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DESCRIPTION OF A CLASS
OF EVOLUTIONARY EQUATIONS IN FERRODYNAMICS

Yu. P. Virchenko and A. V. Subbotin UDC 517.957.6

Abstract. In this paper, we state the problem of constructing evolution equations describing the dy-
namics of condensed matter with an internal structure. Within the framework of this statement, we
describe the class of evolution equations for vector and pseudovector fields on R

3 with an infinitesimal
shift defined by a second-order, divergent-type differential operator, which is invariant under transla-
tions of R3 and time translations and is transformed covariantly under rotations of R3. The case of
equations of this class with preserved solenoidality and unimodality of the field is studied separately.
A general formula for all operators corresponding to these equations is established.
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1. Introduction. In theoretical studies of physical problems by means of partial differential equa-
tions, the following key question arises: Which physical reasons can serve as the basis for constructing
suitable equations? Usually, the reasoning used in the construction of differential equations that ade-
quately describe physical reality is not an object of the theory of differential equations; this situation
has developed historically due to the fact that the most famous equations of mathematical physics (for
example, the heat equation, the system of hydrodynamical equations for Newtonian fluids, Maxwell’s
equations, etc.) are reliable from the physical point of view, and mathematical problems appeared
earlier are not very important from the mathematical point of view.

The situation changes completely when physicists must solve problems of derivation of adequate
differential equations in the study of physical situations that substantially differ from those already well
studied. In such cases, well-developed reasonings, such as the Lagrangian or Hamiltonian formalisms
(see, e.g., [1, 6, 7, 15]), do not lead to an unambiguous result. This situation arises, for example, in
the dynamics of condensed media with a complex internal structure whose instantaneous physical
state at each space point x ∈ R

3 is characterized by a collection of thermodynamical parameters
Xa, a = 1, . . . , N . Assume that possible values of these parameters belong to a certain domain of an
N -dimensional vector space L. Then the state of the medium at each time moment is described by a
set of time-depending fields X(x, t) = 〈Xa(x, t), a = 1, . . . , N〉, on R

3. The evolution of the state is
described by a system of evolutionary equations of the form

Ẋa(x, t) =
(
La[X ]

)
(x, t), a = 1, . . . , N, (1.1)

where the dot means differentiation by t and La is a differential operator of order s (in general,

nonlinear), La :
[
Cs,loc(R

3)
]N →

[
Cs,loc(R

3)
]N

, which can be represented by a set of vector-valued

component functions of the fields X(x, t) and their vector derivatives
(⊗n∇

)
⊗X(x, t), n = 1, . . . , s,
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which belong to
[
Cs,loc(L × (R3 × L)× · · · × (R3s × L)× R

3)
]N

:
(
La[X]

)
(x, t) = La

(
X , ∇⊗X, . . . , ∇⊗ · · · ⊗ ∇︸ ︷︷ ︸

s

⊗X; x, t
)
, a = 1, . . . , N.

The functions Xa(x, t), a = 1, . . . , N , are assumed to be s times continuously differentiable with
respect to the components of the vector x. Here and below ∇ is the gradient operator in R

3. We
denote by Ks(L) the linear manifold of all such operators.

The problem to be solved by a physicist is the appropriate and adequate construction of the op-
erator La. For solving this problem, the physicist must be guided only by the most general physical
principles. Moreover, it is necessary to construct a differential operator La such that solutions of the
system (1.1) satisfy certain conditions that determine in the space [Cs,loc(R

3)]N some differentiable

manifold M ⊂ [Cs,loc(R
3)]N . In this case, a meaningful mathematical problem occurs. It consists

of the description of the whole class of differential operators satisfying the general physical princi-
ples mentioned above and additional restrictions. A solution of this problem allows one to choose an
appropriate differential operator from the class considered.

In this paper, we are not interested in the well-posedness of initial-boundary-value problems for
Eqs. (1.1) defined by operators of the class Ks(L). We are only interested in the question of whether
the differential operators La of this class satisfy certain general requirements imposed by the physical
nature of the problem.

By the meaning of the physical situation described by Eqs. (1.1), we require that the operator La
be invariant with respect to the transformation group T⊗R3, where T is the translation group with
respect to the variable t and R3 is the translation group of the space R

3; moreover, the operator La
must be covariant with respect to the rotation group O3 of the space R

3. Naturally, we assume that
the linear space L is transformed by a representation of the group O3.

Since in what follows we will be interested not in the representations of the group O3 but in the
spaces where they act, we will call the space L a linear representation, which will not lead to a
confusion. In the general case, which is important from the point of view of physical applications, this
representation can be decomposed into the product of irreducible spin-tensor representations (see [10])
and a set of scalars (pseudoscalars) invariant under rotations of R3.

The condition of the invariance under the groups T and R3 is satisfied if and only if the vector-
valued functions La, a = 1, . . . , N , are explicitly independent of t and x. The covariance condition
imposes significant restrictions on the general form of these vector-valued functions and leads to a
rather wide linear manifold Ks(L). A significant narrowing of this manifold occurs when additional
conditions are imposed, i.e., when restricting the action of the operator to a suitable manifold M.
This is important from the point of view of the significance of the solution in physical applications.
Additionally, significant simplification occurs when the physical medium is not anisotropic. Then the
representation X does not contain constant tensors of second rank that describe anisotropy. In this
case, the medium is said to be spherically symmetric.

In this paper, we consider the problem on the description of the manifold K2(R
3), N = 3, in the case

where La is a second-order differential operator of divergent type. We discuss the cases where X is a
vector or pseudovector field (see, e.g., [12]). Moreover, we examine the case where the field X satisfies
additional conditions: unimodality X2(x, t) = const and solenoidality (∇,X) = 0. These conditions
determines a manifold M0 on which the evolutionary equation (1.1) surely possesses such invariants.
The solution of this problem is important in the dynamics of solid-state media with electric moment
(a vector case) and ferromagnetically ordered media (a pseudovector case).

2. Description of the manifold of divergent operators La. According to the general definition
of divergent differential operators (see, e.g., [5]), in the case considered where the differential operator
La is defined by a vector-valued function La, a = 1, . . . , N , which is invariant under transforms
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from T⊗R3 and covariant under transforms from the group O3, we say that Eq. (1.1) is an equation
of divergent type if the vector-valued function La has the form

La

(
X, ∇⊗X , . . . , ∇⊗ · · · ⊗ ∇︸ ︷︷ ︸

s

⊗X
)
= ∇kSa;k, a = 1, . . . , N, (2.1)

where

Sa;k ≡ Sa;k

(
X , ∇⊗X, . . . , ∇⊗ · · · ⊗ ∇︸ ︷︷ ︸

s

⊗X
)
∈
[
C1,loc

(
L× · · · ×

(
R
3s × L

))]3N

is a vector-valued function with values in L × R
3 whose components are labelled by the indexes

a = 1, . . . , N and k = 1, 2, 3. Here and below, we use the Einstein summation convention: if an index
appears twice in a single term, it implies summation of that term over all admissible values of the
index.

The importance of the study of evolutionary equations of divergent type is related to the fact that,
from the physical point of view, they determine the presence of so-called local conservation laws for
time-varying fieldsXa(x, t), a = 1, . . . , N . In this case, the vector-valued functions 〈Sa;k, a = 1, . . . , N 〉,
k = 1, 2, 3, play the role of flux densities of the corresponding fields.

Thus, the description of all differential operators of divergent type from the manifold Ks(L) consists
of the description of the linear manifold of all differential operators of the form (2.1) such that the
vector-valued function Sa;k possessed the covariance property. We will define this operator manifold
by the same symbol Ks(L) if this does not lead to a confusion. The following obvious assertion holds.

Theorem 2.1 (see, e.g., [4]). For L3-valued functions

Sa;k ∈
[
C1,loc

(
L ×

(
R
3 × L

)
× · · · ×

(
R
3(s−1) × L

))]3N

satisfying the condition

∇kSa;k = 0,

the following representation holds:

Sa;k = εklm∇lZa;m,

where

Za;m

(
X, ∇⊗X, . . . , ∇⊗ · · · ⊗ ∇︸ ︷︷ ︸

s

⊗X
)
∈
[
C1,loc

(
L × · · · × (R3(s−2) × L)

)]3N

is a vector-valued function and εklm is the Levi-Civita pseudotensor in R
3.

Therefore, to describe the manifold Ks(L), we must describe all vector-valued functions Sa;k sat-
isfying the covariance condition under rotations of the space, which represent actions of differential
operator of (s− 1)th order defined up to an arbitrary function εklm∇lZa;m indicated in the lemma.

Below, we are interesting in the manifold K2(L) of Eqs. (1.1) with the second-order differential

operator La :
[
C2,loc(R

3)
]N →

[
C2,loc(R

3)
]N

. In this case, the functions Sa;k are represented by the
actions of quasilinear first-order differential operators on the field X,

Sa;k

(
X,∇⊗X

)
= Ta,b;k,m(X)∇mXb + Ua; k(X). (2.2)

Here summation over b = 1, . . . , N is assumed. Due to the covariance of the functions Sa;k

(
X ,∇⊗X

)
,

the coefficients Ta,b;k,m(X) and the functions Ua;k(X) are, respectively, tensor- and vector-valued
functions only of the values of the fields Xa(x, t). (In what follows, we do not distinguish between
covariant and contravariant indexes since the space R

3 is Euclidean, see [12]).)
The formula (2.2) implies that to find all operators from K2(L), we must describe the linear manifold

of all vector-valued functions of the form (2.2) up to the term εklm∇lZa;m(X), where Za;m(X) is an
arbitrary, twice continuously differentiable vector-valued function.
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Since the functions Ta,b;k,m(X) and Ua;k(X) do not depend explicitly on x ∈ R
3, it suffices to

describe linear manifolds of all tensor-valued functions Ta,b;k,m(X) and all vector-valued functions

Ua;k(X) as function of the vector X ∈ L in the spaces
[
C1,loc(L)

](3N)2
and

[
C1,loc(L)

]3N
, respectively.

Note that the functions Ta,b;k,m(X) and Ua;k(X) form representations of the group O3 in the

representation spaces
(
L × R

3
)2

and L × R
3, respectively. Let

{
T
(α)
a,b;k,m; α ∈ T

}
,

{
Ua;k(X); β ∈ U

}

be finite sets of functions that form bases of these representations. Functions from these bases are
linearly independent monomials with respect to the tensor product in an algebra with a fixed set
of generators. This set consists of irreducible representations, which form the representation X, and
the second-rank tensor δ (the Kronecker delta) and the third-rank pseudotensor ε (the Levi-Civita
symbol), which are universal for R3.

Using the basis decompositions of an arbitrary representation of the group, we can describe the
manifold considered as follows.

Theorem 2.2. The continuously differentiable tensor-valued function Ta,b;k,m(X) : L → (L × R
3)2

and the continuously differentiable vector-valued function Ua;k(X) : L → L × R
3 are defined by the

formulas

Ta,b;k,m(X) =
∑
α∈T

f (α)(X)T
(α)
a,b;k,m(X), Ua;k(X) =

∑
β∈U

g(β)(X)U
(β)
a;k (X),

where the coefficients of the decompositions of f (α), α ∈ T , and g(β), β ∈ U , are continuously differ-
entiable (scalar-valued) functions of the set of variables, which consists of invariants of the represen-
tation L with respect to the action of the group O3.

Based on the linear functional manifolds Ta,b;k,m(X), α ∈ T , and Ua;k(X), β ∈ U , we obtain the
following description of the manifold Ks(L).

Theorem 2.3. The set of vector-valued functions T
(α)
a,b;k,m(X)∇mXb, α ∈ T , is linearly independent

if X ∈
[
C2,loc(R

3)
]N

.

Proof. Assume that the set of vector-valued functions T
(α)
a,b;k,m(X)∇mXb, α ∈ T , is linearly dependent,

i.e., there exists coefficients c(α), α ∈ T , such that∑
α∈T

c(α)T
(α)
a,b;k,m(X)∇mXb = 0.

Due to the arbitrariness of the field X, we linearize this equation near the function X = const:∑
α∈T

c(α)T
(α)
a,b;k,m(X)∇mδXb = 0.

We set in this equality δXb = Ab exp(k,x) with an arbitrary constant set Ab, b = 1, . . . , N , and a
vector k ∈ R

3; here and below, (·, ·) is the scalar product in R
3. We obtain the equality∑

α∈T
c(α)T

(α)
a,b;k,m(X)Abkm = 0.

Differentiating this equality by the components of these vectors and taking into account the arbitrari-
ness of the vectors k ∈ R

3 and A = 〈Ab, b = 1, . . . , N〉 ∈ L, we arrive at the identity∑
α∈T

c(α)T
(α)
a,b;k,m(X) = 0.

This means the linear dependence of the basis functions of the linear representation formed by the

tensor-valued functions T
(α)
a,b;k,m(X). �
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Corollary 2.1. All vector-valued functions Sa;k(X ,∇⊗X) that define elements of the linear manifold
Ks(L) can be represented by the formula

Sa;k(X ,∇⊗X) =
∑
α∈T

f (α)(X)T
(α)
a,b;k,m(X)∇mXb +

∑
β∈U

g(β)(X)U
(β)
a;k (X), (2.3)

up to a function εklm∇lZa;m, k = 1, 2, 3, where Za;m(X), a = 1, . . . , N , m = 1, 2, 3, is an arbitrary,
twice continuously differentiable vector-valued function.

Since for all sets of arbitrary coefficient functions f (α)(X), α ∈ T , and g(β)(X), β ∈ U , the
expression (2.3) for the function Sa;k(X ,∇⊗X), cannot be equal εklm∇lZa;m, where Za;m(X), m =
1, 2, 3, a = 1, . . . , N , is some vector-valued function, we conclude that the following assertion holds.

Corollary 2.2. The formula (2.1) provides a complete description of the linear manifold Ks(L) of
differential operators La[X], where the vector-valued functions Sa;k(X,∇ ⊗ X) are defined by the
formula (2.3).

Thus, the description of the manifold Ks(L) is reduced to the description of the set of basis functions

T
(α)
a,b;k,m, α ∈ T , and U

(β)
a;k , β ∈ U , of the corresponding representations of the group O3, whose

argument set consists of the set X of fields from the representation space L and which are covariant
under transformations from of the group O3.

3. Description of the manifold K2(R
3) for vector fields. Based on the general formulation of

the problem given in the previous section, we now state the specific problem on the description of the
manifold K2(L) of all evolutionary equations for vector fields. In this case, the set X consists of the
components of the vector P = 〈Pj ; j = 1, 2, 3〉, i.e., L = R

3.
Introducing the corresponding notation for the components of the flux density Sj;k(P ,∇⊗P ) and

the coefficients U
(β)
j;k (P ) and Tj,l;k,m(P ) of the decomposition (2.2), we rewrite it in the form

Sj;k(P ,∇⊗ P ) = Tj,l;k,m(P )∇mPl + Uj;k(P ).

Applying elements of the group O3 to the left-hand side of this equality transforms it as a second-rank
tensor. For this reason, the coefficients Tj,l;k,m(P ) and Uj;k(P ) are fourth- and second-rank tensors,
respectively. Thus, according to Corollary 2.2, the description of all differential operators from K2(R

3)
is reduced to the definition of the sets T and U , respectively, of all basis functions for representations of
the group O3 in the form of tensors of fourth and second rank. We search for required basis functions
as monomials with respect to the tensor product. The set of generators of the tensor algebra in the
spherically symmetric case consists of the fundamental tensors of the second rank δ, the third-rank
pseudotensor ε, and the vector P .

Technically, the solution of the corresponding algebraic problem is not difficult. We formulate the
final result as follows.

Theorem 3.1 (see [13]). The set U consists of the two tensors δ and P ⊗ P . The set T consists of
the ten elements of the following types:

(1) the three tensors of the form δ ⊗ δ;
(2) the six tensors P ⊗ P ⊗ δ;
(3) the tensor P ⊗ P ⊗ P ⊗P .

Proof. For the proof, one must enumerate all available possibilities of constructing monomials from
generators such that monomials obtained lead to tensor representations of the required type.

The test of linear independence of all monomials obtained T
(α)
j,l;k,m(P ) is reduced to the test of the

linear independence of monomials separately for each of the groups indicated in the statement of the
theorem since elements of different groups differ by the powers of the vector P : it is not involved in
the elements of the first group, it is involved in the elements of the second group quadratically, and its
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power in the unique element of the third group is equal to four. Therefore, the element P ⊗P ⊗P ⊗P
is linearly independent of the other elements. The test of the linear independence of the elements in the
first and second groups consists of the analysis of the equations for the coefficients c(α), α = 1, . . . , 9:

c(1)T
(1)
j,l;k,m(P ) + c(2)T

(2)
j,l;k,m(P ) + c(3)T

(3)
j,l;k,m(P ) = 0

for the first group and
9∑

α=4

c(α)T
(α)
j,l;k,m(P ) = 0

for the second group. In turn, the proof of the equality c(α) = 0, α = 1, . . . , 9, is reduced to the
nondegeneracy test of two simple systems of homogeneous linear equations for the coefficients c(α),
α = 1, 2, 3, and c(α), α = 4, . . . , 9, respectively. �

Since in the spherically symmetric case, there exists a unique invariant P 2 of the rotation group,
the general formula (2.2) for the case of vector fields leads one to the description of all flux densities
of fields that define all manifolds K2(R

3) of divergent-type differential operators acting in the space
of twice continuously differentiable vector fields P on R

3,

Sj;k(P ,∇⊗ P ) = g(1)(P 2)δjk + g(2)(P 2)PjPk +

10∑
α=1

f (α)(P 2)T
(α)
j,l;k,m(P )∇mPl, (3.1)

where we change the arbitrary coefficient functions

f (α)(P ) ⇒ f (α)(P 2), α = 1, . . . , 10, g(β)(P ) ⇒ g(β)(P 2), β = 1, 2,

by continuously differentiable functions on (0,∞) depending on the unique invariant P 2. The convo-

lutions of T
(α)
j,l;k,m(P )∇mPl with arbitrary coefficients f (α)(P 2) in the formula (3.1) are represented in

the notation of the vector algebra in R
3 by the following list corresponding to the order used in the

statement of Theorem 3.1:

δjk(∇,P ), ∇jPk ±∇kPj ; (3.2)

δjk(P ,∇)P 2, Pk∇jP
2 ± Pj∇kP

2, Pj(P ,∇)Pk ± Pk(P ,∇)Pj , PjPk(∇,P ); (3.3)

PjPk(P ,∇)P 2. (3.4)

Here we present the flux densities in the form of symmetric and skew-symmetric combinations, taking
into account their irreducibility.

Thus, we obtain the following theorem.

Theorem 3.2 (see [13]). All divergent-type differential operators Lj [P ] from K2(R
3)

Lj [P ] = ∇kSj;k

(
P ,∇⊗ P

)

on the space of twice continuously differentiable vector fields P on R
3 are defined by the formula (3.1),

where g(1), g(2), f (α), α = 1, . . . , 10, are arbitrary continuously differentiable functions of P 2 and the

tensors T
(α)
j,l;k,m(P ) are defined by the formulas (3.2)–(3.4).

4. Description of the manifold K2(R
3) for pseudovector fields. Now we consider the manifold

K2(R
3) of all second-order differential operators of divergent type for pseudovector fields. In this case,

the set X consists of the components of the pseudovector M = 〈Mj ; j = 1, 2, 3〉 in the space L = R
3.

Introducing the notation for the components of the flux densities Sj;k(M ,∇⊗M ) and for the functions

U
(β)
j;k (M ) and Tj,l;k,m(M ) similarly to Sec. 3, we rewrite the formula (2.2) in the form

Sj;k

(
M ,∇⊗M

)
= Tj,l;k,m(M)∇mXl + Uj;k(M ).
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Since the action of elements of the group O3 on the left-hand side of this equality transforms it as a
second-rank tensor in the case of continuous rotations of the space and changes the sign in the case of
reflections of R3, we conclude that Sj;k(M ,∇ ⊗M) is a second-rank pseudotensor. For this reason,
the coefficients Tj,l;k,m(M ) and Uj; k(M) are a fourth-rank tensor and a second-rank pseudotensor,
respectively.

Thus, the description of operators from K2(L) consists of the definition of the sets T and U of
all linearly independent monomials with respect to the tensor product that represent fourth-rank
tensors and second-rank pseudotensors, respectively. As in Sec. 3, we examine the spherically sym-
metric case, where the generators of the tensor algebra are the tensor δ, the pseudotensor ε, and the
pseudovector M . A simple algebraic analysis leads us to the following assertion.

Theorem 4.1 (see [14]). The set U is empty. The set T consists of the 26 elements listed below :

(1) the three tensors of the form δ ⊗ δ;
(2) the six tensors M ⊗M ⊗ δ;
(3) the six tensors δ ⊗ (M̂ε);
(4) the four tensors M ⊗ ε;
(5) the six tensors M ⊗M ⊗ (M̂ε);
(6) the tensor M ⊗M ⊗M ⊗M .

Here ̂ means convolution.

Proof. The proof is based on the fact that in the constructions of monomials as four-rank tensors, the
total number of factors that are equal to the pseudovector M or the pseudotensor ε must be even.
Moreover, the product may contain no more than one Levi-Civita symbol due to the tensor identity

εijkεlmn = det

⎛
⎝
δil δim δin
δjl δjm δjn
δkl δkm δkn

⎞
⎠

(see, e.g., [11]), which expresses the tensor product of the Levi-Civita symbols through the linear
combination of monomials, which does not contain the Levi-Civita symbol.

The test of the linear independence of all monomials obtained T
(α)
j,l;k,m(M ) is reduced to the test of

their linear independence within each of the groups listed in the statement of the theorem. These groups
contain all monomials that have the same powers of the pseudovector M ; namely, the elements of the
first group do not contain this pseudovector; the elements of the third and fourth groups depend linearly
on it; the elements of the second group depend on it quadratically, and its powers in the elements of
the fifth and sixth groups are equal to 3 and 4, respectively. The element M⊗M⊗M⊗M is linearly
independent of the other elements. The test of the linear independence of elements in all other groups
consists of the analysis of the equations for the coefficients c(α), α = 1, . . . , 25, which are listed in the
order specified above:

c(1)T
(1)
j,l;k,m(M ) + c(2)T

(2)
j,l;k,m(M ) + c(3)T

(3)
j,l;k,m(M ) = 0,

19∑
α=10

c(α)T
(α)
j,l;k,m(M) = 0,

9∑
α=4

c(α)T
(α)
j,l;k,m(M ) = 0,

25∑
α=20

c(α)T
(α)
j,l;k,m(M ) = 0.

The analysis of these equations is reduced to the nondegeneracy test of the systems of homogeneous
linear equations for the coefficients c(α), α = 1, . . . , 25, of these equations; the first two systems consist
of 3 and 10 equations, respectively, whereas each of the other two systems contain 6 equations. �

Since in the spherically symmetric case considered now, there exists a unique invariant M2 of the
rotation group, the general representation (2.2) for the case of a pseudovector field allows one to
describe all flux densities for the manifold K2(R

3) of differential operators of divergent type in the
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space of twice continuously differentiable pseudovector fields M on R
3,

Sj;k(M ,∇⊗M ) =

26∑
α=1

f (α)(M 2)T
(α)
j,l;k,m(M )∇mMl, (4.1)

where we change the arbitrary coefficient functions f (α)(M) ⇒ f (α)(M 2), α = 1, . . . , 26, by continu-
ously differentiable functions on (0,∞) depending on the unique invariant M2.

The convolutions T
(α)
j,l;k,m(M)∇mMl in the formula (4.1) are first-order quasilinear differential oper-

ators; we represent them in the notation of the vector algebra in R
3 by the following list corresponding

to the order used in the statement of Theorem 4.1:

δjk(∇,M ), ∇jMk ±∇kMj ; (4.2)

δjk(M ,∇)M 2, Mk∇jM
2 ±Mj∇kM

2, Mj(M ,∇)Mk ±Mk(M ,∇)Mj , MjMk(∇,M); (4.3)

δjk(M , [∇,M ]), [M ,∇]jMk ± [M ,∇]kMj, εjlnMn∇kMl ± εklnMn∇jMl, εjkmMm(∇,M ); (4.4)

Mj[∇,M ]k ±Mk[∇,M ]j , εjkl(M ,∇)Ml, εjkl∇lM
2; (4.5)

MjMk(M , [∇,M ]), εjkmMm(M ,∇)M 2, (4.6)

Mj [M , (M ,∇)M ]k ±Mk[M , (M ,∇)M ]j , Mj [M ,∇]kM
2 ±Mk[M ,∇]jM

2; (4.7)

MjMk(M ,∇)M2. (4.8)

As in the case of vector fields, we present for monomials their symmetric and skew-symmetric combi-
nations, taking into account their linear independence.

Using the sum (4.1) of all linear differential operators with arbitrary coefficients f (α)(M2), we arrive
at the following assertion.

Theorem 4.2. All operators Lj [M ] ∈ K2(L) in the case of a pseudovector field M can be represented
by the following formula:

Lj[M ] = ∇kSj;k

(
M ,∇⊗M

)
=

26∑
α=1

∇kf
(α)(M2)T

(α)
j,l;k,m(M)∇mMl,

where the first-order operators T
(α)
j,l;k,m(M)∇mMl, α = 1, . . . , 26, are listed in (4.2)–(4.8).

5. Class K2(R
3) ∩ M0(R

3) for vector fields. In Secs. 5 and 6, we present the main results of
this paper. We describe manifolds that consist of all operators Lj from K2(R

3), which belong to the
operator class M0(R

3) and preserve the unimodality and solenoidality properties during the evolution
of the field M . The requirement of preserving these properties of the field is just the special constraint
in constructing suitable operators adequate to the physical conditions of the problem. In this paper,
we show that the class K2(R

3) ∩M0(R
3) is trivial, i.e., consists of the zero operator.

Let a field P (x, t) possess the unimodality property, P 2(x, t) = P 2 = const. Then all functions
f (α)(P 2), α = 1, . . . , 10, and g(β)(P 2), β = 1, 2, are constant. Moreover, under this condition, the flux
densities Sj;k defined by the expressions (3.3) and (3.4), which have the derivatives ∇jP

2, are equal
to zero. Moreover, if the field P (x, t) is solenoidal, (∇,P ) = 0, then the flux densities vanish since the
expressions (3.2) and (3.3) contain the divergence of the field considered. As a result, if the field P

is unimodal and solenoidal, then the general equation Ṗj = Lj [P ], which governs its dynamics and
contains the differential operator described in Theorem 3.2 and the formula (3.1), takes the form

Ṗj = g(2)(P ,∇)Pj +
(
f (2) − f (3)

)
ΔPj

+ f (7)∇k(Pj(P ,∇)Pk + Pk(P ,∇)Pj) + f (8)∇k(Pj(P ,∇)Pk − Pk(P ,∇)Pj). (5.1)
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Here we used the numeration of the constants f (α) according to the order of the corresponding flux
densities described by the formulas (3.2)–(3.4).

An operator Lj [P ] preserves the unimodality and solenoidality properties of a filed P (x, t) if and
only if for any twice continuously differentiable field on R

3, the following identities hold:

∇jLj [P ] = 0, PjLj[P ] = 0. (5.2)

Theorem 5.1. K2(R
3) ∩M0(R

3) = {0}.

Proof. We show that if the field P possesses the properties P 2 = P 2 and (∇,P ) = 0, then Eqs. (5.2)

are valid only in the case where f (3) = f (2), f (7) = f (8) = 0.
We scalarly multiply the right-hand side of Eq. (5.2) by P . Since (P , (P ,∇)P ) = (∇,P )P 2 = 0,

taking into account the relation (P , L[(P )]) = 0, we obtain the equality

(
f (2) − f (3)

)
PjΔPj

+ f (7)Pj∇k(Pj(P ,∇)Pk + Pk(P ,∇)Pj) + f (8)Pj∇k(Pj(P ,∇)Pk − Pk(P ,∇)Pj) = 0. (5.3)

Since, by the assumption, P 2 = const, we have Pj∇kPj = 0 and ∇kPk = 0; therefore,

Pj∇kPj(P ,∇)Pk = P 2∇kPl∇lPk + (Pj∇kPj) · (P ,∇)Pk = P 2 SpA2, (5.4)

where we have introduced the matrix Akl = (A)kl ≡ ∇kPl. Similarly we obtain

Pj∇kPk(P ,∇)Pj = ∇kPkPj(P ,∇)Pj −
(
(P ,∇)Pj

)
·
(
(P ,∇)Pj

)
= −(PlAlj)

2. (5.5)

Finally,

PjΔPj = Pj∇k∇kPj = ∇k(Pj∇kPj)− (∇kPj) · (∇kPj) = − SpAAT . (5.6)

Thus, substituting the expressions (5.4)–(5.6) into (5.3), we have

c(1) Sp(AAT ) + c(2) SpA2 + c(3)(PlAlj)
2 = 0, (5.7)

where

c(1) = f (3) − f (2), c(2) =
(
f (7) + f (8)

)
P 2, c(3) = f (8) − f (7).

Substitute the decomposition Pj = P
(0)
j +A

(0)
jk xk + . . . into (5.7), where P (0) = P (0) is a constant

vector’ and A
(0)
jk are the matrix elements at the spatial point x = 0. In Eq. (5.7), consider the term of

zeroth power with respect to x, which occurs after the decomposition of the left-hand side. The matrix

A is arbitrary, except for the elements A
(0)
jk , which must satisfy the following two conditions: A

(0)
jj = 0,

due to the relation (∇,P )0 = 0, and the vector P
(0)
j is its left eigenvector with zero eigenvalue.

Substituting into Eq. (5.7) consecutively the matrices A
⎛
⎝
0 1 0
0 0 0
0 0 0

⎞
⎠ ,

⎛
⎝
1 0 0
0 −1 0
0 0 0

⎞
⎠ ,

⎛
⎝
1 0 0
0 −1 0
1 1 0

⎞
⎠

with the vector P
(0)
l = 〈0, 0, 1〉, we obtain, according to the order of the substitution, c1 = 0, c2 = 0,

c3 = 0, i.e., f (2) = f (3), f (7) = f (8) = 0.
After substituting these equalities into (5.1), one must verify whether the equation

Ṗj = g(2)(P ,∇)Pj , j = 1, 2, 3,

may possess an invariant (∇,P ) = 0 with a continuously differentiable field P on R
3 under the

condition P 2 = const. Assuming this and applying the divergence operation to both sides of the
equation, we have

0 = ∇j(P ,∇)Pj = (P ,∇)P + (∇jPl) · (∇lPj) = SpA2;
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in the general case, this is impossible for the matrix A with properties stated above. It suffices to take
a symmetric matrix. �

6. Description of the class K2(R
3) ∩ M0(R

3) for pseudovector fields. Let a pseudovector
field M(x, t) possess the unimodality property, M2(x, t) = M2 = const. All functions f (α)(M 2),
α = 1, . . . , 26, becomes constant and the flux densities Sj;k defined by the expressions (4.3) and (4.5)–

(4.8), which have the derivatives ∇jM
2, are equal to zero. Such densities are densities with numbers

4–6, 19, 21, and 24–26 from the list presented above. If, in addition, the field M (x, t) is solenoidal,
i.e., (∇,M) = 0, then the flux densities with numbers 1, 9, and 15 also vanish due to the divergence
(∇,M ).

As a result, under the unimodality and solenoidality conditions, the general equation Ṁj = Lj [M ],
which governs the dynamics of the field M and contains the differential operator described in Theo-
rem 4.2 and the formula (4.1), takes the form

Ṁj =
(
f (2) − f (3)

)
ΔMj +

(
f (7) + f (8)

)
∇k

(
Mj(M ,∇)Mk

)
+

(
f (7) − f (8)

)
∇k

(
Mk(M ,∇)Mj

)

+ f (10)∇j

(
M , [∇,M ]

)
+

(
f (11) + f (12)

)
∇k

(
[M ,∇]jMk

)
+

(
f (11) − f (12)

)
∇k

(
[M ,∇]kMj

)

+ εjln
(
f (13) + f (14)

)
∇k(Mn∇kMl) + εkln

(
f (13) − f (14)

)
∇k(Mn∇jMl)

+
(
f (16) + f (17)

)
∇k

(
Mj [∇,M ]k

)
+

(
f (16) − f (17)

)
∇k

(
Mk[∇,M ]j

)

+ εjklf
(18)∇k(M ,∇)Ml + f (20)∇kMjMk

(
M , [∇,M ]

)

+
(
f (22) + f (23)

)
∇k

(
Mj

[
M , (M ,∇)M

]
k

)
+
(
f (22) − f (23)

)
∇k

(
Mk

[
M , (M ,∇)M

]
j

)
. (6.1)

As in the previous section, we numerate the constants f (α) according the corresponding densities in
the formulas (4.2)–(4.7).

An operator Lj [M ] preserves the unimodality and solenoidality properties of the field M(x, t) if and
only if for any twice continuously differentiable pseudovector field M on R

3, the following identities
hold:

∇jLj [M ] = 0, MjLj[M ] = 0. (6.2)

We examine these equalities for arbitrary fields M from the class K2(R
3) ∩M0(R

3). The analysis of
Eqs. (6.2) consists of the following seven steps.

I. The first equality (6.2) yields the following equation for the coefficients f (α):

f (7)∇j∇k

(
Mj(M ,∇)Mk +Mk(M ,∇)Mj

)
+ f (10)Δ

(
M , [∇,M ]

)

+ f (11)∇j∇k

(
[M ,∇]jMk + [M ,∇]kMj

)
+ f (13)∇j∇k

(
εjlnMn∇kMl + εklnMn∇jMl

)

+ f (16)∇j∇k

(
Mj [∇,M ]k +Mk[∇,M ]j

)
+ f (20)∇j∇kMjMk

(
M , [∇,M ]

)

+ f (22)∇j∇k

(
Mj

[
M , (M ,∇)M

]
k
+Mk

[
M , (M ,∇)M

]
j

)
= 0, (6.3)

whereas the second to the equation
(
f (2) − f (3)

)
MjΔMj + f (10)Mj∇j

(
M , [∇,M ]

)
+ εkln

(
f (13) − f (14)

)
Mj∇k(Mn∇jMl)

+
(
f (7) + f (8)

)
Mj∇k

(
Mj(M ,∇)Mk

)
+

(
f (7) − f (8)

)
Mj∇k

(
Mk(M ,∇)Mj

)

+
(
f (11) + f (12)

)
Mj∇k

(
[M ,∇]jMk

)
+

(
f (16) − f (17)

)
Mj∇k

(
Mk[∇,M ]j

)

+ εjklf
(18)Mj∇k(M ,∇)Ml + f (20)Mj∇kMjMk

(
M , [∇,M ]

)

+
(
f (22) + f (23)

)
Mj∇k

(
Mj

[
M , (M ,∇)M

]
k

)
+

(
f (22) − f (23)

)
Mj∇k

(
Mk

[
M , (M ,∇)M

]
j

)
; (6.4)
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in (6.4), we take into account the identities

Mj∇k[M ,∇]kMj = Mj∇kMj[∇,M ]k = εjlnMj∇k(Mn∇kMl) = 0.

We assume that the coefficient f (α) of these equations are universal, i.e., independent of the length
of the vector M . Then these two equations are split into series of equations according to the power of
the field M in the corresponding terms. Namely, from Eq. (6.3) we obtain the equations

f (10)Δ
(
M , [∇,M ]

)
+ 2f (11)∇j∇k[M ,∇]jMk + 2εjlnf

(13)∇j∇kMn∇kMl

+ 2f (16)∇j∇kMj [∇,M ]k = 0 (6.5)

with the terms of power 2, to the equation

f (7)∇j∇kMj(M ,∇)Mk = 0 (6.6)

with the term of power 3, and the equation

f (20)∇j∇kMjMk

(
M , [∇,M ]

)
+ 2f (22)∇j∇kMj

[
M , (M ,∇)M

]
k
= 0 (6.7)

with the term of power 4. Similarly, from Eq. (6.4) we obtain the equations
(
f (2) − f (3))MjΔMj = 0; (6.8)

f (10)Mj∇j

(
M , [∇,M ]

)
+ εjklf

(18)Mj∇k

(
(M ,∇)Ml

)
+ εkln

(
f (13) − f (14)

)
Mj∇k(Mn∇jMl)

+
(
f (11) + f (12)

)
Mj∇k

(
[M ,∇]jMk

)
+

(
f (16) − f (17)

)
Mj∇k

(
Mk[∇,M ]j

)
= 0; (6.9)

(
f (7) + f (8)

)
Mj∇k

(
Mj(M ,∇)Mk

)
+

(
f (7) − f (8)

)
Mj∇k

(
Mk(M ,∇)Mj

)
= 0; (6.10)

f (20)Mj∇kMjMk

(
M , [∇,M ]

)
+

(
f (22) + f (23)

)
Mj∇k

(
Mj

[
M , (M ,∇)M

]
k

)

+
(
f (22) − f (23)

)
Mj∇k

(
Mk

[
M , (M ,∇)M

]
j

)
= 0. (6.11)

II. Equality (6.8) for unimodal fields M holds only under the condition (∇kMl)(∇kMl) = 0; this

implies that M = const. Then f (2) = f (3). In the general case of a unimodal solenoidal field, we have

∇j∇kMj(M ,∇)Mk �= 0.

Then Eq. (6.6) implies that f (7) = 0. In this case, due to the relation

Mj(∇kMj) · (M ,∇)Mk = 0,

we obtain from (6.10)

f (8)MjMk∇k(M ,∇)Mj) = 0.

Since in the general case, the expression of the coefficient f (8) in nonzero, we have f (8) = 0.

III. We find all other zero coefficients f (α) under the condition that Eqs. (6.5), (6.7), (6.9), and (6.11)
are fulfilled. We find relationships between the coefficients by linearizing these equalities near the
constant field M (0). In these equations, we set M = M (0) +m, where, due to the solenoidality and
unimodality of the field M , the field m is also solenoidal and lies in the plane orthogonal to M (0).
The linearization of these equations with respect to the field m leads to the following equalities, which
must identically hold for an arbitrary field satisfying the conditions (M (0),m) = 0 and (∇,m) = 0:

(
f (10) + 2f (13)

)(
M (0), [∇,Δm]

)
= 0, (6.12)

(
f (20) − 2f (22)

)(
M (0),∇

)2(
M (0), [∇,m]

)
= 0, (6.13)(

f (10) + f (13) − f (14) + f (16) − f (17) + f (18)
)(

M (0),∇
)(
M (0), [∇,m]

)
= 0, (6.14)
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(
f (20) − f (22) − f (23)

)
M2

(
M (0),∇

)(
M (0), [∇,m]

)
= 0. (6.15)

Substituting m = A exp(x,k) into Eqs. (6.12)–(6.15), where the vectors k and A are such that

(A,M (0)) = 0 and (A,k) = 0, respectively, we obtain in each equality nonzero factors depending on
the field m. Then

f (10) + 2f (13) = 0, f (20) = 2f (22), f (22) = f (23), (6.16)

f (18) = f (13) + f (14) + f (17) − f (16). (6.17)

Taking into account Eq. (6.16), we transform Eq. (6.7) to the form

f (20)
(
∇j∇kMjMk

(
M , [∇,M ]

)
+∇j∇kMj

[
M , (M ,∇)M

]
k

)
= 0, (6.18)

IV. Now we simplify Eqs. (6.5), (6.7), (6.9), and (6.11). Substitute the field

Mj = Aj cos(x,k) +Bj sin(x,k), where kjAj = kjBj = AjBj = 0,

into Eq. (6.18); note that it belongs to the manifold M0(R
3). Then

(M ,∇)M = 0,
(
M , [∇,M ]

)
= εjklkkAjBl.

Hence (6.18) is reduced to the equality

f (20)(∇kMj)(∇jMk) = 0 = f (20)(SpA2).

We can choose a traceless matrix (A)jk ≡ Ajk = ∇jMk, which is diagonal at the point x = 0; therefore,

SpA2 �= 0. Hence f (20) = 0 and f (22) = f (23) = 0.
Taking into account (6.16), we reduce Eq. (6.5) to the form

f (13)
(
εjln∇jMnΔMl −Δ

(
M , [∇,M ]

))
+∇j∇k

(
f (11)[M ,∇]jMk + f (16)Mj [∇,M ]k

)
= 0. (6.19)

Using the unimodality and solenoidality conditions of the field M , we transform terms (6.19) as
follows:

∇j∇k[M ,∇]jMk = εjlnBljkAnk, ∇j∇kMj[∇,M ]k = εjlnAnkBljk,

εjln∇j(MnΔMl)−Δ
(
M , [∇,M ]

)
= −2εjln

[
AjlBnkk +AknBljk

]
,

where Bljk ≡ ∇j∇kMl is a third-rank tensor, symmetric with respect to the pair of the last indexes.
Substituting these expressions into Eq. (6.19), we obtain

εjln

[(
f (11) + f (16)

)
AnkBljk − 2f (13)

(
AknBljk +AjlBnkk

)]
= 0. (6.20)

V. Now we examine the possibility of the local fulfillment of Eq. (6.20) in a neighborhood of an
arbitrary fixed point x0 with nonzero coefficients. Without loss of generality, we assume that x0 = 0.
We use the power decomposition of the field M at this point:

Mj = M
(0)
j +Ajkxk +

1

2
Bjklxkxl + o

(
|x|2

)
. (6.21)

The coefficients of the decomposition must satisfy the conditions

M 2 = M
(0)
j M

(0)
j + 2M

(0)
j Ajkxk +

(
AjkAjl +M

(0)
j Bjkl

)
xkxl + o

(
|x|2

)
= M2

and, therefore,

2M
(0)
j Ajkxk +AjkAjlxkxl +M

(0)
j Bjklxkxl + o

(
|x|2

)
= 0.

Moreover, the following relation must hold:

∇jMj = Ajj +Bjjkxk + o
(
|x|

)
= 0.
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The decomposition (6.21) holds if and only if the coefficients Ajk and Bjkl satisfy the following con-
ditions:

Bjkl = Bjlk, Ajj = 0, M
(0)
j Ajk = 0, Bjjk = 0, AjkAjl +M

(0)
j Bjkl = 0. (6.22)

VI. We prove that f (13) = 0. Without loss of generality, we assume that M
(0)
3 = M . Then from (6.22)

we have

Aj3 = 0, AmkAml +MB3kl = 0, k, l = 1, 2, 3.

We set Akl = δk3(1− δl3). Then

(ATA)kl = (1− δk3)(1− δl3);

due to (6.22), we see that B3kl = 0 if at least one of the indexes is equal to 3 and B3kl = −M−1 for
k, l �= 3.

The elements Bjkl, where j = 1, 2, can be chosen arbitrarily, but they must satisfy the conditions

Bjjk = 0, Bjkl = Bjlk.

We set

Bjkl = b(j)Bkl, j = 1, k, l = 1, 2, 3,

where the matrix Bkl is symmetric. Consider the condition Bjjk = 0. Since B33k = 0, for k = 3 we
have

B113 +B223 = b(1)B13 + b(2)B23 ≡ b(1)b1 + b(2)b2 = 0.

This equality can be satisfied for any given numbers b(1) and b(2) by an appropriate choice of the
numbers b1 and b2.

For k = 1, 2, the condition Bjjk = 0 yields

b(1)B1k + b(2)B2k = 0,

i.e., B2k = λB1k, where λ = −b(1)/b(2) ∈ R is an arbitrary number. Finally, since the matrix Bkl is
symmetric, we obtain

Bkl = b

(
1 λ
λ λ2

)
, b = B11.

Using the tensors Ajk and Bjkl introduced above, we conclude that for b(1) = b(2), the following
equalities hold:

εjlnAnkBljk = bb(2)(1− λ2), εjlnAjlBnkk = 0, εjlnAknBljk = 0,

where we have set B133 = B233 for the unknown coefficients Bk33, k = 1, 2. Substituting these values
into (6.20), we have 2bb(2)(1− λ2)f (13) = 0; this implies f (13) = 0.

VII. Since f (13) = 0 and εjlnAnkBljk is nonzero in the general case, the relation (6.20) implies

f (11) = −f (16). Taking into account this equality together with f (13) = 0 and Eqs. (6.16) and (6.17),
we rewrite Eq. (6.9) in the following form:

f (12)Mj∇k[M ,∇]jMk − f (14)Mj∇k

(
εklnMn∇jMl − εjkl(M ,∇)Ml

)

+ f (16)Mj∇k

(
Mk[∇,M ]j − [M ,∇]jMk − εjkl(M ,∇)Ml

)

− f (17)Mj∇k

(
Mk[∇,M ]j − εjkl(M ,∇)Ml

)
= 0.

Using the solenoidality and unimodality of the field M and introducing the notation Ajk = ∇jMk and
Bjkl = ∇k∇lMj , after simple transformations we reduce this equation to the form

(
f (12) − f (14) − f (17)

)
εklmMlAkjAjm − f (14)εjkmMlAkjAlm − 2f (16)εjlmMjMkBmkl = 0;
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here the left-hand side contains the decomposition over linearly independent invariants consisting
of the tensors Ajk and Bjkl and the pseudovector Mj . The equation obtained, which holds for any
solenoidal, unimodal, twice continuously differentiable field M on R

3, implies

f (16) = 0, f (14) = 0, f (12) = f (17).

Introducing the notation f (12) = γ, taking into account all restrictions for the coefficients f (α) obtained
above, and using (6.1), we obtain the following general form of differential operators of the class
K2(R

3) ∩M0(R
3):

Lj [M ] = γ∇k

(
[M ,∇]jMk − [M ,∇]kMj +Mj [∇,M ]k −Mk[∇,M ]j + εjkl(M ,∇)Ml

)
. (6.23)

Thus, we have proved the following main theorem, which provides a description of the class K2(R
3)∩

M0(R
3) for pseudovector fields.

Theorem 6.1. Consider the linear manifold K2(R
3)∩M0(R

3) of all divergent-type differential equa-
tions

Ṁj = Lj[M ]

for pseudovector solenoidal unimodal fields M on R
3 from the space [C2,loc(R

3)]3 with second-order dif-
ferential operators Lj [M ] acting in this space and covariant under the action of elements the group O3

that leave invariant any manifold{
M : (∇,M ) = 0; M2 = M2, x ∈ R

3
}
⊂

[
C2,loc(R

3)
]3

of this space with an arbitrary value of M2 ∈ (0,∞). This linear manifold has dimension one; it is
described by the formula (6.23) with an arbitrary constant γ ∈ R.

7. Conclusion. The idea on which this study is based is related to the problem of describing
the dynamics of complexly arranged condensed media at the macroscopic level. The specific result
obtained in this work is related to the well-known problem in the physics of magnetism of constructing
an adequate evolutionary equation for the field M of the magnetization density with irreversible
dynamics (see [1–3, 15]). The well-known evolutionary Landau–Lifshitz equation (see, e.g., [8, 9]) in
the spherically symmetric case has the form

Ṁ = γ[M ,ΔM ].

It is a divergent-type equation since

[M ,ΔM ]j = ∇kεjlnMl∇kMn;

obviously, it preserves the unimodality of the field but does not preserve the solenoidality. Moreover,
it does not possess the dissipation property since the real part of the eigenvalues of the (3×3)-matrix,
which is the symbol of the linearization of the operator Lj[M ], are zero. In our opinion, attempts of
overcoming these disadvantages of the evolutionary ferrodynamics equation based on generalizations
of the Landau–Lifshitz equation are not successful (see, e.g., [2, 3]). The operator Lj [M ] = γ[M ,ΔM ]
is not involved in the right-hand side of the evolutionary equation

Ṁj = γ∇k

(
[M ,∇]jMk − [M ,∇]kMj +Mj [∇,M ]k −Mk[∇,M ]j + εjkl(M ,∇)Ml

)

with the operator Lj [·] defined by the formula (6.23); Theorem 6.1 explains this fact.
Note that, due to the existence of two invariants, the symbol of the linearization of the operator

defined by the formula (6.23) has two zero eigenvalues. Therefore, the third eigenvalue is necessarily
real. By an appropriate choice of the sign of the constant γ, one can achieve that this operator will be
parabolic.

In this work, we are considered only the simplest formulations of problems related to irreducible
vector representations, which could be of interest for physical applications. An obvious generalization
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of the problems studied consists of the rejection of spherical symmetry, i.e., in using the tensor algebra
with the set of generators extended by a second-rank tensor characterizing the asymmetry of the
medium in the construction of all possible tensor coefficients, both in the vector and pseudovector cases.
With this formulation of the problem, a much richer set of tensor coefficients arises that determine
the densities Sj;k, j = 1, 2, 3; this leads to a more laborious analysis of possibilities emerged.

Another way of generalization consists of refusing of the unimodality and solenoidality conditions.
In this case, classes of admissible equation become much wider. In particular, in the first case—
for pseudovector fields—such a class contains the Landau–Lifshitz equation mentioned above; in the
second case, we obtain the well-known Navier–Stokes equation for incompressible fluids.

Finally, the broadest generalizations of the problem solved in this work follow from its general
formulation presented in Sec. 2. Moreover, from the point of view of applications, it is expedient to
study evolution equations with differential operators that are not divergent but can be represented in
the form

Ẋa = (∇kSa; k)(X) +Ha(X), a = 1, . . . , N,

where Ha(X) is a function on the space of values of the complete set of local thermodynamical
parameters, which is transformed covariantly under the action of the group O3 and serves as a “self-
consistent source” of the field from the physical point of view.
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