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ON CERTAIN OPERATOR FAMILIES
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Abstract. In this paper, we propose an abstract scheme for the study of special operators and apply

this scheme to examining elliptic pseudo-differential operators and related boundary-value problems on

manifolds with nonsmooth boundaries. In particular, we consider cases where boundaries may contain

conical points, edges of various dimensions, and even peak points. Using the constructions proposed, we

present well-posed formulations of boundary-value problems for elliptic pseudo-differential equations

on manifolds discussed in Sobolev–Slobodecky spaces.
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1. Introduction. In the theory of pseudo-differential operators and the corresponding equations

and boundary-value problem, a key role is played by the notion of the symbol of a pseudo-differential
operator. Pseudo-differential operators themselves, ellipticity conditions, and the Fredholm property
are defined in terms of symbols. The symbols are considered as functions defined on certain geometric

structures, for example, on smooth manifolds (cotangent bundles) in the case of pseudo-differential
operators. All arithmetical operations in the algebra of operator (factorized by the ideal of compact
operator) are inherited by the algebra of symbols, so that all attention is paid to the study of the

algebra of symbols, which can be commutative (the scalar case) or not (the matrix case). The approach
related to operator algebras is most popular in the last two or three decades (see [1, 7–9]), but there
also exists “analytic” works (see [2, 4–6, 10]) whose main theme is the description of conditions for

the Fredholm property of operators considered and the calculation of their indexes.
In this paper, we propose an operator approach to this problem based on considering special oper-

ators of the local type (see [11]); wide classes of pseudo-differential operators are of this type. Some

preliminary results can be found in the author’s works [12–15].

2. Operators of the local type and envelopes. We recall some general notions and ideas related
to special classes of operators and based on constructions proposed by I. B. Simonenko (see [11]).

2.1. Basic notions. Let H1 and H2 be Hilbert (Banach) spaces consisting of functions defined on

a compact manifold (perhaps, with boundary) M and A : H1 → H2 be a linear bounded operator.
Following [11], we introduce the following notion.

Definition 1. An operator A is called an operator of the local type if the operator PUAPV is compact
for any two compact disjoint sets K1,K2 ⊂ M , K1 ∩ K2 = ∅, where PK is the projector onto the

set K; more precisely,

(PKf)(x) =

{
f(x), x ∈ K;

0, x ∈ M \K
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for all f(x) ∈ H1(H2).

Below we consider only operators of the local type.
We denote by |||A||| the essential norm of the operator A,

|||A||| ≡ inf ||A+ T ||,
where the infimum is taken over all compact operators T : H1 → H2.

Definition 2. An operator Ax : H1 → H2 is called a local representative of an operator A at a point
x ∈ M if for any ε > 0 there exists a neighborhood U of the point x on the manifold M , x ∈ U ⊂ M ,

such that the inequality

|||PU (A−Ax)||| < ε

holds; notation A
x∼ Ax.

Definition 3. A symbol of an operator A is the operator-valued function A(x) : M → {Ax}x∈M
defined by its local representatives.

It is easy to verify (s [11]) that this definition of the symbol preserves all properties of the symbolic
calculus. Namely, up to a compact term, the following assertions hold:

• the product and sum of two operators correspond to the product and sum of their local repre-
sentatives;

• the adjoint operator corresponds to the adjoint local representative;
• the Fredholm property of an operator corresponds to the Fredholm property of the local repre-
sentative.

By a Fredholm operator we mean a linear bounded operator with finite index. In [11], the following
criterion of the Fredholm property is proved: an operator A is a Fredholm operator is and only if the

symbol A(x) consists of Fredholm operators.
Let {Ax}x∈M be a family of operators.

Definition 4. A family {Ax}x∈M is said to be locally continuous if for any ε > 0 and x0 ∈ M , there
exists a neighborhood U ⊂ M of the point x0 such that for any point x ∈ U , the following inequality
holds:

|||PU (Ax −Ax0)||| < ε.

Definition 5. An operator A is called an enveloping operator of a family {Ax}x∈M if

A
x∼ Ax ∀x ∈ M.

In [11], the existence of a unique (up to a compact term) enveloping operator for any locally con-
tinuous family {Ax}x∈M is proved.

2.2. Transplantation. Let H ′
1 and H ′

2 be Hilbert spaces consisting of functions defined on R
m and

Ã : H ′
1 → H ′

2 be a linear bounded operator. Since M is a compact manifold, each point x ∈ M

possesses a neighborhood U � x and a diffeomorphism ω : U → Dx ⊂ R
m, ω(x) ≡ y. We denote by Sω

the following (local) operator acting from Hk into H ′
k, k = 1, 2. For each function u ∈ Hk vanishing

outside U , we have

(Sωu)(y) =

{
u(ω−1(y)), y ∈ Dx,

0, y /∈ Dx.

The following definition corresponds to the notion of quasi-equivalence (see [11]).
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Definition 6. A local representative of an operator A : H1 → H2 at a point x ∈ M is an operator

Ã : H ′
1 → H ′

2 such that for any ε > 0, there exists a neighborhood Uj of the point x ∈ Uj ⊂ M for
which the inequality

|||gjAfj − Sω−1
j
ĝjÃf̂jSωj ||| < ε

holds for any pair of smooth functions fj and gj supported in U j; here f̂j and ĝj are their represen-

tations in local coordinates.

3. Ellipticity and Fredholm property. Starting from the above facts and taking into account

further applications to pseudo-differential operators, we give the following definition.

Definition 7. An operator A is said to be elliptic if its symbol consists of invertible operators.

We consider the case where the family {Ax}x∈M is not locally continuous in the whole but possesses
this property on some submanifoldsMk ⊆ M of dimensions k = 0, 1, . . . ,m. Thus, the submanifoldM0

is a finite union of various points of the boundary ∂M of the manifold M , Mn ≡ M is the initial
manifold, Mn−1 ≡ ∂M , Mk ⊂ Mn−1, k = 0, 1, . . . , n− 2. Let {Ax}x∈M be a family defined on M . We

assume that this family is locally continuous on M \
n−1⋃
k=1

Mk and there exist the limits lim
x→xk∈Mk

Ax,

which, in general, do not coincide with Axk
, and is locally continuous on each Mk \

k−1⋃
j=0

Mj and there

exist the limits lim
x→xj∈Mj

Ax, which, in general, do not coincide with Axj .

Now let A be an operator whose symbol is the family {Ax}x∈M described above.

Theorem 1. An elliptic operator is always a Fredholm operator.

Using a partition of unity on the manifold M , by an elliptic symbol A(x), one can construct n

operators Aj according to the number of singular submanifolds Mk, including the whole boundary ∂M
and the manifold M itself.

Theorem 2. The index of a Fredholm operator A can be calculated by the formula

IndA =

n∑
j=1

IndAj .

4. Pseudo-differential operators on conical bundles. We describe some applications of the
above abstract schema to the study of pseudo-differential operators and equations on manifolds with
nonsmooth boundaries. It is more convenient to do this in the context of vector bundles (see [3,

10]) since the definition of the cotangent bundle at nonsmooth points of the boundary meets some
difficulties.

4.1. Conical bundles. A conical bundle E over a manifold M is a bundle in the usual sense (see [3,
10]) with the baseM , fibers Rm, and a local trivialization of the form U×R

m, where a neighborhood U
is diffeomorphic to a certain cone in the m-dimensional space. These cones are different, depending on

the location of a point of the base. In particular, they are cones of the form R
m, Rm

+ = {x ∈ R
m : x =

(x′, xm), xm > 0}, or W k = R
k × Cm−k (W 0 ≡ Cm), where Cm−k is an acute convex cone in R

m−k,
which does not contain a whole straight line.

4.2. Pseudo-differential operator on a conical bundle. Now we present a construction of a pseudo-
differential operator A on an m-dimensional compact manifold M with boundary, which is determined

by a given function A(x, ξ), (x, ξ) ∈ E.
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Assume that A(x, ξ) is continuously differentiable by (x, ξ) ∈ E and satisfies the condition

c1
(
1 + |ξ|)α ≤ ∣∣a(x, ξ)∣∣ ≤ c2

(
1 + |ξ|)α, (1)

where α ∈ R is called the order of the operator. Here a(x, ξ), (x, ξ) ∈ U × R
m, is the symbol A(x, ξ),

(x, ξ) ∈ E, written in local coordinates. The generating function A(x, ξ) defined on the conical bundleE

is called the classical symbol of the operator; we say that the classical symbol is elliptic if A(x, ξ) �= 0
for all (x, ξ) ∈ E.

On the boundary ∂M of the manifold M , smooth submanifolds Mk (singularities) of dimension

0 ≤ k ≤ m − 1 are extracted. A local representative of the operator A at a point x0 ∈ M in a map
U � x0 is defined by the formula

(Ax0u)(x) =

∫
Dx0

∫
Rm

eiξ·(x−y)a(x0, ξ)u(y) dξdy, x ∈ Dx0 , (2)

and the structure of the canonical domain Dx0 has different type depending on the location of the
point x0 on the manifold M . The variants of the canonical domains Dx0 are R

m, Rm
+ = {x ∈ R

m :

x = (x′, xm), xm > 0}, and W k = R
k × Cm−k, where Cm−k is an acute convex cone in R

m−k.

Definition 8. The family {Ax} of the operators (2) is called the symbol of the pseudo-differential

operator A.

By a given symbol, one can construct the pseudo-differential operator itself.

If M is a compact manifold, then a special partition of unity exists on it (see [10, 12]). This means
that for any finite open covering {Uj}kj=1 of the manifold M , there exists a system of functions

{ϕj(x)}kj=1, ϕj(x) ∈ C∞(M), such that

(i) 0 ≤ ϕj(x) ≤ 1,
(ii) suppϕj ⊂ Uj,

(iii)
k∑

j=1
ϕj(x) = 1.

Thus, we have

f(x) =

k∑
j=1

ϕj(x)f(x)

for any function f defined on M .
On the manifold M , we fix two finite coverings and two partitions of unity corresponding to these

coverings, {Uj , fj}nj=1 and {Vj , gj}nj=1, such that Uj ⊂ Vj .

Definition 9. A pseudo-differential operator A on the manifold M is an operator representable in
the form

A =

n∑
j=1

Sω−1
j
f̂j · Ãxj · ĝjSωj + T,

where T : H1 → H2 is a compact operator, xj ∈ Uj , and Ãxj is a symbol from the family (2) at the
point xj .

Remark 1. Definition 9 is independent of the choice of an atlas, a partition of unity, and a local
coordinate system in the following sense: after such a replacement, a compact operator can only be

added to the local representative; we have seen this many times before (see [2, 10, 11]).

It is convenient to consider operators with symbols satisfying the condition (1) in Sobolev–Slobo-

detsky space Hs(M) (see [2]); as their local versions, we take the spaces Hs(Dx0). The space Hs(M)
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Fig. 1. Illustration to Theorem 2

is constructed by using a partition of unity (see [2]), and then an operator A : Hs(M) → Hs−α(M) is
a linear bounded operator of the local type.

Example 1. As an illustration to Theorem 2 and Definition 7, we describe the structure of a pseudo-
differential operator on a simple manifold with nonsmooth boundary shown in Fig. 1.

The operator defined on such a manifold by the local formulas (2) consists of five different operators:

one envelope A1 corresponds to inner points of the “top,” the second envelope A2 to smooth points
of the boundary, the third envelope A3 to the edge, and the fourth and fifth envelopes A4 and A5 are
separate operators corresponding to the conical points. To formulate the conditions of the Fredholm

property, one must preliminary state such conditions (the invertibility in the latter two cases) for all
five operators.

5. Local indexes and the Fredholm property. To formulate results on the Fredholm property of
an elliptic (in the sense of Definition 7) pseudo-differential operator, we must introduce some additional

characteristics of the classical symbol of an elliptic pseudo-differential operator (see [12, 13]).

We denote by
∗
Cm−k the conjugate cone for Cm−k:

∗
Cm−k =

{
x ∈ R

m : x · y > 0 ∀y ∈ Cm−k
}
;

let T (±
∗
Cm−k) denote the radial tubular domain over the cone ±

∗
Cm−k, i.e., a domain of the multidi-

mensional complex space C
m of the form R

m ±
∗
Cm−k.

Let a function a(ξ), ξ ∈ R
m, satisfy the condition (1). Introduce the notation ξ = (ξ′′, ξ′), ξ′′ =

(ξ1, . . . , ξk), ξ
′ = (ξk+1, . . . , ξm).

Definition 10. The k-wave factorization of a function a(ξ) with respect to the cone Cm−k is its

representation in the form

a(ξ) = a �=(ξ)a=(ξ),

where the factors a �=(ξ) and a=(ξ) satisfy the following conditions:

(1) a �=(ξ) and a=(ξ) are defined for all values ξ ∈ R
m, except for, perhaps, points of the form

R
k × ∂

( ∗
Cm−k ∪ (− ∗

Cm−k
))

;
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(2) a�=(ξ) and a=(ξ) admit analytic continuations into the redial tubular domains T (
∗
Cm−k) and

T (−
∗
Cm−k), respectively, for almost all ξ′′ ∈ R

k satisfying the estimates∣∣a±1
�= (ξ′′, ξ′ + iτ)

∣∣ ≤ c1
(
1 + |ξ|+ |τ |)±κk ,∣∣a±1

= (ξ′′, ξ′ − iτ)
∣∣ ≤ c2

(
1 + |ξ|+ |τ |)±(α−κk)

for all τ ∈
∗
Cm−k.

The number κk ∈ R is called the index of the k-wave factorization.

6. Ellipticity, Fredholm property, and boundary-value problems. Assume that the symbol
of an operator A is a locally continuous on Mk, k = 0, 1, . . . ,m, agreed family of operators. In

particular, these conditions are always fulfilled if the function A(x, ξ) defined on the conical bundle is
continuously differentiable up to the boundary. Then, due to the envelope theorem (see [11]), by the
operator symbol (2) we can construct n operators Ak, and all of them are Fredholm operators, then
the original operator also possesses the Fredholm property with index described in Theorem 2.

We denote by κn−1(x) the factorization index of the function A(x, ξ) at a point x ∈ ∂M \⋃m−2
k=0 Mk

(see [2]) and by κk(x) the index of k-wave factorization with respect to the cone Cm−k
x at points

x ∈ Mk, k = 0, 1, . . . , n−2. We assume that the function κk(x), k = 0, 1, . . . , n−1, can be continuously

extended to Mk. The last requirement is due to the fact that situations where Mk ∩ Mk−1 �= ∅ are
possible.

Remark 2. Similarly to [2], due to the uniqueness of the wave factorization (se [13]), one can verify
that the functions κk(x), k = 0, 1, . . . ,m − 1, are independent of the choice of a local coordinate

system.

Theorem 3. Assume that a classical elliptic symbol A(x, ξ) admits a k-wave factorization with respect
to cones Cm−k with indexes κk(x), k = 0, 1, . . . ,m− 2, satisfying the condition∣∣κk(x)− s

∣∣ < 1

2
∀x ∈ Mk, k = 0, 1, . . . ,m− 1. (3)

Then A : Hs(M) → Hs−α(M) is a Fredholm operator.

Remark 3. If the ellipticity is violated on submanifolds Mk, one must consider modifications of the
operator A based on boundary or coboundary operators (see [13, 15]). This occurs, in particular, if
one of the condition (3) is violated.
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