible values ξ ∈ R
2, without may be, the points {ξ ∈ R

2 :

ξ21 = a2ξ22};
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2) A�=(ξ), A=(ξ) admit an analytical continuation into radial tube domains T (
∗
Ca
+), T (

∗
Ca
−) respecti-

vely with estimates

|A±1
�= (ξ + iτ)| ≤ c1(1 + |ξ|+ |τ |)±æ,

|A±1
= (ξ − iτ)| ≤ c2(1 + |ξ|+ |τ |)±(α−æ), ∀τ ∈

∗
Ca
+ .

The number æ ∈ R is called an index of wave factorization for the symbol A(ξ).

From this point everywhere below we assume that the wave factorization exists and consider
the case æ− s = 1 + δ, |δ| < 1/2 and for simplicity we put a = 1.

Then according to the theory [15] general solutions of equations (1) take the following form

ũ+(ξ) = A−1
�= (ξ)

(
c̃0(ξ1 − ξ2) + d̃0(ξ1 + ξ2)

)
, (3)

ũ−(ξ) = A−1
= (ξ) (r̃0(ξ1 − ξ2) + q̃0(ξ1 + ξ2)) , (4)

where c0, d0, r0, q0 are arbitrary functions of one variable, c0, d0 ∈ Hs0(R+), r0, q0 ∈ Hs0(R−), s0 =
s− æ+ 1/2.

2. BOUNDARY CONDITIONS AND INTEGRAL EQUATIONS

We have four unknown functions arbitrary functions c0, d0, r0, q0 from corresponding Sobolev–
Slobodetskii spaces. We will choose additional conditions in a special way connecting boundary values
of u+, u− by linear relations. We change variables{

t1 = ξ1 − ξ2,

t2 = ξ1 + ξ2

and denote

Ũ+(t) ≡ ũ+

(
t2 + t1

2
,
t2 − t1

2

)
, Ũ−(t) ≡ ũ−

(
t2 + t1

2
,
t2 − t1

2

)
,

a �=(t) = A�=

(
t2 + t1

2
,
t2 − t1

2

)
, a=(t) = A=

(
t2 + t1

2
,
t2 − t1

2

)
,

c̃0(ξ1 − ξ2) ≡ C(t1), d̃0(ξ1 + ξ2) ≡ D(t2), r̃0(ξ1 − ξ2) ≡ R(t1), q̃0(ξ1 + ξ2) ≡ Q(t2).

Further, we rewrite equations (3), (4) in the following form

Ũ+(t) = a−1
�= (t) (C(t1) +D(t2)) , Ũ−(t) = a−1

= (t) (R(t1) +Q(t2)) . (5)

Now we integrate the latter equalities first on t1, then on t2 and obtain the following relations
+∞∫

−∞

Ũ+(t1, t2)dt1 =

+∞∫
−∞

a−1
�= (t1, t2)C(t1)dt1 +D(t2)

+∞∫
−∞

a−1
�= (t1, t2)dt1,

+∞∫
−∞

Ũ+(t1, t2)dt2 = C(t1)

+∞∫
−∞

a−1
�= (t1, t2)dt2 +

+∞∫
−∞

a−1
�= (t1, t2)D(t2)dt2,

+∞∫
−∞

Ũ−(t1, t2)dt1 =

+∞∫
−∞

a−1
= (t1, t2)R(t1)dt1 +Q(t2)

+∞∫
−∞

a−1
= (t1, t2)dt1,
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+∞∫
−∞

Ũ−(t1, t2)dt2 = R(t1)

+∞∫
−∞

a−1
= (t1, t2)dt2 +

+∞∫
−∞

a−1
= (t1, t2)Q(t2)dt2.

Let us denote
+∞∫

−∞

a−1
�= (t1, t2)dt1 ≡ a1(t2),

+∞∫
−∞

a−1
�= (t1, t2)dt2 ≡ a2(t1),

+∞∫
−∞

a−1
= (t1, t2)dt1 ≡ b1(t2),

+∞∫
−∞

a−1
= (t1, t2)dt2 ≡ b2(t1).

Now we choose the following boundary conditions for equations (1):

θ u+|∂Ca
+
+ ω u−|∂Ca

+
= μ, η

(
∂u+
∂n

)
|∂Ca

+

+ γ

(
∂u−
∂n

)
|∂Ca

+

= ν, (6)

where θ, ω, η, γ are certain complex numbers taking two different values on sides of ∂Ca
+. Simplest

variants of such conditions appear in some applied transmission problems [14].
These given functions μ, ν are defined on ∂Ca

+ only. If we use the above change of variables
transforming the Ca

+ onto the first quatrant, it means that we know the values μ2(y1), ν2(y1) on the
straight line [0,+∞)× {0}, and the values μ1(y2), ν1(y2) on the straight line {0} × [0,+∞). Hence, we
know their Fourier transforms μ̃2(t1), ν̃2(t1), μ̃1(t2), ν̃1(t2). Thus, according to the Fourier transform
properties on restriction on a hyper-plane [7]

u(x1, 0) =

+∞∫
−∞

ũ(ξ1, ξ2)e
ix1ξ1dξ2, u(0, x2) =

+∞∫
−∞

ũ(ξ1, ξ2)e
ix2ξ2dξ1,

we have the following relations

θ1

+∞∫
−∞

Ũ+(t1, t2)dt1 + ω1

+∞∫
−∞

Ũ−(t1, t2)dt1 = μ̃1(t2),

θ2

+∞∫
−∞

Ũ+(t1, t2)dt2 + ω2

+∞∫
−∞

Ũ−(t1, t2)dt2 = μ̃2(t1).

Further, ∂u+

∂n in variables (x1, x2) corresponds to ∂U+

∂y1
, ∂U+

∂y2
in variables (y1, y2) in dependence on the

corner side {
y1 = x1 + x2,

y2 = x1 − x2,

hence the Fourier transform for ∂U+

∂y1
, ∂U+

∂y2
is equal to −iξ1Ũ+(ξ1, ξ2), −iξ2Ũ+(ξ1, ξ2) respectively, and

according to the Fourier transform properties we have the next two relations for the Fourier images:

−iη1

+∞∫
−∞

t1Ũ+(t1, t2)dt1 − iγ1

+∞∫
−∞

t1Ũ−(t1, t2)dt1 = ν̃1(t2),

−iη2

+∞∫
−∞

t2Ũ+(t1, t2)dt2 − iγ2

+∞∫
−∞

t2Ũ−(t1, t2)dt2 = ν̃2(t1).
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Additional notations:
+∞∫

−∞

t1a
−1
�= (t1, t2)dt1 ≡ A1(t2),

+∞∫
−∞

t2a
−1
�= (t1, t2)dt2 ≡ A2(t1),

+∞∫
−∞

t1a
−1
= (t1, t2)dt1 ≡ B1(t2),

+∞∫
−∞

t2a
−1
= (t1, t2)dt2 ≡ B2(t1),

and we have the following relations
+∞∫

−∞

t1Ũ+(t1, t2)dt1 =

+∞∫
−∞

t1a
−1
�= (t1, t2)C(t1)dt1 +D(t2)A1(t2),

+∞∫
−∞

t2Ũ+(t1, t2)dt2 = C(t1)A2(t1) +

+∞∫
−∞

t2a
−1
�= (t1, t2)D(t2)dt2,

+∞∫
−∞

t1Ũ−(t1, t2)dt1 =

+∞∫
−∞

t1a
−1
= (t1, t2)R(t1)dt1 +Q(t2)B1(t2),

+∞∫
−∞

t2Ũ−(t1, t2)dt2 = R(t1)B2(t1) +

+∞∫
−∞

t2a
−1
= (t1, t2)Q(t2)dt2,

and we obtain the the following 4× 4-system of linear integral equations of second kind with respect to
unknown functions C, D, R, Q of one variable⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1
+∞∫
−∞

a−1
�= (t1, t2)C(t1)dt1 + θ1D(t2)a1(t2)

+ω1

+∞∫
−∞

a−1
= (t1, t2)R(t1)dt1 + ω1Q(t2)b1(t2) = μ̃1(t2),

θ2C(t1)a2(t1) + θ2
+∞∫
−∞

a−1
�= (t1, t2)D(t2)dt2

+ω2R(t1)b2(t1) + ω2

+∞∫
−∞

a−1
= (t1, t2)Q(t2)dt2 = μ̃2(t1),

η1
+∞∫
−∞

t1a
−1
�= (t1, t2)C(t1)dt1 + η1D(t2)A1(t2)

+γ1
+∞∫
−∞

t1a
−1
= (t1, t2)R(t1)dt1 + γ1Q(t2)B1(t2) = iν̃1(t2),

η2C(t1)A2(t1) + η2
+∞∫
−∞

t2a
−1
�= (t1, t2)D(t2)dt2

+γ2R(t1)B2(t1) + γ2
+∞∫
−∞

t2a
−1
= (t1, t2)Q(t2)dt2 = iν̃2(t1).

(7)

Indeed, we have proved the following
Theorem 1. Let μ, ν be given functions from spaces Hs−1/2(R), Hs−3/2(R) respectively, and μj ,

νj , j = 1, 2, be their restrictions on Hs−1/2(R±), Hs−3/2(R±) respectively. Then the conjugation
problem (1), (7) has unique solution u+, u− if and only if the system of linear integral
equations (8) has unique solution C,D,R,Q ∈ H̃s−æ+1/2(R).
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3. HOMOGENEOUS SYMBOLS AND THE MELLIN TRANSFORM

Lemma 1. Let the factors A�=(ξ), A=(ξ) ore homogeneous functions of order æ and α− æ
respectively. Then the functions ak(t3−k), bk(t3−k), Ak(t3−k), Bk(t3−k), k = 1, 2, are homogeneous
functions of orders 1− æ, 1− α+æ, 2− æ, 2− α+æ, respectively.

A simple proof for the Lemma 1 is obtained by direct calculations and be found in [17].

Theorem 2. Let æ = α/2 and the factors A�=(ξ), A=(ξ) ore homogeneous functions of order
α/2 and differentiable out of an origin, bj(t3−j) �= 0, Bj(t3−j) �= 0, j = 1, 2, ∀t1, t2 �= 0. Then the
system (7) is equivalent to a certain system of linear algebraic equations.

Proof. Indeed, we divide two sides of the first equation from (7) by b2(t1), and the second one by
b1(t2). Further, we divide two sides of the third equation from (7) by B2(t1), and the fourth one by
B1(t2). Thus, we a new system in which we have the following factors and kernels of integral equations

ak(t3−k)b
−1
k (t3−k), Ak(t3−k)B

−1
k (t3−k),

a−1
�= (t1, t2)b

−1
k (t3−k), tka

−1
�= (t1, t2)B

−1
k (t3−k),

a−1
= (t1, t2)b

−1
k (t3−k), tka

−1
= (t1, t2)B

−1
k (t3−k), k = 1, 2.

According to Lemma 1 the factors ak, bk and Ak, Bk have the same order of homogeneity, so that
the functions ak(t3−k)b

−1
k (t3−k), Ak(t3−k)B

−1
k (t3−k), are homogeneous of order 0. It means that these

functions take only two values depending on sign of the variable. We will denote these values by lk1, lk2
and Lk1, Lk1 for positive and negative values of a variable.

Now let us consider the kernels of integral operators. It is essential that the kernels are homo-
geneous of order −1. We will verify one of them, for example tka

−1
�= (t1, t2)B

−1
k (t3−k). Let us denote

t1a
−1
�= (t1, t2)B

−1
1 (t2) ≡ K(t1, t2). Then we have

K(λt1, λt2) = λt1a
−1
�= (λt1, λt2)B

−1
1 (λt2) = λ1−æt1a

−1
�= (t1, t2)λ

æ−2B−1
1 (t2) = λ−1K(t1, t2),

since a �=(t1, t2) is homogeneous of order æ, and B1(t2) is homogeneous of order 2− æ according to
Lemma 1.

To rewrite the system (7) we introduce new notations in the following way. Let us denote

k(t1, t2) = a−1
�= (t1, t2)b

−1
1 (t2), m(t1, t2) = a−1

= (t1, t2)b
−1
1 (t2),

n(t1, t2) = a−1
�= (t1, t2)b

−1
2 (t1), p(t1, t2) = a−1

= (t1, t2)b
−1
2 (t1),

K(t1, t2) = t1a
−1
�= (t1, t2)B

−1
1 (t2), M(t1, t2) = t1a

−1
= (t1, t2)B

−1
1 (t2),

N(t1, t2) = t2a
−1
�= (t1, t2)B

−1
2 (t1), P (t1, t2) = t2a

−1
= (t1, t2)B

−1
2 (t1),

and then we construct the following kernels defined in the first quadrant. We put for all t1, t2 > 0

k11(t1, t2) = k(t1, t2); k12(t1, t2) = k(t1,−t2),

k21(t1, t2) = k(−t1, t2), k22(t1, t2) = k(−t1,−t2),

and analogously we introduce mij, nij, pij ,Kij ,Mij , Nij , Pij , i, j = 1.2.

Further, we introduce new unknown functions for t1, t2 > 0 as follows

C1(t1) = C(t1), C2(t1) = C(−t1), R1(t1) = R(t1), R2(t1) = R(−t1),

and similarly

D1(t2) = D(t2), D2(t2) = D(−t2), Q1(t2) = Q(t2), Q2(t2) = Q(−t2).
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Thus, using these notations we can rewrite the system (7) in the following way⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1
+∞∫
0

k11(t1, t2)C1(t1)dt1 + θ1
+∞∫
0

k21(t1, t2)C2(t1)dt1 + θ1l11D1(t2)

+ω1

+∞∫
0

m11(t1, t2)R1(t1)dt1 + ω1

+∞∫
0

m21(t1, t2)R2(t1)dt1 + ω1Q1(t2) = μ̃11(t2),

θ1
+∞∫
0

k12(t1, t2)C1(t1)dt1 + θ1
+∞∫
0

k22(t1, t2)C2(t1)dt1 + θ1l12D2(t2)

+ω1

+∞∫
0

m12(t1, t2)R1(t1)dt1 + ω1

+∞∫
0

m22(t1, t2)R2(t1)dt1 + ω1Q2(t2) = μ̃12(t2),

θ2C1(t1)l21 + θ2
+∞∫
0

n11(t1, t2)D1(t2)dt2 + θ2
+∞∫
0

n21(t1, t2)D2(t2)dt2

+ω2R1(t1) + ω2

+∞∫
0

p11(t1, t2)Q1(t2)dt2 + ω2

+∞∫
0

p21(t1, t2)Q2(t2)dt2 = μ̃21(t1),

θ2C2(t1)l22 + θ2
+∞∫
0

n12(t1, t2)D1(t2)dt2 + θ2
+∞∫
0

n22(t1, t2)D2(t2)dt2

+ω2R2(t1) + ω2

+∞∫
0

p12(t1, t2)Q1(t2)dt2 + ω2

+∞∫
0

p22(t1, t2)Q2(t2)dt2 = μ̃22(t1),

η1
+∞∫
0

K11(t1, t2)C1(t1)dt1 + η1
+∞∫
0

K21(t1, t2)C2(t1)dt1 + η1D1(t2)L11

+γ1
+∞∫
0

M11(t1, t2)R1(t1)dt1 + γ1
+∞∫
0

M21(t1, t2)R2(t1)dt1 + γ1Q1(t2) = ν̃11(t2),

η1
+∞∫
0

K12(t1, t2)C1(t1)dt1 + η1
+∞∫
0

K22(t1, t2)C2(t1)dt1 + η1D2(t2)L12

+γ1
+∞∫
0

M12(t1, t2)R1(t1)dt1 + γ1
+∞∫
0

M22(t1, t2)R2(t1)dt1 + γ1Q2(t2) = ν̃12(t2),

η2C1(t1)L21 + η2
+∞∫
0

N11(t1, t2)D1(t2)dt2 + η2
+∞∫
0

N21(t1, t2)D2(t2)dt2

+γ2R1(t1) + γ2
+∞∫
0

P11(t1, t2)Q1(t2)dt2 + γ2
+∞∫
0

P21(t1, t2)Q2(t2)dt2 = ν̃21(t1),

η2C2(t1)L22 + η2
+∞∫
0

N12(t1, t2)D1(t2)dt2 + η2
+∞∫
0

N22(t1, t2)D2(t2)dt2

+γ2R2(t1) + γ2
+∞∫
0

P12(t1, t2)Q1(t2)dt2 + γ2
+∞∫
0

P22(t1, t2)Q2(t2)dt2 = ν̃22(t1),

(8)

where right hand sides are defined as follows for all t1 > 0, t2 > 0;

μ̃jk(t3−j) =

{
μ̃j(t3−j)b

−1
j (t3−j), k = 1,

μ̃j(−t3−j)b
−1
j (−t3−j), k = 2,

ν̃jk(t3−j) =

{
iν̃j(t3−j)B

−1
j (t3−j), k = 1,

iν̃j(−t3−j)B
−1
j (−t3−j), k = 2,

j = 1, 2.

Since all kernels of integral operators are homogeneous of order −1 it is convenient to use the Mellin
transform [11]. Since we suppose the factors A�=, A= are differentiable, then the Mellin transform is
applicable. The functions under the integral can be assumed to be smooth enough, taking into account
further approximation in Hs-spaces. Using well known properties of the Mellin transform we obtain the
following (8× 8)-system of linear algebraic equations with respect to unknown functions Ck, Dk, Rk,
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Qk, k = 1, 2, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1k̂11(λ)Ĉ1(λ) + θ1k̂21(λ)Ĉ2(λ) + θ1l11D̂1(λ)

+ω1m̂11(λ)R̂1(λ) + ω1m̂21(λ)R̂2(λ) + ω1Q̂1(λ) = μ̂11(λ),

θ1k̂12(λ)Ĉ1(λ) + θ1k̂22(λ)Ĉ2(λ) + θ1l12D̂2(λ)

+ω1m̂12(λ)R̂1(λ) + ω1m̂22(λ)R̂2(λ) + ω1Q̂2(λ) = μ̂12(λ),

θ2l21Ĉ1(λ) + θ2n̂11(λ)D̂1(λ) + θ2n̂21(λ)D̂2(λ)

+ω2R̂1(λ) + ω2p̂11(λ)Q̂1(λ) + ω2p̂21(λ)Q̂2(λ) = μ̂21(λ),

θ2l22Ĉ2(λ) + θ2n̂12(λ)D̂1(λ) + θ2n̂22(λ)D̂2(λ)

+ω2R̂2(λ) + ω2p̂12(λ)Q̂1(λ) + ω2p̂22(λ)Q̂2(λ) = μ̂22(λ),

η1K̂11(λ)Ĉ1(λ) + η1K̂21(λ)Ĉ2(λ) + η1L11D̂1(λ)

+γ1M̂11(λ)R̂1(λ) + γ1M̂21(λ)R̂2(λ) + γ1Q̂1(λ) = ν̂11(λ),

η1K̂12(λ)Ĉ1(λ) + η1K̂22(λ)Ĉ2(λ) + η1L12D̂2(λ)

+γ1M̂12(λ)R̂1(λ) + γ1M̂22(λ)R̂2(λ) + γ1Q̂2(λ) = ν̂12(λ),

η2L21Ĉ1(λ) + η2N̂11(λ)D̂1(λ) + η2N̂21(λ)D̂2(λ)

+γ2R̂1(λ) + γ2P̂11(λ)Q̂1(λ) + γ2P̂21(λ)Q̂2(λ) = ν̂21(λ),

η2L22Ĉ2(λ) + η2N̂12(λ)D̂1(λ) + η2N̂22(λ)D̂2(λ)

+γ2R̂2(λ) + γ2P̂12(λ)Q̂1(λ) + γ2P̂22(λ)Q̂2(λ) = ν̂22(λ).

(9)

Let us introduce a (8× 8)-matrix of the system (9)

A(λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ1k̂11(λ) θ1k̂21(λ) θ1l11 0 ω1m̂11(λ) ω1m̂21(λ) ω1 0

θ1k̂12(λ) θ1k̂22(λ) 0 θ1l12 ω1m̂12(λ) ω1m̂22(λ) 0 ω1

θ2l21 0 θ2n̂11(λ) θ2n̂21(λ) ω2 0 ω2p̂11(λ) ω2p̂21(λ)

0 θ2l22 θ2n̂12(λ) θ2n̂22(λ) 0 ω2 ω2p̂12(λ) ω2p̂22(λ)

η1K̂11(λ) η1K̂21(λ) η1L11 0 γ1M̂11(λ) γ1M̂21(λ) γ1 0

η1K̂12(λ) θ1K̂22(λ) 0 η1L12 γ1M̂12(λ) γ1M̂22(λ) 0 γ1

η2L21 0 η2N̂11(λ) η2N̂21(λ) γ2 0 γ2P̂11(λ) γ2P̂21(λ)

0 η2L22 η2N̂12(λ) η2N̂22(λ) 0 γ2 γ2P̂12(λ) γ2P̂22(λ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The system (9) with the matrix A(λ) is the required system of linear algebraic equations. �

Remark. Let us note that if we deal with integrals
+∞∫
0

K(x, y)u(y)dy,

+∞∫
0

K(x, y)u(x)dx,

then we use different kernel for the Mellin transform, namely K(x, 1), K(1, y), respectively.

4. THE SOLVABILITY CONDITION
Theorem 3. Under assumptions of Theorem 2 the condition

inf |detA(λ)| > 0, 	λ = 1/2 (10)

is necessary and sufficient for a unique solvability of the problem (1), (6).
Proof. Indeed, the Theorem 2 permits to reduce the system (8) to the system (9). The condition (10)

is a necessary and sufficient condition for the unique solvability of such systems and the applicability of
the inverse Mellin transform. �

A priori estimates for a solution of the problem (1), (6) can be obtained by the methods described
in [15]. We will give these estimates in next papers.
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Appendix

5. PROPERTIES OF THE MELLIN TRANSFORM

For convenience of a reader we will give here certain facts on the Mellin transform and will show how
it can be applied to special integral equations. The Mellin transform is defined by formula

f̂(s) =

∞∫
0

f(x)xs−1dx, s = σ + iτ,

at least for functions f(x) ∈ C∞
0 (R+). The integral converges for all complex s and it is an entire analytic

function. If we change variable x = et, then the Mellin transform passes into the Fourier transform of
function f(et):

f̂(s) =

∞∫
−∞

e(σ+iτ)f(et)dt, s = σ + iτ.

Thus, all properties of the Mellin transform can be obtained from corresponding properties of the
Fourier transform. Particularly, the inversion formula of the Mellin transform for f(x) ∈ C∞

0 (R) has the
following form

f(x) =
1

2π

∞∫
−∞

f̂(s)t−sdτ, s = σ + iτ.

Parceval equality for Mellin transform
+∞∫
0

t2σ−1|f(t)|2dt = 1

2π

+∞∫
−∞

∣∣∣f̂(s)∣∣∣2 dτ, s = σ + iτ,

particularly, for σ = 1/2 we have

+∞∫
0

|f(t)|2dt = 1

2π

+∞∫
−∞

∣∣∣f̂(s)∣∣∣2 dτ, s = 1/2 + iτ,

or, in other words,

+∞∫
0

|f(t)|2dt = 1

2πi

1/2+i∞∫
1/2−i∞

∣∣∣f̂(s)∣∣∣2 ds,
meaning the right integral as

lim
y→∞

1/2+iy∫
1/2−iy

∣∣∣f̂(s)∣∣∣2 ds.

If we have the integral
+∞∫
0

K(t1, t2)u(t1)dt2,
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in which the kernel K(t1, t2) is a homogeneous function of order −1, then after applying the Mellin
transform we obtain the following expression

+∞∫
0

tλ−1
1

⎛
⎝ +∞∫

0

K(t1, t2)u(t1)dt2

⎞
⎠ dt1.

The change of variable in the inner integral t1 = xt2 leads to the following integral
+∞∫
0

tλ−1
2 xλ−1

⎛
⎝ +∞∫

0

t2K(xt2, t2)u(t2)dt1

⎞
⎠ dx,

and after rearrangements of integrals we obtain the following product
+∞∫
0

tλ−1
2 u(t2)dt2

+∞∫
0

xλ−1K(x, 1)dx = û(λ)K̂(λ),

where û denotes the Mellin transform of u.

6. CONCLUSION

We consider here one of simple case of conjugation problems since we have assumed the restriction
n+ 1. more complicated case for arbitrary n ∈ N can be considered in the same way, and we will try to
demonstrate it in forthcoming papers.
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