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LINEAR CONJUGATION PROBLEM
WITH A TRIANGULAR MATRIX COEFFICIENT

G. N. Averyanov and A. P. Soldatov UDC 517.9

Abstract. We consider a classical linear conjugation problem for analytic vector-valued functions on

a piecewise smooth curve with a triangular matrix coefficient in weighted Hölder spaces. In the two-

dimensional case, conditions for the existence of a solution are found, a solution of this problem is

given, and the construction of the canonical matrix function is analyzed in detail.
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Let us consider the classic linear conjugation problem

φ+ −Gφ− = g (1)

for analytic vector functions φ = (φ1, . . . , φl) with a triangular matrix coefficient G given on a piecewise
smooth curve Γ. This curve consists of a finite number of oriented smooth arcs, which can pairwise

intersect only at their ends. The boundary values of φ± are considered with respect to this orientation.
The endpoints of these arcs form the set F of the angular points of the curve.

For a sufficiently small ρ > 0, the curve Γτ = Γ ∩ {|z − τ | ≤ ρ} consists of several arcs Γτ,j,

1 ≤ j ≤ nτ , with the common end τ . For definiteness, the numbering of these points is chosen in the
order of going around the point τ counterclockwise. With respect to the orientation of the curve Γ, the
arc Γτ,j can either start or terminate at the point τ ; therefore, we assume that στ,j = 1 or στ,j = −1,

respectively. The curve Γ divides the open circle |z − τ | < ρ into curvilinear sectors Sτ,j, 1 ≤ j ≤ nτ ,
whose lateral sides are the arcs Γτ,j and Γτ,j+1. For nτ = 1, these sides coincide, that is, the set
Sτ = Sτ,1 is the circle with the cut along Γτ = Γτ,1.

We use the notation used in [1] for weighted Hölder classes. As in [1], we assume that the matrix
function G is piecewise continuous and belongs to the class Cμ

(+0)(Γ, F ), and its determinant detG is

nonzero everywhere, including limit values

(detG)(τ, j) = lim
t∈Γτ,j
t→τ

(detG)(t), 1 ≤ j ≤ nτ ,

at the angular points of the curve τ ∈ F .
The problem (1) is considered in the weight class Cμ

λ (D̂, F ) of functions that are analytic in the
open set D = C \ F whose components φk have finite orders at infinity satisfying the conditions

deg φk ≤ nk − 1, 1 ≤ k ≤ l, (2)

with given integers nk. In other words, in a neighborhood of ∞, they behave as O(|z|nk−1) or, equiv-
alently, can be decomposed as follows:

φk(z) =
∑

s≤nk−1

cj,sz
s.
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The Riemann–Hilbert problem was exhaustively studied in the well-known monographs [2, 4, 6] in

the class H∗ of integrable functions φ belonging to Cμ
λ (D̂, F ) with some λ > −1 and 0 < μ < 1, in

the class Hε of almost bounded functions, and in the class H(D̂, F ) of bounded functions that belong,

respectively, to Cμ
λ (D̂, F ) for all λ < 1, and Cμ

(+0)(D̂, F ) with some 0 < μ < 1. However, various

applications of this problem require the study of this problem in the space Cμ
λ for all weighted orders.

For example, a similar situation occurs when considering the Riemann–Hilbert problem in simply

connected domains with a piecewise smooth boundary using conformal mappings (see [3]), as well as
when studying the problem of linear conjugation for polyanalytic functions.

Further, for simplicity, we restrict ourselves to the case l = 2 where

G =

(
G1 G0

0 G2

)
. (3)

Since this matrix is triangular, the problem (1) is reduced to the successive solution of two scalar
conjugation problems

ψ+ −Gkψ
− = g, k = 1, 2, (4)

in the class of functions ψ ∈ Cμ
λ (D̂, F ) satisfying the condition (2) at infinity.

For brevity, we write the Cauchy integral in the following form:

(Iϕ)(z) =
1

2πi

∫

Γ

ϕ(t)dt

t− z
, z /∈ Γ,

which for −1 < λ < 0 defines a bounded operator I : Cμ
λ (Γ, F ) → Cμ

λ (D̂, F ). Considering the branch
of the logarithm lnGk continuous on Γ \ F , which along with Gk belongs to the class Cμ

(+0)(Γ, F ), we

introduce the function hk = I(lnGk), which vanishes at infinity, and its associated function

Xk(z) = ehk(z)
∏

τ

(z − τ)−sτ , (5)

with some integer sτ , which is canonical for the problem (4).

In the sectors Sτ,j, the function hk can be represented as follows:

hk(z) =
1

2πi

[
nτ∑

s=1

στ,s(lnGk)(τ, s)

]
ln(z − τ) + hk,τ,j(z), hk,τ,j ∈ Cμ

(+0)(Sτ,j, τ).

Assume that
1

2π
arg

nτ∏

j=1

[
Gk(τ, j)

]στ,j = αk,τ + iβk,τ , 0 ≤ αk,τ < 1,

so that
1

2πi

[
nτ∑

s=1

στ,s(lnGk)(τ, s)

]
= αk,τ + iβk,τ + sk,τ

with some integer sk,τ . Note that the sum on the left-hand side of τ coincides with the Cauchy index
IndGk of the function Gk, that is, with the sum of the increments of lnGk on arcs that form the curve

Γ \ F , which are taken in accordance with their orientation, divided by 2πi. Thus,

IndGk =
∑

τ

(αk,τ + iβk,τ + sk,τ ). (6)

Obviously, the function Xk in the sectors Sτ,j can be represented as follows:

Xk(z) = Ak,τ,j(z)(z − τ)δk,τ+iβk,τ , δk,τ = −sτ + sk,τ + αk,τ , (7)

where A, 1/A ∈ Cμ
(+0)(Ŝτ,j, τ).
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The integers sτ in the definition (5) can be chosen arbitrarily; we choose them so that

λ ≤ δk < λ+ 1 (8)

with respect to the weighted order δk = (δk,τ , τ ∈ F ). Then

[αk,τ − λτ ] + sk,τ = sτ ,

where [x] means the integer part of x. Taking into account (6), we obtain

lim
z→∞ zκkXk(z) = 1, κk =

∑

τ

[
αk,τ − λτ

]
+ IndGk −

∑

τ

(
αk,τ + iβk,τ

)
. (9)

Using the canonical function, it is easy to describe (see [1]) the solvability of the problem (4). For
this, we denote the class of polynomials of degree ≤ κk + nk − 1 (for κk + nk ≤ 0 by Pk, assume

that Pk = 0), and let Qk have a similar meaning with respect to polynomials of degree at most
−(κk + nk)− 1. Thus,

dimPk = κk + nk, dimQk = 0 for κk + nk ≥ 0,

dimPk = 0, dimQk = −(κk + nk) for κk + nk ≤ 0.

In all cases,

dimPk − dimQk = κk + nk.

Theorem 1. Under the conditions

λτ − αk,τ /∈ Z, τ ∈ F,

the problem (4) is solvable in the class of functions ψ ∈ Cμ
λ (D̂, F ) satisfying the condition degψ ≤

nk − 1 at infinity if and only if
〈
(X+)−1g, q

〉
= 0, q ∈ Qk,

where the following notation is introduced :

ψ = XkI[(X
+
k )−1g] +Xkp, p ∈ Pk.

If this condition is fulfilled, then the general solution is given by the formula

ψ = XkI[(X
+
k )−1g] +Xkp, p ∈ Pk.

Note that, according to (7), the multiplication operator g → (X+
k )−1g determines an isomorphism

Cμ
λ → Cμ

λ−δk
. Due to (9), the weighted order λk = λ − δk satisfies the condition −1 < λk < 0, so

the operator g → XkI[(X
+
k )−1g] acting from Cμ

λ (Γ, F ) to Cμ
λ (D̂, F ) is bounded. If the condition (9)

is violated for some τ , then we can only say that the function ψ = XkI[(X
+
k )−1g] belongs to the class

Cμ
λ−0 (i.e., the class Cμ

λ−ε for any ε > 0).
The theorem also implies that the index of the problem is dimPk − dimQk = κk + nk.
Let us turn to the problem (1)–(3), for which we set

a = G0X
−
2 (X+

1 )−1. (10)

Due to (7), this function belongs to the class Cμ
δ2−δ1

(Γ, F ). According to (8), the weighted order δ2−δ1
lies strictly between −1 and 1, so the function a is integrable on Γ. Moreover, in this notation, we can
introduce the polynomial classes

P 0
2 = {p ∈ P2 | 〈ap, q〉 = 0, q ∈ Q1}, Q0

1 = {q ∈ Q1 | 〈ap, q〉 = 0, p ∈ P2}. (11)
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Lemma 1. In the decompositions

P2 = P 0
2 ⊕ P 1

2 , Q1 = Q0
1 ⊕Q1

1 (12)

the subspaces P 1
2 and Q1

1 have a common dimension r = dimP 1
2 = dimQ1

1. Moreover, there exists
a unique linear operator R, which to any integrable function g ∈ L(Γ) on Γ assign a polynomial
p = Rg ∈ P 1

2 with the following property:

〈ap, qi〉 = 〈g, qi〉, 1 ≤ i ≤ r, (13)

where q1, . . . , qr is some basis in Q1
1.

Proof. According to the definition (11), the bilinear form 〈ap, q〉 is nondegenerate on the product
P 1
2 ×Q1

1 in the sense that the equations 〈ap, q〉 = 0, q ∈ Q1
1, imply p = 0 and, conversely, the equations

〈ap, q〉 = 0, p ∈ P 1
2 , imply q = 0. Hence the equality dimP 1

2 = dimQ1
1 is obtained directly.

Indeed, let the elements p1, . . . , ps and q1, . . . , qr form bases in P 1
2 and Q1

1, respectively. Then, by
virtue of the nondegeneracy property indicated above, rows and columns of the (s× r)-matrix A with
elements 〈api, qj〉 are linearly independent, so this matrix is a square matrix.

Assuming that p = ξ1p1 + . . . ξrpr ∈ P 1
2 , we can write the system (13) as follows:

r∑

i=1

ξi〈api, qj〉 = 〈g, qj〉, j = 1, . . . , r.

Since the matrix A of this system is invertible, with respect to the inverse matrix B = (Bij)
r
1 we arrive

at the equation

ξi =

r∑

j=1

Bij〈g, qj〉,

so we can set

Rg =
∑

1≤i,j≤r

Bijpi〈g, qj〉.

The uniqueness of the operator R with the property (13) is almost obvious. Indeed, let p ∈ P 1
2 and

〈ap, qi〉 = 0, 1 ≤ i ≤ r. Then 〈ap, q〉 = 0 for all q ∈ Q1 and, therefore, p ∈ P 0
1 , which, according to the

decomposition (12), is possible only for p = 0. �

Theorem 2. Let the conditions (9) hold for both values k = 1, 2 and let the function g1, g2 ∈ L(Γ) be

determined by the equations

2X+
1 g1 = 2f1 +G0G

−1
2

[− f2 +X+
2 S(X+

2 )−1fg2
]
, X+

2 g2 = f2 (14)

with the singular Cauchy operator S. The problem (1)–(3) is solvable in the class Cμ
λ (D̂, F ) of vector-

valued functions φ = (φ1, φ2) analytic in D = C \ Γ if and only if

〈g1, q〉 = 0, q ∈ Q0
1; 〈g2, q〉 = 0, q ∈ Q2. (15)

If these conditions are fulfilled , then, in the notation of Lemma 1, the general solution of the problem

is given by the formula

φ1 = X1

[
I(g1 −Rg1 + p02) + p1

]
, φ2 = X2(Ig2 −Rg1 + p02), p1 ∈ P1, p02 ∈ P 0

2 , (16)

with the operator R from Lemma 1.

Proof. We write the boundary condition (3) in the component-wise form

φ+
1 −G1φ

−
1 = f1 +G0φ

−
2 , φ+

2 −G2φ
−
2 = f2,

4



and consecutively apply Theorem 1 to the second and first equations. Then the necessary and sufficient

conditions for the solvability of the problem take the following form:

〈(X+
1 )−1(f1 −G0φ

−
2 ), q〉 = 0, q ∈ Q1; 〈(X+

2 )−1f2, q〉 = 0, q ∈ Q2, (17)

If these conditions are fulfilled, then the solution is given by the formulas

φ1 = X1I
[
(X+

1 )−1(f1 −G0φ
−
2 )

]
+X1p1, p1 ∈ P1,

φ2 = X2I
[
(X+

2 )−1f2
]
+X2p2, p2 ∈ P2.

(18)

From the last equation, according to the Sokhotski—Plemelj formula we have

2φ−
2 = X−

2

[− (X+
2 )−1f2 + S(X+

2 )−1f2
]
+ 2X−

2 p2 = G−1
2

[− f2 +X+
2 S(X+

2 )−1f2
]
+ 2X−

2 p2,

so in the notation (10), (14) we get

(X+
1 )−1(f1 −G0φ

−
2 ) = g1 + ap2. (19)

As a result, the first relation in (17) takes the form

〈g1 + ap2, q〉 = 0, q ∈ Q1.

Obviously, it is equivalent to the pair of relations 〈g1, q〉 = 0, q ∈ Q0
1, and 〈g1 + ap2, q〉 = 0, q ∈ Q1

1.

Assuming that p2 = p02 + p12, p
j
2 ∈ P j

2 , in the last equation we can replace p2 by p12. Due to Lemma 1,
we obtain that p12 = −Rg1. Together with the first relation, we arrive at the solvability condition (15)

for g1. At the same time, (19) turns into

(X+
1 )−1(f1 −G0φ

−
2 ) = g1 −Rg1 + ap02, p02 ∈ P 0

2 .

Substituting this expression into (18), we obtain (16), which completes the proof of the theorem. �
Note that the number of linearly independent orthogonality conditions in (15) is equal to dimQ0

1 +
dimQ2. On the other hand, the formula (16) shows that the space of solutions of the homogeneous
problem has the dimension dimP1 + dimP 0

2 . Therefore, the index of the problem is equal to

κ(G) = dimP1 + dimP 0
2 − dimQ0

1 − dimQ2.

According to (12) we have

dimP 0
2 = dimP2 − dimP 1

2 , dimQ0
2 = dimQ2 − dimQ1

2.

Substituting these expressions into the previous equality and taking into account the relation dimP 1
2 =

dimQ1
1, by virtue of Lemma 1, we obtain the equation

κ(G) =
∑

k=1,2

(dimPk − dimQk) = κ1 + κ2 − n1 − n2

for the index of the problem, similar to the scalar case.

The linear conjugation problem (1) in the space Cμ
λ with any weight order λ can be solved with the

help of the canonical matrix-valued function X(z). The problem on the existence and asymptotics at
the points τ ∈ F was examined in [5]. However, in the case (3) with a triangular matrix, this question

is solved elementarily.
We search for the canonical matrix for this coefficient in a similar form:

X =

(
X1 X0

0 X2

)
;

then the relation X+ = GX− for these matrices is reduced to the equation

X+
0 = G1X

−
0 +G0X

−
2
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for the unknown function X0. This is an inhomogeneous conjugation problem; its solution can be

written by the formula X0 = X1I
[
(X+

1 )−1X−
2 G0

]
. Since (X+

1 )−1X−
2 G0 ∈ Cμ

δ2−δ1
(Γ, F ) and by virtue

of (8) and (9) the weight orders δk satisfy the condition −1 < δ2 − δ1 < 1, we conclude that the
function X0 in the sectors Sτ,j belongs to the classes

X0(z) ∈
{
Cμ
δ2
(Ŝτ,j, τ), δ2,τ < δ1,τ ,

Cμ
δ1−0(Ŝτ,j , τ), δ2,τ ≥ δ1,τ ,

Consequently,

X0 ∈ Cμ
δ′−0(D̂, F ), δ′τ = min(δ1,τ , δ2,τ ), (20)

and

X−1 =

(
X−1

1 −X−1
1 X−1

2 X0

0 X−1
2

)
∈ Cμ

δ′′−0(D̂, F ), δ′′τ = max(δ1,τ , δ2,τ ). (21)

As in the scalar case, we can write the general solution of the problem (1), (3) in the class Cμ
λ .

Indeed, for the vector-valued function ψ = X−1φ ∈ Cμ
λ−δ′′(D̂, F ), we have the boundary-value problem

ψ+−ψ− = g with the right-hand side g = (X+)−1f ∈ Cμ
λ−δ′′(Γ, F ). Since −1 < λ− δ′′ < 0, its general

solution has the form ψ = Ig + p with some polynomial vector p = (p1, p2). It follows that

φ = XI
[
(X+)−1f

]
+Xp. (22)

Note that in the class Cμ
λ , where λ satisfies the condition (9), the problem (1), (3) is always solvable

and its solution is given by the formula

φ1 = X1I
[
(X+

1 )−1(f1 +G0φ
−
2 )

]
, φ2 = If2.

At the same time, this solution can be represented in the form (22), although the right-hand side of
this formula, by virtue of (20), (21), belongs only to the class Cμ

λ+δ′−δ′′ .

The right-hand side of (22) satisfies the condition (2) if we impose the corresponding conditions on
the function f and the polynomial p; this leads to the description of the kernel and cokernel of the
problem appearing in Theorem 2. According to [5], we can write the asymptotic representation for the

matrix X(z) in the sectors Sτ,k based on the spectral characteristics of the matrix

Gτ =

nτ∏

j=1

[
G(τ, j)

]στ,j ,

where the order of the product corresponds to the order of arcs Γτ,j with a common start point τ
passing counterclockwise. Using this asymptotics, we can show that in fact the formula (22) defines a

solution in the class Cμ
λ .
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