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1. INTRODUCTION AND STATEMENT OF THE PROBLEM
Let E be a complex Banach space, and let A, B be linear closed operators in E whose domains

D(A),D(B) ⊂ E are not necessarily dense in E. Consider the following equation:

B

(
u′′(t) +

k

t
u′(t)

)
= Au(t), 0 < t < 1, (1.1)

which, in the case B �= I, generalizes the abstract Euler–Poisson–Darboux equation. The case
0 < t < T can be reduced to the one considered above by changing the variable t to t/T .

In view of the singularity (for k �= 0) of the equation at the point t = 0, the setting of boundary and
nonlocal conditions depends on the parameter k ∈ R, and these conditions will be given below. The
subsequently imposed nonlocal integral conditions can be interpreted in the spirit of control theory: it
is required to find a solution of the differential equation (1.1) with a given initial condition at t = 0 and
possessing a certain prescribed average value. As was pointed out in [1], conditions of this kind arise,
for example, in studying the diffusion of particles in a turbulent plasma, moisture transport processes in
capillary-porous media, etc.

An equation of the form (1.1) is called a Sobolev-type equation or a descriptor equation; for a
detailed overview of publications on this topic, see, for example, [2]. The Cauchy problem for the
singular equation (1.1) with Fredholm operator B was studied above in [3], [4]. Nonlocal problems for
equation (1.1) are, in general, ill-posed, but the need to solve ill-posed problems is currently generally
accepted (see the introduction in the book [5] and the extensive bibliography therein). For abstract
equations of first order, some results on the solvability of nonlocal problems on half-axes were obtained
more recently in [6]-[8] and, for second-order singular equations, in [9]-[11]. Nonlocal problems on a
finite interval for partial differential equations containing the Bessel differential operator were studied
in [12]-[16].

Apparently, there is still no exhaustive uniqueness criterion for the Cauchy problem, but the situation
is different, in principle, in the case of boundary and nonlocal problems. We will pose boundary and
nonlocal conditions for equation (1.1) for k ∈ R and establish appropriate uniqueness criteria for these
problems. It will be shown that, just as in the study of boundary-value problems (see [17]), the
uniqueness of the solution only depends on the spectral properties of the operators A, B and is related
to the distribution of zeros of certain analytic functions. Instead of the uniqueness of the solution, it is
more convenient to consider the equivalent problem of the triviality of the solution of the homogeneous
problem, which we will do from the very beginning. Since some very general conditions are imposed on
the operators A, B, it follows that, in this paper, we will not be concerned with the solvability of nonlocal
problems.
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UNIQUENESS CRITERION FOR SOLUTIONS OF NONLOCAL PROBLEMS 21

2. THE CASE k ≥ 0. THE NEUMANN CONDITION FOR t = 0

Consider the problem of finding the function u(t) ∈ C1([0, 1], E) ∩C2((0, 1], E), which, at t ∈ (0, 1),
belongs together with its derivatives to the domain D = D(A) ∩D(B), satisfies equation (1.1), the
Neumann boundary condition

u′(0) = 0, (2.1)

as well as a nonlocal condition of the formˆ 1

0
tk(1− t2)α−1u(t) dt = 0, α > 0. (2.2)

A special case of the nonlocal condition (2.2) for α = 1 appeared above in [1], [12]. Using the
Erdelyi–Kober operator Iα0+;2,η (see [18, p. 246]), condition (2.2) can also be written in the form

lim
t→1

Iα0+;2,ηu(t) = 0, Iα0+;2,ηu(t) =
2

Γ(α)t2(α+η)

ˆ t

0
s2η+1(t2 − s2)α−1u(s) ds.

We will search for the nontrivial solutions u(t) of the homogeneous problem (1.1), (2.1), (2.2) using
the method of separation of variables in the form u(t) = v(t)h, where v(t) ∈ C1[0, 1] ∩C2(0, 1] is a
nonzero scalar complex-valued function, and h ∈ D, h �= 0.

Substituting u(t) = v(t)h into problem (1.1), (2.1), (2.2), we obtain the equation(
v′′(t) +

k

t
v′(t)

)
Bh = v(t)Ah, (2.3)

and conditions

v′(0) = 0, (2.4)ˆ 1

0
tk(1− t2)α−1v(t) dt = 0. (2.5)

Equation (2.3) implies the equality

Ah =
v′′(t) + k/tv′(t)

v(t)
Bh, (2.6)

which must hold on the set {t ∈ (0, 1) : v(t) �= 0}.
Obviously, equality (2.6) can only hold if

Ah = λBh (2.7)

with some constant λ ∈ C.
Thus, the element h ∈ D, h �= 0 must satisfy the operator equation (2.7) with some λ ∈ C, and

equation (2.3) becomes

v′′(t) +
k

t
v′(t) = λv(t). (2.8)

The general solution of the ordinary differential equation (2.8) is conveniently written in the form (see,
for example, [19])

v(t) = c1Yk(t;λ) + c2t
1−kY2−k(t;λ), c1, c2 ∈ R, (2.9)

where Yk(t;A) is the solving operator of the Cauchy problem for the Euler–Poisson–Darboux equation
(B = I in equation (1.1)), Yk(0;A) = I, Y ′

k(0;A) = 0, which was constructed in [19], [20] for any values
of the parameter k ∈ R. In the case under consideration, for k ≥ 0, we have

Yk(t;λ) = Γ

(
k

2
+

1

2

)(
t
√
λ

2

)1/2−k/2

Ik/2−1/2(t
√
λ ), (2.10)
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where Γ( · ) is the Euler gamma function and Iν( · ) is the modified Bessel function. The scalar function
Yk(t;λ) is also called the normalized Bessel function.

A solution of equation (2.3) satisfying the boundary condition (2.4) has the form

v(t) = Yk(t;λ). (2.11)

To find suitable values of λ ∈ C, it remains to use the nonlocal condition (2.5). Substituting the
function (2.10) into (2.5) and using the formula for the shift with respect to the parameter of the solution
(see [20]) for the solving operator Yk(t;A), we obtain the transcendental equation

Yk+2α(1;λ) = 0. (2.12)

Equation (2.12) can also be obtained if, instead of the formula for the shift with respect to the
parameter, we use representation (2.10) and the integral 2.15.2.6 from [21].

Denoting
√
λ = iμ and taking into account representation (2.10), we write the following equa-

tion (2.12) in terms of the Bessel function of the first kind Jν( · ):
Jk/2+α−1/2(μ)

μk/2+α−1/2
= 0. (2.13)

As is known (see [22, Sec. 18.3]), equation (2.13) has an infinite set of positive roots μm = μm(k, α),
m ∈ N. Substituting λm = −μ2

m into (2.11), we determine the functions vm(t) = Yk(t;λm), m ∈ N,
which are nontrivial solutions to problem (2.3)–(2.5), while relation (2.7) turns into the following
equations for finding hm �= 0:

Ahm = λmBhm, m ∈ N. (2.14)

Let us further assume that, for some m ∈ N, the pair λm, hm is a solution of equation (2.14). Then we
find a nontrivial solution of the homogeneous nonlocal problem (1.1), (2.1), (2.2) of the following form:

um(t) = Yk(t;λm)??hm. (2.15)

Let us now formulate the uniqueness criterion for problem (1.1), (2.1), (2.2).

Theorem 1. Let k ≥ 0, α > 0, let A, B be linear closed operators in E, and let the nonlocal
problem (1.1), (2.1), (2.2) have a solution u(t). For this solution to be unique, it is necessary and
sufficient that, for no zero λm, m ∈ N, of the function

Υk,α(λ) = Yk+2α(1;λ) (2.16)

given by equality (2.10), does the operator equation (2.14) have a solution.

Proof. To establish necessity, let us assume the opposite. Let, for some λm, m ∈ N from a countable set
of zeros of the function Υk,α(λ) defined by equality (2.16), there exists a solution of equation (2.14) with
a vector hm �= 0. Then the function um(t) determined by equality (2.15) serves as a nontrivial solution of
the homogeneous nonlocal problem (1.1), (2.1), (2.2), which contradicts the uniqueness of the solution
of this problem, and thus necessity is proved.

Let us now prove sufficiency. Suppose that, for any λm, m ∈ N from a countable set of zeros of the
function Υk,α(λ) defined by equality (2.16), equation (2.14) has no solution, and let u(t) be a solution of
a homogeneous nonlocal problem (1.1), (2.1), (2.2). Let us show that, in this case, u(t) ≡ 0.

Let us introduce the following function U(λ) of the variable λ ∈ C with values in the Banach space E:

U(λ) =

ˆ 1

0
tk+2αYk+2α(t;λ)w(t) dt, (2.17)

where the scalar function Yk+2α(t;λ) is defined by equality (2.10) (after replacing the parameter k by
k + 2α), is a solution of equation (2.8), and satisfies the conditions Yk+2α(0;λ) = I, Y ′

k+2α(0;λ) = 0,
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while, in view of the closedness of the operators A, B and the formula for the shift with respect to the
parameter (see [20]), the function

w(t) =

ˆ 1

0
sk(1− s2)α−1u(ts) ds,

satisfies equation (1.1) after replacing the parameter k by k+2α. This fact is not difficult to verify directly.
Taking into account the closedness of the operators A, B and equality (1.1), we can calculate AUδ(λ),

where

Uδ(λ) =

ˆ 1

δ
tk+2αYk+2α(t;λ)w(t) dt, δ > 0.

After double integrating by parts, we have

AUδ(λ) =

ˆ 1

δ
tk+2αYk+2α(t;λ)Aw(t) dt

= B

ˆ 1

δ
tk+2αYk+2α(t;λ)

(
w′′(t) +

k + 2α

t
w′(t)

)
dt

= tk+2αYk+2α(t;λ)Bw′(t)
∣∣1
δ
−tk+2αY ′

k+2α(t;λ)Bw(t)
∣∣1
δ

+B

ˆ 1

δ
(tk+2αY ′′

k+2α(t;λ) + (k + 2α)tk+2α−1Y ′
k+2α(t;λ))w(t) dt.

Letting δ → 0 and taking into account condition (2.2), we obtain

AU(λ) = Yk+2α(1;λ)Bw′(1) + λBU(λ). (2.18)

Thus, for all numbers λm satisfying equation (2.12), equality (2.18) implies the relation

AU(λm) = λmBU(λm).

By the assumption of the theorem, none of these numbers λm can be a solution of the operator
equation (2.14). But, in that case, all the U(λm) must be zero:

U(λm) = 0, m ∈ N. (2.19)

Let μm,m ∈ N be the positive roots of equation (2.14) arranged in increasing order, and let
(iμm)2 = λm. Then equalities (2.19) take the form

Um =

ˆ 1

0
tk/2+α+1/2Jk/2+α−1/2(tμm)w(t) dt = 0, m ∈ N. (2.20)

Applying a linear continuous functional f ∈ E∗ to the vector coefficients Um defined by equal-
ity (2.20), we obtain the scalar function ϕ(t) = f(tk/2+αw(t)), satisfying the conditions

f(Um) =

ˆ 1

0

√
tJk/2+α−1/2(tμm)ϕ(t) dt = 0, m ∈ N. (2.21)

Up to a factor, the scalar coefficients f(Um) are the coefficients of the Fourier–Bessel series
expansion in terms of the functions Jk/2+α−1/2(tμm) (see [22, Chap. XVIII], [23]) for the function

ϕ(t) = f(tk/2+αw(t)).

Therefore, f(tk/2+αw(t)) ≡ 0, 0 ≤ t ≤ 1. Since the choice of the functionals f ∈ E∗ was arbitrary,
we have w(t) ≡ 0, 0 ≤ t ≤ 1; hence, given the representation

w(t) =
1

tk+2α−1

ˆ t

0
τk(t2 − τ2)α−1u(τ) dτ,

after applying the Erdelyi–Kober operator I−α
0+;2,η, we obtain u(t) ≡ 0, 0 ≤ t ≤ 1. Hence the solution

problems (1.1), (2.1), (2.2) can only be zero.
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Theorem 1 is naturally also valid for the Euler–Poisson–Darboux equation if B = I in equation (1.1),
and we will give the corresponding example.

Example. Let B = I in equation (1.1), and let α = 1. Consider the following singular operator A given
by the Bessel differential expression

A = Bq,x =
d2

dx2
+

q

x

d

dx
, q > 0;

The operator is defined on the set of functions D(A) = H2(0, 1) ∩H1
0 (0, 1) ⊂ E = L2(0, 1) and acts on

the space variable x

The question of the uniqueness of the solution of our nonlocal problem for the hyperbolic equation is
reduced to the study of the location of the zeros of the function Iq/2−1/2(

√
z), which are the eigenvalues

of the operator Bq,x, and of the zeros of the function Υk,1(λ) defined by equality (2.16).

For B = I, α = 1, k ≥ 0, we must study the location of the zeros of the functions Iq/2−1/2(
√
z )

and Ik/2+1/2(
√
λ ). Depending on the parameters k and q, the specified Bessel functions may or may

not have common zeros located on (−∞, 0); therefore, the solution of boundary-value problems will
either be unique or nonunique. For more details on the location of the zeros of Bessel functions, see, for
example, [24, Sec. 2]. We also note that an important role in the study of uniqueness is also played by
by the intervals of variation of the variables, 0 < t < T and 0 < x < l, because the zeros of each of the
indicated Bessel functions change their positions.

If A = −Bq,x or A = iBq,x, where i is the imaginary unit, then the eigenvalues of the operator A
lie either on (0,+∞), or on the imaginary axis and do not lie on (−∞, 0); therefore, the corresponding
nonlocal problems have a unique solution.

3. THE CASE k < 1. THE DIRICHLET CONDITION FOR t = 0

Consider the problem of finding the function u(t) ∈ C([0, 1], E) ∩ C2((0, 1], E) which, for t ∈ (0, 1),
belongs together with its derivatives to the domain D = D(A) ∩D(B), satisfies equation (1.1), the
Dirichlet boundary condition

u(0) = 0, (3.1)

as well as a nonlocal condition of the formˆ 1

0
t(1− t2)β−1u(t) dt = 0, β > 0 (3.2)

or, using the Erdelyi–Kober operator, Iβ0+;2,0u(t)|t=1 = 0.

As in Sec. 2, to find the nontrivial solutions of the homogeneous problem (1.1), (3.1), (3.2), it
is necessary, from the general solution (2.9), to choose a solution satisfying the Dirichlet condition
v(0) = 0. Such a solution has the form

v(t) = t1−kY2−k(t;λ), (3.3)

where the function Y2−k(t;λ) is given by equality (2.10).

To determine the values of λ ∈ C, we will use the nonlocal condition
ˆ 1

0
t(1− t2)β−1v(t) dt = 0,

substituting into which the function (3.3) and using the formula for the shift with respect to the
parameter for k < 0 (see [25]), we obtain the transcendental equation

Y2β+2−k(1;λ) = 0. (3.4)
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Denoting
√
λ = iμ and in view of the representation (2.10), in terms of the Bessel function of the first

kind Jν( · ), we write equation (3.4) in the form

Jβ+1/2−k/2(μ)

μβ+1/2−k/2
= 0. (3.5)

Equation (3.5) has an infinite set of positive roots μm,m ∈ N arranged in increasing order. Substitut-
ing λm = −μ2

m into (3.3), we obtain the functions vm(t) = t1−kY2−k(t;λm), m ∈ N, which are nontrivial
solutions of problem (1.1), (3.1), (3.2), while relation (2.7) turns into the following equations for finding
hm �= 0:

Ahm = λmBhm, m ∈ N. (3.6)

Let us further assume that, for some m ∈ N, the pair λm, hm is a solution of equation (3.6). Then we
define a nontrivial solution of the homogeneous nonlocal problem (1.1), (3.1), (3.2) of the following form:

um(t) = t1−kY2−k(t;λm)??hm. (3.7)

For the problem considered in this section, the following uniqueness criterion for the solution holds.

Theorem 2. Let k < 1, β > 0, and let A, B be linear closed operators in E. Suppose that the
nonlocal problem (1.1), (3.1), (3.2) has a solution u(t). For this solution to be unique, it is
necessary and sufficient that, for no λm = λm(k, β), m ∈ N, which is the zero of the function

Ψk,β(λ) = Y2β+2−k(1;λ), (3.8)

where the function Y2β+2−k(t;λ) is given by equality (2.10), does the operator equation (3.6) have
a solution.

Proof. To prove necessity, suppose the opposite. Let, for some λm, m ∈ N, from a countable set of
zeros of the function Ψk,β(λ) defined by equality (3.8), there exist a solution of equation (3.6) with a
vector hm �= 0. Then the function um(t) defined by equality (3.7) serves as a nontrivial solution of the
homogeneous nonlocal problem (1.1), (3.1), (3.2), which contradicts the uniqueness of the solution of
this problem, and thus necessity is proved.

Let us now prove sufficiency. Suppose that, for any λm from countable set of zeros of the function
Ψk,β(λ) defined by equality (3.8), equation (3.6) has no solution, and let u(t) be a solution of a
homogeneous nonlocal problem (1.1), (3.1), (3.2). Let us show that, in this case, u(t) ≡ 0.

Let us introduce the function V (λ) of the variable λ ∈ C with values in the Banach space E,

V (λ) =

ˆ 1

0
tY2β+2−k(t;λ)w(t) dt, (3.9)

where the function

w(t) = t2β
ˆ 1

0
s(1− s2)β−1u(ts) ds,

by virtue of the formula for the shift with respect to the parameter for k < 1 (see [25]) (which, however,
is easy to verify directly) and the closedness of the operators A, B satisfies equation (1.1) after replacing
the parameter k by k − 2β.

As in the proof of Theorem 1, we first calculate AUδ(λ), where

Vδ(λ) =

ˆ 1

δ
tY2β+2−k(t;λ)w(t) dt, δ > 0.

Twice integrating by parts, we obtain

AVδ(λ) =

ˆ 1

δ
tY2β+2−k(t;λ)Aw(t) dt = B

ˆ 1

δ
tY2β+2−k(t;λ)

(
w′′(t) +

k − 2β

t
w′(t)

)
dt

= tY2β+2−k(t;λ)Bw′(t)
∣∣1
δ
+ ((k − 2β − 1)Y2β+2−k(t;λ)− tY ′

2β+2−k(t;λ))Bw(t)
∣∣1
δ
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+B

ˆ 1

δ
t

(
Y ′′
2β+2−k(t;λ) +

2β + 2− k

t
Y ′
2β+2−k(t;λ)

)
w(t) dt.

Letting δ → 0 and taking into account condition (3.2), we see that

AV (λ) = Y2β+2−k(1;λ)Bw′(1) + λBV (λ). (3.10)

Thus, for all numbers λm, satisfying equation (3.4), equality (3.10) implies the relation

AV (λm) = λmBV (λm).

By the assumption of the theorem, none of such numbers λm can be a solution of the operator
equation (3.6). But then all the values of V (λm) must be zero,

V (λm) = 0, m ∈ N. (3.11)

As in the proof of Theorem 1, it follows from equalities (3.11) that the function w(t) vanishes and so
does u(t). Thus, the solution of problem (1.1), (3.1), (3.2) can only vanish. The theorem is proved.

Remark 1. For the values of the parameter 0 ≤ k < 1, Theorem 1 with the Neumann condition for t = 0,
and Theorem 2 with the Dirichlet condition for t = 0 hold simultaneously.

Because of the presence of a, generally speaking, irreversible operator B, Sobolev-type equa-
tions (1.1) are also said to be degenerate. In the next section, we will consider nonlocal problems for the
class of so-called degenerate equations. Note that the Cauchy problem for such a class of degenerate
equations was investigated above in [26].

4. NONLOCAL PROBLEMS FOR DEGENERATE DIFFERENTIAL EQUATIONS
WITH POWER-LAW DEGENERATION

As applications of Theorems 1 and 2 in the Banach space E, we will consider the following equation
degenerate in the variable t:

tγv′′(t) + btγ−1v′(t) = Av(t), 0 < t < T. (4.1)

Let 0 < γ < 2, b ∈ R. The value of the parameter γ, 0 < γ < 2, indicates a weak degeneration of
equation (4.1), in contrast to the case of a strong degeneration, γ > 2, which will also be considered
in what follows. For γ = 2, the Euler equation is obtained; this equation, as is known, reduces to a
nondegenerate equation.

The setting of boundary conditions at the point of degeneration t = 0 depends on the coefficients b
and γ > 0 of the equations, and these boundary conditions will be given below.

For b < 1, we consider the problem of finding function v(t) ∈ C([0, T ], E) ∩C2((0, T ], E), t ∈ (0, T ),
belonging to D(A) and satisfying equation (4.1), the Dirichlet condition

v(0) = 0, (4.2)

as well as a nonlocal condition of the formˆ T

0
t1−γ(1− ν2t2−γ)β−1v(t) dt = 0, β > 0, ν =

2

2− γ
. (4.3)

The replacement of the independent variable and the unknown function

t =

(
τ

ν

)ν

, ν =
2

2− γ
, v(t) = v

((
τ

ν

)ν)
= w(τ),

v′(t) =

(
τ

ν

)1−ν

w′(τ), v′′(t) =

(
τ

ν

)2(1−ν)(
w′′(τ) +

1− ν

τ
w′(τ)

)
,

reduces the degenerating equation (4.1) to the Euler–Poisson–Darboux equation

w′′(τ) +
k

τ
w′(τ) = Aw(τ), τ ∈ [0, l], (4.4)
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where k = bν − ν + 1, ν = 2/(2 − γ), l = νT 1/ν . Further, conditions (4.2), (4.3) become, respectively,
the following conditions:

w(0) = 0,

ˆ l

0
τ(1− τ2)β−1w(τ) dτ = 0. (4.5)

We have already studied the resulting problem (4.4), (4.5) in Sec. 3 and, returning to the original
nonlocal problem (4.1)–(4.3) and using Theorem 2, we formulate the following uniqueness criterion for
a weakly degenerating equation:

Theorem 3. Let 0 < γ < 2, b < 1, β > 0, let A be a closed linear operator in E, and let the
boundary-value problem (4.1)–(4.3) have a solution v(t). For this solution to be unique, it
is necessary and sufficient that no zero λm, m ∈ N, given by equality (2.10) of the function
Y2β+2−k(l;λ), where k = bν − ν + 1, ν = 2/(2 − γ), l = νT 1/ν , be an eigenvalue of the operator A.

As mentioned above, the formulation of the boundary condition at the point of degeneration t = 0
depends on the coefficient b. Now suppose that, in equation (4.4), the coefficient b > γ/2. In this case,
instead of the Dirichlet condition (4.2), we must impose the Neumann weighting condition

lim
t→0+

tγ/2v′(t) = 0, (4.6)

and, instead of the nonlocal condition (4.3), we must impose a nonlocal condition of the form
ˆ T

0
tb−γ(1− ν2t2−γ)α−1v(t) dt = 0, α > 0. (4.7)

In this case, just as in Theorem 3, but using Theorem 1 instead of Theorem 2, we can formulate a
uniqueness criterion.

Theorem 4. Let 0 < γ < 2, b > γ/2, α > 0, and let A be a linear closed operator in E. Suppose
that the boundary-value problem (4.1), (4.6), (4.7) has a solution v(t). For this solution to be
unique, it is necessary and sufficient that no zero λm, m ∈ N, of the function Yk+2α(l;λ), where
k = bν − ν + 1, ν = 2/(2 − γ), l = νT 1/ν , given by by equality (2.10), be an eigenvalue of the
operator A.

For the values of the parameter b, satisfying the inequality γ/2 < b < 1, Theorem 3 with the Dirichlet
condition for t = 0, and Theorem 4 with the Neumann weight condition for t = 0 hold simultaneously.

Further, let us consider equation (4.1) in the case of strong degeneracy where γ > 2. The replacement
of the independent variable and the unknown function

t =

(
−τ

ν

)−ν

, ν =
2

2− γ
, v(t) = qv

((
−τ

ν

)−ν)
= w(τ)

reduces equation (4.1) to an Euler–Poisson–Darboux equation of the form

w′′(τ) +
p

τ
w′(τ) = Aw(τ), 0 < τ < l, (4.8)

where p = 1 + 2(b− 1)/(γ − 2), l = −νT−1/ν .

In the case of strong degeneracy, the setting of the boundary conditions at the point of degen-
eracy t = 0 also depends on the coefficient b. Uniqueness criteria for nonlocal problems for the
Euler–Poisson–Darboux equation (4.8), to which the nonlocal problems considered above are reduced,
are also contained in Theorems 1 and 2; therefore, just as for Theorems 3 and 4, we establish the
following criteria.
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Theorem 5. Let γ > 2, b < 1, β > 0, let A be a closed linear operator in E, and let there exist a
solution of equation (4.1) satisfying the conditions

v(0) = 0,

ˆ T

0
tγ−3(1− ν2tγ−2)β−1v(t) dt = 0.

For the solution to be unique, it is necessary and sufficient that no zero λm, m ∈ N, of the function
Y2β+2−p(l;λ), where p = 2(b− 1)/(γ − 2) + 1, l = 2/(2 − γ)T γ/2−1, given by equality (2.10) be an
eigenvalue of the operator A.

Theorem 6. Let γ > 2, b > 2− γ/2, α > 0, let A be a linear closed operator in E, and let there
exist a solution of equation (4.1) satisfying the conditions

lim
t→0+

t2−γ/2v′(t) = 0,

ˆ T

0
tb+γ−4(1− ν2tγ−2)α−1v(t) dt = 0.

For the solution to be unique, it is necessary and sufficient that no zero λm, m ∈ N, of the function
Yp+2α(l;λ), where p = 2(b− 1)/(γ − 2) + 1, l = 2/(2 − γ)T γ/2−1, given by equality (2.10) be an
eigenvalue of the operator A.

Finally, we establish a uniqueness criterion for an abstract analogue of a differential equation
degenerating with respect to the space variable with power-law degeneration. For ω > 0, we consider
the equation

v′′(t) = tωAv(t), 0 < t < T (4.9)

and, along with the Neumann condition at the point t = 0

v′(0) = 0, (4.10)

we define the nonlocal conditionˆ T

0
tω+2(1− μ2t2ω)α−1v(t) dt = 0, α > 0, μ =

2

ω + 2
. (4.11)

If A is the operator of differentiation with respect to the space variable x, for example, the operator
Av(t, x) = v′′xx(t, x), then equation (4.9) is a degenerate hyperbolic equation, generalizing the Tricomi
equation, but has a different type of degeneration as compared to the previous degenerating equations.
Therefore,it is natural to call the abstract equation (3.9) a degenerating equation.

The replacement of the independent variable and the unknown function

t =

(
τ

μ

)μ

, μ =
2

ω + 2
, v(t) =

(
τ

μ

)μ

w(τ)

reduces equation (4.9) to an Euler–Poisson–Darboux equation of the form

w′′(τ) +
μ+ 1

τ
w′(τ) = Aw(τ), τ > 0.

Since the parameter of the Euler–Poisson–Darboux equation satisfies inequality k = μ+ 1 > 1,
using Theorem 1, we obtain the following criterion.

Theorem 7. Let ω > 0, α > 0, let A be a closed linear operator in E, and let the boundary-value
problem (4.9)–(4.11) have a solution v(t). For this solution to be unique, it is necessary
and sufficient, that no zero λm, m ∈ N, of the function Yq+2α(l;λ), where q = (ω + 4)/(ω + 2),
l = 2Tω/2+1/(ω + 2), given by equality (2.10) be an eigenvalue of the operator A.
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5. NONLOCAL CONDITION OF THE SECOND KIND. THE CASE k ≥ 0.
THE NEUMANN CONDITION FOR t = 0

Instead of the nonlocal condition (2.2) for equation (1.1), we consider a condition of the form

a

ˆ 1

0
tku(t) dt+ bu′(1) = 0, a �= 0, b �= 0. (5.1)

A nonlocal condition of this kind for partial differential equations appeared earlier in [13], [14].
In this section, we will establish the corresponding uniqueness theorems for a solution satisfying
condition (5.1).

Let k ≥ 0. As in Sec. 2, in order to find nontrivial solutions of the homogeneous prob-
lem (1.1), (2.1), (5.1), for the function (2.11), we must choose the appropriate values of λ ∈ C so that
the function v(t) = Yk(t;λ) satisfies the condition

a

ˆ 1

0
tkv(t) dt+ bv′(1) = 0, a �= 0, b �= 0.

Using the formula for the shift with respect to the parameter and the equality

Y ′
k(t;λ) =

λt

k + 1
Yk+2(t;λ), (5.2)

we obtain the following transcendental equation for finding λ:

(a+ bλ)Yk+2(1;λ) = 0, (5.3)

Note that, in order to obtain equation (5.3), we put α = 1 in the Erdelyi–Kober operator Iα0+;2,η

appearing in condition (5.1) and, besides, as compared to equation (2.12), in addition to the zeros of
the Bessel function, one more zero λ0 = −a/b appears. Therefore, the uniqueness criterion takes the
following form.

Theorem 8. Let k ≥ 0, and let A, B be linear closed operators in E. Suppose that the nonlocal
problem (1.1), (2.1), (5.1) has a solution u(t). For this solution to be unique, it is necessary and, in
the case u(t) ∈ C3((0, 1],D), also sufficient that, for no λm, m ∈ N0, which is a zero of the function

Φk,a,b(λ) = (a+ bλ)Yk+2(1;λ), (5.4)

where the function Yk+2(t;λ) is given by equality (2.10), does the operator equation (2.14) have a
solution.

Proof. Necessity is established just as for Theorem 1 and, for the proof of sufficiency, instead of the
function w(t) introduced in Theorem 1, we must use the function

wa,b(t) = a

ˆ t

0
sku(s) ds+

b

t
u′(t).

It is easy to verify that, for u(t) ∈ C3((0, 1],D), the function wa,b(t) satisfies equation (1.1) after
replacing the parameter k by k + 2. Then, as in Theorem 1, we obtain wa,b(t) ≡ 0, 0 < t ≤ 1. Thus,
after differentiating the function wa,b(t), in order to find u(t), we obtain the following problem:

u′′(t)− 1

t
u′(t) +

a

b
tk+1u(t) = 0, (5.5)

u′(0) = 0, (5.6)

a

ˆ 1

0
sku(s) ds + bu′(1) = 0. (5.7)

The solution of the ordinary differential equation (5.5) in the Banach space E satisfying condi-
tion (5.6) has the form (see 2.162 (1a) [27])

u(t) = tJν(zt
k/2+3/2)η, ν =

2

k + 3
, z =

2

k + 3

√
a

b
, η ∈ E. (5.8)
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Substituting the function (5.8) into condition (5.7) and taking into account integral 1.8.1.21
from [21], we obtain

a

ˆ 1

0
sk+1Jν(zs

k/2+3/2) dsη + b

(
Jν(z) +

k + 3

2
zJ ′

ν(z)

)
η

=

(
−
√
abJν−1(z) +

22−νa

Γ(ν)(k + 3)z(2k+4)/(k+3)
+ bJν(z) +

b(k + 3)

2
zJ ′

ν(z)

)
η

=
22−νa

Γ(ν)(k + 3)z(2k+4)/(k+3)
η = 0; (5.9)

here we have used the following well-known equality for the derivative of the Bessel function:

zJ ′
ν(z) = −νJν(z) + zJν−1(z).

Equality (5.9) implies η = 0 and, therefore, u(t) ≡ 0.

6. NONLOCAL CONDITION OF THE SECOND KIND. THE CASE k < 1.
THE DIRICHLET CONDITION FOR t = 0

Let k < 1. In this case, for equation (1.1), instead of the nonlocal condition of the second kind (5.1),
we must use the following condition of the form

a

ˆ 1

0
tu(t) dt+ b lim

t→1
(tk−1u(t))′ = 0, a �= 0, b �= 0. (6.1)

As in Sec. 2, in order to find the nontrivial solutions of the homogeneous problem (1.1), (3.1), (6.1), we
must choose the appropriate values of λ ∈ C for the function (2.11) so that the function v(t) = Yk(t;λ)
satisfies the condition

a

ˆ 1

0
tv(t) dt + b lim

t→1
(tk−1v(t))′ = 0, a �= 0, b �= 0.

Using the formula for the shift with respect to the parameter and equality (5.7), we obtain the
following transcendental equation for finding λ:

(a+ bλ)Y4−k(1;λ) = 0, (6.2)

and the uniqueness statement takes the following form.

Theorem 9. Let k < 1, and let A, B be linear closed operators in E. Suppose that the nonlocal
problem (1.1), (3.1), (6.1) has a solution u(t). For this solution to be unique, it is necessary, and, in
the case u(t) ∈ C3((0, 1],D) also sufficient, that, for no λm, m ∈ N0, which is a zero of the function

Θk,a,b(λ) = (a+ bλ)Y4−k(1;λ), (6.3)

where the function Y4−k(t;λ) is given by equality (2.10), does the operator equation (2.14) have a
solution.

Proof. Necessity is established just as for Theorem 2, but, to prove sufficiency, we must replace the
function w(t) introduced in Theorem 2 by the function

wa,b(t) = a

ˆ t

0
su(s) ds+

b

t
(tk−1u(t))′.

It is easy to verify that, for u(t) ∈ C3((0, 1],D), the function wa,b(t) satisfies equation (1.1) after
replacing the parameter k by 4− k. For details about operators of motion with respect to the parameter
of solutions of singular equations, see in [28]. Then, as in Theorem 2, we obtain wa,b(t) ≡ 0, 0 < t ≤ 1.

Thus, after differentiating the function wa,b(t), we obtain the following problem for finding u(t):

t2u′′(t) + (2k − 3)tu′(t) +

(
a

b
t5−k + (k − 1)(k − 3)

)
u(t) = 0, (6.4)
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u(0) = 0, (6.5)

a

ˆ 1

0
tu(t) dt+ b lim

t→1
(tk−1u(t))′ = 0. (6.6)

The solution of the ordinary differential equation (6.4) in the Banach space E satisfying condi-
tion (6.5) has the form (see 2.162 (1a) [27])

u(t) = t2−kJν(zt
5/2−k/2)η, ν =

2

5− k
, z =

2

5− k

√
a

b
, η ∈ E. (6.7)

Substituting the function (6.7) into condition (6.6) and taking into account integral 1.8.1.21 from [21],
we obtain

a

ˆ 1

0
t3−kJν(zt

5/2−k/2) dtη + b

(
Jν(z) +

5− k

2
zJ ′

ν(z)

)
η

=

(
−
√
abJν−1(z) + bJν(z) +

b(5− k)

2
zJ ′

ν(z)

)
η +

22−νa

Γ(ν)(5− k)z(8−2k)/(5−k)
η

=
22−νa

Γ(ν)(5− k)z(8−2k)/(5−k)
η = 0. (6.8)

Equality (6.8) implies η = 0 and, therefore, u(t) ≡ 0. The theorem is proved.

As applications of Theorems 8 and 9, we can obtain, just as in Sec. 4, the corresponding theorems
for degenerating differential equations with power-law degeneration.
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