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Abstract—We study some discrete boundary value problems for discrete elliptic pseudo-differential
equations in a half-space. These statements are related with a special periodic factorization of an
elliptic symbol and a number of boundary conditions depends on an index of periodic factorization.
This approach was earlier used by authors for studying special types of discrete convolution
equations. Here we consider more general equations and functional spaces.
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1. INTRODUCTION

We will consider a certain class of discrete operators and equations in some so-called canonical
domains from Euclidean space R

m. These operators are defined by a given function on the m-
dimensional cube T

m = [−π, π]m, such a function is called a symbol of the discrete operator. Simple
examples of such operators have the form

ud(x̃) �−→
∑

x̃∈Dd

Ad(x̃− ỹ)ud(ỹ), x̃ ∈ Dd,

where Dd = hZm ∩D, h>0, D is a domain D ⊂ R
m, Ad, ud are functions of a discrete variable x̃ ∈ hZm,

and the given function Ad(x̃) is called a kernel of the operator. Such operators and related ones are called
discrete convolutions and were studied from different points of view in a lot of papers (see, for example,
[2, 9, 10, 12–17]).

This paper is devoted to more general operators and equations related to the special canonical
domain D = R

m
+ = {x ∈ R

m : x = (x1, · · · , xm), xm > 0} although there are some first results for other
canonical domains, for example D = Ca

+ = {x ∈ R
m : x = (x′, xm), xm > a|x′|, a > 0} [19–21]. We

will develop a certain discrete theory similar [3, 4].
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2. DIGITAL PSEUDO-DIFFERENTIAL OPERATORS
In this section we give some auxiliary data and definitions for our studies. Let ud(x̃) be a function

of a discrete variable x̃ ∈ hZm, h > 0. The discrete Fourier transform Fd of the function ud is called the
following series

(Fdud)(ξ) ≡ ũ(ξ) ≡
∑

x̃∈hZm

eix̃·ξud(x̃)h
m, ξ ∈ �T

m, � ≡ h−1,

if the series converges. Evidently the function ũ(ξ) is defined on R
m, ant it is a periodic function with

basic cube of periods �T
m; such functions we call periodic functions.

The Fourier transform is an isomorphism between L2(hZ
m) and L2(�T

m), moreover

(F−1
d ũd)(x̃) =

1

(2π)m

∫

�Tm

e−ix̃·ξũ(ξ)dξ, x̃ ∈ hZm.

Using divided differences and their Fourier transforms we introduce discrete functional spaces.
Definition 1. Discrete Sobolev–Slobodetskii space Hs(hZm), s ∈ R, consists of functions for which

the following norm

||ud||s =

⎛

⎝
∫

�Tm

(1 + |ζ̂2|)s|ũd(ξ)|2dξ

⎞

⎠
1/2

is finite,

ζ̂2 ≡ �
2

m∑

k=1

(eihξk − 1)2, ζ̂k = �(eihξk − 1)2, k = 1, 2, . . . ,m..

Definition 2. The discrete space Hs(Dd) consists of functions from Hs(hZm) for which their
supports belong to Dd. A norm in the space Hs(Dd) is induced by the norm of Hs(hZm). The space
Hs

+(Dd) consists of functions of a discrete variable defined in Dd which admit continuation on the whole
Hs(hZm). The norm in such a space is given by the formula ||ud||+s = inf ||�ud||s, where infimum is
taken over all continuations �.

We will denote by H̃s(Dd), H̃
s(hZm \Dd) images of the spaces Hs(Dd),H

s(hZm \Dd) under
discrete Fourier transform Fd. Similar functional spaces were introduced and studied in the paper [11],
there are a lot of their useful properties.

Let Ãd(ξ) be a measurable periodic function with basic cube of periods �T
m. The function Ãd(ξ) is

called a symbol of digital pseudo-differential operator Ad, which is defined by the formula

(Adud)(x̃) =
1

(2π)m

∑

ỹ∈hZm

∫

�Tm

eiξ·(x̃−ỹ)Ãd(ξ)ũd(ξ)dξ, x̃ ∈ hZm.

The symbol Ãd(ξ) is called an elliptic symbol if

ess inf
ξ∈�Tm

Ãd(ξ)| > 0.

We denoted by Eα the class of periodic symbols satisfying the condition

c1(1 + |ζ̂2|)α
2 ≤ |Ad(ξ)| ≤ c2(1 + |ζ̂2|)α

2 (1)

with constants c1, c2 non-depending on h.
Remark 1. We use this definition taking into account in future limit transfer from discrete structure

to continue one, and |ζ̂2| ∼ |ξ|2, h → 0.

Theorem 1. A digital pseudo-differential operator with symbol Ãd(ξ) ∈ Eα is a linear bounded
operator Ad : Hs(hZm) → Hs−α(hZm) with a norm non-depending on h.

Each such operator generates the equation
(Adud)(x̃) = vd(x̃), x̃ ∈ Dd, (2)

and we will seek the solutionud ∈ Hs(Dd) for the given right-hand side vd ∈ Hs
+(Dd) and given operator

Ad with symbol Ãd(ξ) ∈ Eα.
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3. DISCRETE EQUATIONS IN A HALF-SPACE

In this section we describe an auxiliary technique for studying solvability of the equation (2) for the
special case D = R

m
+ .

We will remind here the classical Hilbert transform and its connections with boundary properties of
analytic functions [5–7] and will describe same properties of its periodic analogue.

The classical Hilbert transform is defined by the following one-dimensional singular integral

(Hu)(x) = p.v.

+∞∫

−∞

u(y)dy

x− y
, x ∈ R.

This transform plays key role under studying solvability of model elliptic pseudo-differential equations
in a multidimensional half-space R

m
+ = {x ∈ R

m : x = (x1, · · · , xm), xm > 0}. Its periodic analogue is
the following

(Hperu)(x) =
1

2πi
p.v.

π∫

−π

cot
x− y

2
u(y)dy, x ∈ [−π, π].

It was shown [14] that this periodic singular integral appears under studying discrete equations in the
discrete half-space Zm

+ = Z
m ∩R

m
+ , also such integrals appear under summation of Fourier series [8].

Let us denote by P+, P− projection operators on Dd, hZ
m \Dd respectively. To apply the discrete

Fourier transform Fd to the equation (2) we need to know what are the operators FdP+, FdP−. It was
done in papers [12, 14], and here we will briefly describe these constructions.

One can define a discrete analogue of the Schwartz space S(hZm) (see for example [11]) and
introduce for such functions the following operators which are generated by periodic analogue of the
Hilbert transform, ξ = (ξ′, ξm),

(H
per
ξ′ ũd)(ξ) =

h

2πi
p.v.

�π∫

−�π

cot
h(ξm − ηm)

2
ũd(ξ

′, ηm)dηm, ξ′ ∈ �T
m−1,

P
per
ξ′ = 1/2(I +H

per
ξ′ ), Q

per
ξ′ = 1/2(I −H

per
ξ′ ).

Lemma 1. We have the following relations

FdP+ = P
per
ξ′ F, FdP− = Q

per
ξ′ F.

Lemma 1 implies that a solvability of the equation (2) is closely related to a solvability of one-
dimensional singular integral equation with the periodic Hilbert transform and a parameter ξ′ ∈ �T

m−1.
Such an equation can be solved with the help of so called periodic Riemann problem [14] which is
formulated in the following way.

Let us denote by Π± the upper and lower half-strips in a complex plane C,

Π± = {z ∈ C : z = t+ is, t ∈ [−π, π], ±s > 0}.
Finding two functionsΦ±(t), t ∈ [−π, π] (from appropriate functional spaces), which admit an analytical
continuation into Π± and satisfy the linear relation

Φ+(t) = G(t)Φ−(t) + g(t), (3)

where G(t), g(t) are given functions on [−π, π], G(−π) = G(π), g(−π) = g(π). If G(t) ≡ 1 then the
problem (3) is called a jump problem.

Lemma 2. For |s| < 1/2, the operators P
per
ξ′ , Q

per
ξ′ are bounded projectors P

per
ξ′ : H̃s(hZm) →

H̃s(Dd), Q
per
ξ′ : H̃s(hZm) → H̃s(hZm \Dd), and a jump problem has unique solutionΦ+ ∈ H̃s(Dd),

Φ− ∈ H̃s(hZm \Dd) for arbitrary g ∈ H̃s(hZm),

Φ+ = P
per
ξ′ g, Φ− = −Q

per
ξ′ g.
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To study the general Riemann boundary value problem (3) we will use the following concept.

Definition 3. Periodic factorization of an elliptic symbol Ãd(ξ) ∈ Eα is called its representation in
the form Ãd(ξ) = Ãd,+(ξ) · Ãd,−(ξ), where the factors Ãd,±(ξ) admit an analytical continuation into
half-strips �Π± on the last variable ξm for all fixed ξ′ ∈ �T

m−1 and satisfy the estimates

|Ã±1
d,+(ξ)| ≤ c1(1 + |ζ̂2τ |)±

æ
2 , |Ã±1

d,−(ξ)| ≤ c2(1 + |ζ̂2τ |)±
α−æ

2 ,

with constants c1, c2 non-depending on h,

ζ̂2τ ≡ �
2

(
m−1∑

k=1

(e−ihξk − 1)2 + (e−ih(ξm+iτ) − 1)2

)
, ξm + iτ ∈ �Π±.

The number æ ∈ R is called an index of periodic factorization.
For some simple cases one can use the topological formula

æ =
1

2π

�π∫

−�π

d arg Ãd(·, ξm),

where Ãd(·, ξm) means that ξ′ ∈ �T
m−1 is fixed, and the integral is the integral in Stieltjes sense. It

means that we need to calculate divided by 2π variation of the argument of the symbol Ãd(ξ) when ξm
varies from −�π to �π under fixed ξ′.

Example 1. Let Ãd(ξ) = k2 + ξ̂2, k ∈ R, such that the condition (1) is satisfied, in other words Ad

is the discrete Laplacian plus k2I. The variation of an argument mentioned above can be calculated
immediately, and it equals to 1.

4. SOLVABILITY

As we will see the index of factorization very influences on the solvability picture of the equation (3).

Theorem 2. If the elliptic symbol Ãd(ξ) ∈ Eα admits periodic factorization with index æ so
that |æ− s| < 1/2 then the the equation (2) has unique solution in the space Hs(Dd) for arbitrary
right-hand side vd ∈ Hs−α(Dd).

Proof. Let �vd be an arbitrary continuation of vd on the whole hZm so that �vd ∈ Hs−α(hZm). Let
wd(x̃) = (�vd)(x̃)− (Adud)(x̃) and rewrite (Adud)(x̃)+wd(x̃) = (�vd)(x̃). Further applying the discrete
Fourier transform Fd and using the periodic factorization we write

Ãd,+(ξ)ũd(ξ) + Ã−1
d,−(ξ)w̃d(ξ) = Ã−1

d,−(ξ)�̃vd(ξ).

According to Theorem 1 we have Ãd,+(ξ)ũd(ξ) ∈ H̃s−æ(hZm), Ã−1
d,−(ξ)w̃d(ξ) ∈ H̃s−α+α−æ(hZm)

and analogously Ã−1
d,−(ξ)�̃vd(ξ) ∈ H̃s−æ(hZm). Moreover, really Ãd,+(ξ)ũd(ξ) ∈ H̃s−æ(Dd) in view of a

holomorphic property, and accurate considerations with supports of Ãd,−(ξ) and w̃d(ξ) show that in fact
Ã−1

d,−(ξ)w̃d(ξ) ∈ H̃s−æ(hZm \Dd).

Thus we obtain a variant of the jump problem for the space H̃s−æ(hZm) which can be solved by
Lemma 2. According to this lemma we have

Ãd,+(ξ)ũd(ξ) = P
per
ξ′ (Ã−1

d,−(ξ)�̃vd(ξ))

or finally

ũd(ξ) = Ã−1
d,+(ξ)P

per
ξ′ (Ã−1

d,−(ξ)�̃vd(ξ)).

It finishes the proof. �

Remark 2. It is easy to see that the solution does not depend on choice of continuation �vd.
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Here we consider more complicated case when the condition |æ− s| < 1/2 does not hold. There
are two possibilities in this situation, and we consider one case which leads to typical boundary value
problems. The following result is obtained in [18].

Theorem 3. Let æ− s = n+ δ, n ∈ N, |δ| < 1/2. Then a general solution of the equation (2) in
Fourier images has the following form

ũd(ξ) = Ã−1
d,+(ξ)Xn(ξ)P

per
ξ′ (X−1

n (ξ)Ã−1
d,−(ξ)�̃vd(ξ)) + Ã−1

d,+(ξ)
n−1∑

k=0

ck(ξ
′)ζ̂km,

where Xn(ξ) is an arbitrary polynomial of order n of variables ζ̂k = �(e−ihξk − 1), k = 1, · · · ,m,
satisfying the condition (1), ck(ξ′), j = 0, 1, · · · , n− 1, are arbitrary functions fromHsk(hT

m−1), sk =
s− æ+ k − 1/2.

Theorem 3 implies that if we want to have a unique solution in the case æ− s = n+ δ, n ∈
N, |δ| < 1/2, we need some additional conditions to determine uniquely unknown functions ck(ξ

′), k =
0, 1, · · · , n− 1. This case we will discuss in the next section.

Corollary 1. Let æ− s = n+ δ,∈ N, |δ| < 1/2, vd ≡ 0. A general solution of the equation (2)
has the following form

ũd(ξ
′, ξm) = Ã−1

d,+(ξ)
n−1∑

k=0

ck(ξ
′)ζ̂km. (4)

5. BOUNDARY VALUE PROBLEMS

This section is a direct continuation of the previous one and gives a statement of simple boundary
value problem for the equation (2). We start from a formula for general solution for the equation (2)
including unknown functions ck(ξ

′), k = 0, 1. · · · , n− 1. For simplicity we consider a homogeneous
equation (2) and the formula (4) although all results will be valid for inhomogeneous case without
additional special requirements.

Let us introduce the following boundary conditions

(Bd,jud)(x̃
′, 0) = bd,j(x̃

′), j = 0, 1. · · · , n− 1, (5)

where Bd,j is digital pseudo-differential operators of order βj ∈ R with symbols B̃d,j(ξ) ∈ Eβj

(Bd,jud)(x̃) =
1

(2π)m

∫

�Tm

∑

ỹ∈hZm

eiξ·(x̃−ỹ)B̃j(ξ)ũd(ξ)dξ.

One can rewrite boundary conditions (5) in Fourier images

h−1π∫

−h−1π

B̃d,j(ξ
′, ξm)ũd(ξ

′, ξm)dξm = b̃d,j(ξ
′), j = 0, 1. · · · , n− 1, (6)

so that according to properties of digital pseudo-differential operators (Theorem 1) and trace properties
[11] we need to require bd,j(x̃′) ∈ Hs−βj−1/2(hZm−1).

Let us denote

sjk(ξ
′) =

�π∫

−�π

Ã−1
d,+(ξ)B̃d,j(ξ

′, ξm)ζ̂kmdξm.

Now we can formulate the following result.
Theorem 4. If æ− s = n+ δ, n ∈ N, |δ| < 1/2, then the boundary value problem (2), (5) has a

unique solution in the space Hs(Dd) for arbitrary bd,j ∈ Hs−βj−1/2(hZm−1), j = 0, · · · , n− 1, iff

det(skj(ξ
′))n−1

k,j=0 
= 0, ∀ ξ′ ∈ T
m−1. (7)
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A priori estimate holds

||ud||s ≤ c
n−1∑

j=0

[bd,j]s−βj−1/2,

where c does not depend on h, and [·]s denotes Hs-norm in the space Hs(hZm−1).

Proof. Substituting the general solution of the equation (2) into boundary conditions (6) we have

�π∫

−�π

Ã−1
d,+(ξ)B̃d,j(ξ

′, ξm)

n−1∑

k=0

ck(ξ
′)ζ̂kmdξm = b̃d,j(ξ

′), j = 0, 1. · · · , n − 1,

and further

n−1∑

k=0

ck(ξ
′)

�π∫

−�π

Ã−1
d,+(ξ)B̃d,j(ξ

′, ξm)ζ̂kmdξm = b̃d,j(ξ
′), j = 0, 1. · · · , n − 1,

Thus, we obtain the following system of linear algebraic equations

n−1∑

k=0

sjk(ξ
′)ck(ξ

′) = b̃d,j(ξ
′), j = 0, 1. · · · , n − 1, (8)

with respect to unknown functions ck(ξ
′), k = 0, 1. · · · , n− 1. The condition (7) is necessary and

sufficient for a unique solvability of inhomogeneous system.

A priori estimates can be easily obtained using properties of pseudo-differential operators and
appropriate properties of discrete Hs-spaces. �

The condition (7) is a variant of Shapiro–Lopatinskii condition [1].

6. A COMPARISON BETWEEN DISCRETE AND CONTINUOUS

The continuous analogue of the considered discrete boundary value problem
{
(Adud)(x̃) = 0,

Bd,jud|x̃m=0 = bd,j(x̃
′),

(9)

j = 0, 1, ..., n − 1, is the following
{
(Au)(x) = 0,

Bju|xm=0 = bj(x
′),

(10)

j = 0, 1, ..., n − 1, where A is a pseudo-differential operator with the symbol Ã(ξ) satisfying the
condition

c1(1 + |ξ|)α ≤ |Ã(ξ)| ≤ c2(1 + |ξ|)α,

Bj , j = 0, 1, ..., n − 1, are also pseudo-differential operators with symbols B̃j(ξ) satisfying similar
condition

c3(1 + |ξ|)βj ≤ |B̃j(ξ)| ≤ c4(1 + |ξ|)βj .

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 43 No. 6 2022
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6.1. Solving the Problem (10)

Here we will remind some constructions from [1].
A solution of the problem (10) is constructed in the following way [1]. Using factorization for the

symbol Ã(ξ) with the index æ such that æ− s = n+ δ, n ∈ N, |δ| < 1/2,

Ã(ξ) = Ã+(ξ) · Ã−(ξ)

we can write a general solution for the homogeneous pseudo-differential equation

ũ(ξ) = Ã−1
+ (ξ)

n−1∑

k=0

C̃k(ξ
′)(iξm)k. (11)

Then we use our boundary operators Bj and with properties of the Fourier transform we obtain the
following relations

∞∫

−∞

Ã−1
+ (ξ)B̃j(ξ

′, ξm)

n−1∑

k=0

C̃k(ξ
′)(iξm)kdξm = b̃j(ξ

′), j = 0, 1. · · · , n− 1,

If we will introduce notations

Sjk(ξ
′) =

∞∫

−∞

Ã−1
+ (ξ)B̃j(ξ

′, ξm)(iξm)kdξm,

we obtain a system of linear algebraic equations with respect to unknown functions C̃k(ξ
′), k =

0, 1, ..., n − 1,

n−1∑

k=0

Sjk(ξ
′)C̃k(ξ

′) = b̃j(ξ
′), j = 0, 1. · · · , n− 1. (12)

The condition

ess inf
ξ′∈Rm−1

|det(Sjk(ξ
′))| > 0

is necessary and sufficient condition for unique solvability of the boundary value problem (10).
Since the solutions ud and u are fully determined by solutions ck and Ck we need to compare the

systems (8) and (12).

6.2. A Comparison

Lemma 3. Let A andB be non-degenerated matrices and ||A−C||R6n→Rn ∼ ε for enough small
ε > 0. Then ||A−1 − C−1||R6n→Rn ∼ ε.

Proof. Indeed, the following property can be easily verified.

C−1 −A−1 = C−1(A− C)A−1,

so that

||A−1 − C−1||Rn→Rn ≤ ||C−1||Rn→Rn ||A− C||Rn→Rn ||A−1||Rn→Rn ,

and the assertion is proved. �

Lemma 4. If we have two n× n-systems of linear algebraic equations

Ax = b, CX = B

such that detA 
= 0 and for enough small ε > 0 ||A− C||Rn→Rn < ε, ||B − b||Rn < ε then we have
the following estimate for unique solutions x and X

||X − x||Rn < const ε.
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Proof. First, the matrix C is also invertible, it follows from our assumptions. Let us represent

X − x = C−1B −A−1b = C−1B − C−1b+ C−1b−A−1b = C−1(B − b) + (C−1 −A−1)b

Therefore, we have

||X − x||Rn ≤ ||C−1||Rn→Rn ||B − b||Rn + ||C−1 −A−1||Rn→Rn ||b||Rn ,

from which we obtain the required estimate. �

We will use these lemmas taking into account that we have some parameter ξ′. Now we want to
estimate |B̃(ξ′)− b̃(ξ′)| for ξ′ ∈ �T

m−1, where

B̃(ξ′) = (b̃0(ξ
′), b̃1(ξ

′), ..., b̃n−1(ξ
′))T ,

b̃(ξ′) = (b̃d,0(ξ
′), b̃d,1(ξ

′), ..., b̃d,n−1(ξ
′))T .

Also, we will estimate the matrix difference (sjk)
n−1
j,k=0− (Sjk)

n−1
j,k=0. For this purpose we need a special

choice of approximate constructions.

6.3. Discrete Approximations; a Special Choice

Given boundary value problem (10) we construct the operator Ad, boundary operators Bd,j , j =
0, 1, ..., n − 1 and the right-hand side

b̃(ξ′) = (b̃d,0(ξ
′), b̃d,1(ξ

′), ..., b̃d,n−1(ξ
′))T .

in the following way.

For bj(x′), j = 0, 1, ..., n − 1 we take its Fourier transform b̃j(ξ
′), its restriction on �T

m−1, then we
take the periodic continuation on R

m−1 and then inverse discrete Fourier transform. Thus, we obtain a
discrete function bd,j(x̃; ) defined on hZm−1.

For the symbol B̃j(ξ
′, ξm) we use similar method. We take its restriction on �T

m, then we periodically
continue it on the whole Rm, and such obtained symbol we call B̃d,j(ξ

′, ξm).

Finally, the periodic symbol Ãd(ξ) is constructed from two factors Ãd,+(ξ), Ad,−(ξ) which are created
like B̃d,j(ξ

′, ξm).
We will suppose in this section that such discrete constructions are done and we consider the discrete

boundary value problem (9) with such data.
Lemma 5. We have the following estimate for βj < s+ δ − 1, j = 0, 1, ..., n − 1,

|sjk(ξ′)− Sjk(ξ
′)| ≤ const h

for all ξ′ ∈ �T
m−1.

Proof. Let us consider the difference

sjk(ξ
′)− Sjk(ξ

′) =

�π∫

−�π

Ã−1
d,+(ξ)B̃d,j(ξ

′, ξm)ζ̂kmdξm −
∞∫

−∞

Ã−1
+ (ξ)B̃j(ξ

′, ξm)(iξm)kdξm

=

�π∫

−�π

Ã−1
+ (ξ)B̃j(ξ

′, ξm)
(
ζ̂km − (iξm)k

)
dξm +

⎛

⎝
−�π∫

−∞

+

∞∫

�π

⎞

⎠ Ã−1
+ (ξ)B̃j(ξ

′, ξm)(iξm)kdξm,

according to our choice. We have

|Ã−1
+ (ξ)B̃j(ξ

′, ξm)| ≤ const(1 + |ξ|)βj−æ

in view of our assumptions on A+(ξ)B̃j(ξ). Now we will prove the following estimate
∣∣∣ζ̂km − (iξm)k

∣∣∣ ≤ k2h|ξm|k+1, k ∈ N. (13)
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Indeed, ζm = �(eiξmh − 1) and using the Taylor series eiξmh =
+∞∑
k=0

(iξmh)k

k! we can obtain

�(eiξmh − 1) =

+∞∑

k=1

ikξkmhk−1

k!
= iξm

+∞∑

k=1

ik−1ξk−1
m hk−1

k!
= iξmeiξmh.

Thus, ζ̂km = (iξm)keikξmh and

ζ̂km − (iξm)k = (iξm)k(eikξmh − 1) = (iξm)k
eikξmh − 1

kh
kh = (iξm)kkh(ikξm)eikξmh.

After these calculations the inequality (13) is obtained immediately.

Now we estimate
∣∣∣∣∣∣

�π∫

−�π

Ã−1
+ (ξ)B̃j(ξ

′, ξm)
(
ζ̂km − ξkm

)
dξm

∣∣∣∣∣∣
≤ const h

+∞∫

0

(1 + |ξ′|+ |ξm|)βj−æ|ξm|k+1dξm

≤ const h

+∞∫

0

(1 + |ξ′|+ |ξm|)βj−æ+ndξm ≤ const h

under the condition βj < s+ δ − 1, j = 0, 1, ..., n − 1. One can remind that æ− s = n+ δ, and then
βj − æ+ n < −1.

Let us consider other integrals
∣∣∣∣∣∣

⎛

⎝
−�π∫

−∞

+

∞∫

�π

⎞

⎠ Ã−1
+ (ξ)B̃j(ξ

′, ξm)ξkmdξm

∣∣∣∣∣∣
≤ const

∞∫

�π

(1 + |ξ′|+ |ξm|)βj−æ+n−1dξm

≤ const(1 + |ξ′|+ �π)βj−æ+n ≤ const �βj−s−δ ≤ const h,

since βj − s− δ < −1, j = 0, 1, ..., n − 1. �

Remark 2. By the way, Lemma 5 guarantees that the condition

ess inf
ξ′∈Rm−1

|det(Sjk)(ξ
′)| > 0

implies the condition

ess inf
ξ′∈�Tm−1

|det(sjk)(ξ′)| > 0

for enough small h.

Lemma 6. Let ess infξ′∈Rm−1 |det(Sjk)(ξ
′)| > 0. If c̃k(ξ′), C̃k(ξ

′) are solutions of systems (8),
(12) respectively then the following estimates

|C̃k(ξ
′)| ≤ const

n−1∑

k=0

|b̃k(ξ′)|, ξ′ ∈ R
m−1,

|c̃k(ξ′)− C̃k(ξ
′)| ≤ const h

n−1∑

k=0

|b̃k(ξ′)|, ξ′ ∈ �T
m−1,

hold.

Proof. Indeed, let us denote C̃(ξ′) = (C̃1(ξ
′), ..., C̃n−1(ξ

′))T , c̃(ξ′) = (c̃1(ξ
′), ..., c̃n−1(ξ

′))T . Then

C̃(ξ′) = (Sjk)
−1(ξ′)B̃(ξ′).
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For the element Sjk(ξ
′) we have

|Sjk(ξ
′)| =

∣∣∣∣∣∣

∞∫

−∞

Ã−1
+ (ξ)B̃j(ξ

′, ξm)ξkmdξm

∣∣∣∣∣∣
≤ const

∞∫

−∞

(1 + |ξ|)βj−æ|ξm|kdξm

≤ const

∞∫

−∞

(1 + |ξ|)βj−æ+n−1dξm = const (1 + |ξ′|)βj−æ+n ≤ const,

since βj − æ+ n < −1. Thus, all elements Sjk are bounded. Then

|C̃k(ξ
′)| ≤ ||C̃(ξ′)||Rn =

n−1∑

k=0

|C̃k(ξ
′)| ≤ ||(Sjk)

−1(ξ′)||Rn→Rn ||B̃(ξ′)||Rn

≤ const ||B̃(ξ′)||Rn = const

n−1∑

k=0

|b̃k(ξ′)|.

Further, using Lemmas 3,4,5 and our choice for the vector b we conclude for ξ′ ∈ �T
m−1

|c̃k(ξ′)− C̃k(ξ
′)| ≤ ||c̃(ξ′)− C̃(ξ′)||Rn = ||(sjk)−1(ξ′)b̃− (Sjk)

−1(ξ′)B̃||Rn

≤ ||(sjk)−1(ξ′)− (Sjk)
−1(ξ′)||Rn→Rn ||b̃||Rn ≤ const ||(sjk)(ξ′)− (Sjk)(ξ

′)||Rn→Rn ||b̃||Rn

≤ const h||b̃||Rn

according to the fact that b̃ and B̃ are the same in �T
m−1. �

Theorem 5. Let æ be index of factorization of the symbol Ã(ξ) such that æ− s = n+ δ, n ∈
N, |δ| < 1/2, 1/2 < s < βj < s+ δ − 1, s > m+2

2 + (δ − βj), j = 0, 1, . . . , n− 1, and

ess inf
ξ′∈Rm−1

|det(Sjk)(ξ
′)| > 0.

A comparison between discrete and continuous solution of problems (9) and (10) respectively
is given by the estimate

|ud(x̃)− u(x̃)| ≤ const h

n−1∑

j=0

||bj ||βj
,

for enough small h, where const does not depend on h.

Proof. Now we are ready to compare the solutions (4) and (11). For ξ ∈ �T
m we have

ũd(ξ)− ũ(ξ) = Ã−1
d,+(ξ)

n−1∑

k=0

c̃k(ξ
′)ζ̂km − Ã−1

+ (ξ)
n−1∑

k=0

C̃k(ξ
′)ξkm

= Ã−1
+ (ξ)

(
n−1∑

k=0

(c̃k(ξ
′)− C̃k(ξ

′))ζ̂km +

n−1∑

k=0

C̃k(ξ
′)(ζ̂km − ξkm)

)

Using Lemmas 5,6 and the inequality (13) we obtain

|ũd(ξ)− ũ(ξ)| ≤ const (1 + |ξ|)−æ

(
h

n−1∑

k=0

|ξm|k|b̃k(ξ′)|+ h

n−1∑

k=0

|ξm|k+1|b̃k(ξ′)|
)

≤ const (1 + |ξ|)−æh
n−1∑

k=0

|ξm|k+1|b̃k(ξ′)|.
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Further, we compare the inverse Fourier transforms in discrete points.

ud(x̃)− u(x̃) =
1

(2π)m

∫

�Tm

e−ix̃ ξũd(ξ)dξ −
1

(2π)m

∫

Rm

e−ix̃ ξũ(ξ)dξ

=
1

(2π)m

∫

�Tm

e−ix̃ ξ(ũd(ξ)− ũ(ξ))dξ +
1

(2π)m

∫

Rm\�Tm

e−ix̃ ξũ(ξ)dξ.

Now we estimate

|ud(x̃)− u(x̃)| ≤ const

⎛

⎜⎝
∫

�Tm

|ũd(ξ)− ũ(ξ)|dξ +
∫

Rm\�Tm

|ũ(ξ)|dξ

⎞

⎟⎠

≤ const

⎛

⎜⎝h

∫

�Tm

(1 + |ξ|)−æ
n−1∑

k=0

|ξm|k+1|b̃k(ξ′)|dξ +
∫

Rm\�Tm

(1 + |ξ|)−æ|
n−1∑

k=0

C̃k(ξ
′)||ξm|kdξ

⎞

⎟⎠

≤ const

⎛

⎜⎝h

∫

Rm

(1 + |ξ|)−æ+n||B̃(ξ′)||dξ +
∫

Rm\�Tm

(1 + |ξ|)−æ+n||B̃(ξ′)||dξ

⎞

⎟⎠

according to Lemma 6. Since
+∞∫

−∞

(1 + |ξ′|+ |ξm|)−æ+ndξm ∼ (1 + |ξ′|)−æ+n+1,

+∞∫

−�π

(1 + |ξ′|+ |ξm|)−æ+ndξm ∼ (1 + |ξ′|+ �)−æ+n+1,

we conclude∫

Rm−1

(1 + |ξ′|)−æ+n+1|b̃j(ξ′)|dξ′ ≤ const

∫

Rm−1

(1 + |ξ′|)−æ+n+1−βj |b̃j(ξ′)|(1 + |ξ′|)βjdξ′ ≤

(we apply the Cauchy–Bunyakovsii inequality)

≤ const

⎛

⎝
∫

Rm−1

(1 + |ξ′|)2(−æ+n+1−βj)

⎞

⎠
1/2

||bj ||βj

= const||bj ||βj

⎛

⎝
∫

Sm−2

+∞∫

0

rm−2(1 + r)2(−æ+n+1−βj)drdS

⎞

⎠
1/2

The integral over (0,+∞) exists only if γ ≡ m− 2 + 2(−æ + n+ 1− βj) < −1, and this condition
takes the form s > m+1

2 + (δ − βj). The second integral
∫

Rm−1\�Tm−1

(1 + |ξ′|+ �)−æ+n+1|b̃j(ξ′)|dξ′

is estimated in the same way and we have the following upper bound const ||bj||h−γ−1. Since −γ− 1 > 1

under the condition s > m+2
2 + (δ − βj) we have common estimate

|ud(x̃)− u(x̃)| ≤ const h

n−1∑

j=0

||bj ||βj
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and the assertion is proved. �

CONCLUSION

These results show that a theory of discrete boundary value problems can be useful for finding
discrete approximate solutions of continuous boundary value problems. The next step is studying finite
approximations for considered discrete boundary value problems.
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