LINEAR CONJUGATION PROBLEM WITH A TRIANGULAR MATRIX COEFFICIENT

G. N. Averyanov and A. P. Soldatov

UDC 517.9

Abstract

We consider a classical linear conjugation problem for analytic vector-valued functions on a piecewise smooth curve with a triangular matrix coefficient in weighted Hölder spaces. In the twodimensional case, conditions for the existence of a solution are found, a solution of this problem is given, and the construction of the canonical matrix function is analyzed in detail.

Keywords and phrases: linear conjugation problem, weighted space, canonical function.
AMS Subject Classification: 45E05, 35F15

Let us consider the classic linear conjugation problem

$$
\begin{equation*}
\phi^{+}-G \phi^{-}=g \tag{1}
\end{equation*}
$$

for analytic vector functions $\phi=\left(\phi_{1}, \ldots, \phi_{l}\right)$ with a triangular matrix coefficient G given on a piecewise smooth curve Γ. This curve consists of a finite number of oriented smooth arcs, which can pairwise intersect only at their ends. The boundary values of $\phi^{ \pm}$are considered with respect to this orientation. The endpoints of these arcs form the set F of the angular points of the curve.

For a sufficiently small $\rho>0$, the curve $\Gamma_{\tau}=\Gamma \cap\{|z-\tau| \leq \rho\}$ consists of several arcs $\Gamma_{\tau, j}$, $1 \leq j \leq n_{\tau}$, with the common end τ. For definiteness, the numbering of these points is chosen in the order of going around the point τ counterclockwise. With respect to the orientation of the curve Γ, the $\operatorname{arc} \Gamma_{\tau, j}$ can either start or terminate at the point τ; therefore, we assume that $\sigma_{\tau, j}=1$ or $\sigma_{\tau, j}=-1$, respectively. The curve Γ divides the open circle $|z-\tau|<\rho$ into curvilinear sectors $S_{\tau, j}, 1 \leq j \leq n_{\tau}$, whose lateral sides are the arcs $\Gamma_{\tau, j}$ and $\Gamma_{\tau, j+1}$. For $n_{\tau}=1$, these sides coincide, that is, the set $S_{\tau}=S_{\tau, 1}$ is the circle with the cut along $\Gamma_{\tau}=\Gamma_{\tau, 1}$.

We use the notation used in [1] for weighted Hölder classes. As in [1], we assume that the matrix function G is piecewise continuous and belongs to the class $C_{(+0)}^{\mu}(\Gamma, F)$, and its determinant $\operatorname{det} G$ is nonzero everywhere, including limit values

$$
(\operatorname{det} G)(\tau, j)=\lim _{\substack{t \in \Gamma_{, j, j} \\ t \rightarrow \tau}}(\operatorname{det} G)(t), \quad 1 \leq j \leq n_{\tau},
$$

at the angular points of the curve $\tau \in F$.
The problem (1) is considered in the weight class $C_{\lambda}^{\mu}(\hat{D}, F)$ of functions that are analytic in the open set $D=\mathbb{C} \backslash F$ whose components ϕ_{k} have finite orders at infinity satisfying the conditions

$$
\begin{equation*}
\operatorname{deg} \phi_{k} \leq n_{k}-1, \quad 1 \leq k \leq l, \tag{2}
\end{equation*}
$$

with given integers n_{k}. In other words, in a neighborhood of ∞, they behave as $O\left(|z|^{n_{k}-1}\right)$ or, equivalently, can be decomposed as follows:

$$
\phi_{k}(z)=\sum_{s \leq n_{k}-1} c_{j, s} z^{s} .
$$

[^0]The Riemann-Hilbert problem was exhaustively studied in the well-known monographs $[2,4,6]$ in the class H^{*} of integrable functions ϕ belonging to $C_{\lambda}^{\mu}(\hat{D}, F)$ with some $\lambda>-1$ and $0<\mu<1$, in the class H_{ε} of almost bounded functions, and in the class $H(\hat{D}, F)$ of bounded functions that belong, respectively, to $C_{\lambda}^{\mu}(\hat{D}, F)$ for all $\lambda<1$, and $C_{(+0)}^{\mu}(\hat{D}, F)$ with some $0<\mu<1$. However, various applications of this problem require the study of this problem in the space C_{λ}^{μ} for all weighted orders. For example, a similar situation occurs when considering the Riemann-Hilbert problem in simply connected domains with a piecewise smooth boundary using conformal mappings (see [3]), as well as when studying the problem of linear conjugation for polyanalytic functions.

Further, for simplicity, we restrict ourselves to the case $l=2$ where

$$
G=\left(\begin{array}{cc}
G_{1} & G_{0} \tag{3}\\
0 & G_{2}
\end{array}\right)
$$

Since this matrix is triangular, the problem (1) is reduced to the successive solution of two scalar conjugation problems

$$
\begin{equation*}
\psi^{+}-G_{k} \psi^{-}=g, \quad k=1,2, \tag{4}
\end{equation*}
$$

in the class of functions $\psi \in C_{\lambda}^{\mu}(\hat{D}, F)$ satisfying the condition (2) at infinity.
For brevity, we write the Cauchy integral in the following form:

$$
(I \varphi)(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{\varphi(t) d t}{t-z}, \quad z \notin \Gamma,
$$

which for $-1<\lambda<0$ defines a bounded operator $I: C_{\lambda}^{\mu}(\Gamma, F) \rightarrow C_{\lambda}^{\mu}(\hat{D}, F)$. Considering the branch of the logarithm $\ln G_{k}$ continuous on $\Gamma \backslash F$, which along with G_{k} belongs to the class $C_{(+0)}^{\mu}(\Gamma, F)$, we introduce the function $h_{k}=I\left(\ln G_{k}\right)$, which vanishes at infinity, and its associated function

$$
\begin{equation*}
X_{k}(z)=e^{h_{k}(z)} \prod_{\tau}(z-\tau)^{-s_{\tau}}, \tag{5}
\end{equation*}
$$

with some integer s_{τ}, which is canonical for the problem (4).
In the sectors $S_{\tau, j}$, the function h_{k} can be represented as follows:

$$
h_{k}(z)=\frac{1}{2 \pi i}\left[\sum_{s=1}^{n_{\tau}} \sigma_{\tau, s}\left(\ln G_{k}\right)(\tau, s)\right] \ln (z-\tau)+h_{k, \tau, j}(z), \quad h_{k, \tau, j} \in C_{(+0)}^{\mu}\left(S_{\tau, j}, \tau\right) .
$$

Assume that

$$
\frac{1}{2 \pi} \arg \prod_{j=1}^{n_{\tau}}\left[G_{k}(\tau, j)\right]^{\sigma_{\tau, j}}=\alpha_{k, \tau}+i \beta_{k, \tau}, \quad 0 \leq \alpha_{k, \tau}<1
$$

so that

$$
\frac{1}{2 \pi i}\left[\sum_{s=1}^{n_{\tau}} \sigma_{\tau, s}\left(\ln G_{k}\right)(\tau, s)\right]=\alpha_{k, \tau}+i \beta_{k, \tau}+s_{k, \tau}
$$

with some integer $s_{k, \tau}$. Note that the sum on the left-hand side of τ coincides with the Cauchy index Ind G_{k} of the function G_{k}, that is, with the sum of the increments of $\ln G_{k}$ on arcs that form the curve $\Gamma \backslash F$, which are taken in accordance with their orientation, divided by $2 \pi i$. Thus,

$$
\begin{equation*}
\operatorname{Ind} G_{k}=\sum_{\tau}\left(\alpha_{k, \tau}+i \beta_{k, \tau}+s_{k, \tau}\right) \tag{6}
\end{equation*}
$$

Obviously, the function X_{k} in the sectors $S_{\tau, j}$ can be represented as follows:

$$
\begin{equation*}
X_{k}(z)=A_{k, \tau, j}(z)(z-\tau)^{\delta_{k, \tau}+i \beta_{k, \tau}}, \quad \delta_{k, \tau}=-s_{\tau}+s_{k, \tau}+\alpha_{k, \tau}, \tag{7}
\end{equation*}
$$

where $A, 1 / A \in C_{(+0)}^{\mu}\left(\hat{S}_{\tau, j}, \tau\right)$.

The integers s_{τ} in the definition (5) can be chosen arbitrarily; we choose them so that

$$
\begin{equation*}
\lambda \leq \delta_{k}<\lambda+1 \tag{8}
\end{equation*}
$$

with respect to the weighted order $\delta_{k}=\left(\delta_{k, \tau}, \tau \in F\right)$. Then

$$
\left[\alpha_{k, \tau}-\lambda_{\tau}\right]+s_{k, \tau}=s_{\tau},
$$

where $[x]$ means the integer part of x. Taking into account (6), we obtain

$$
\begin{equation*}
\lim _{z \rightarrow \infty} z^{\varkappa_{k}} X_{k}(z)=1, \quad \varkappa_{k}=\sum_{\tau}\left[\alpha_{k, \tau}-\lambda_{\tau}\right]+\operatorname{Ind} G_{k}-\sum_{\tau}\left(\alpha_{k, \tau}+i \beta_{k, \tau}\right) . \tag{9}
\end{equation*}
$$

Using the canonical function, it is easy to describe (see [1]) the solvability of the problem (4). For this, we denote the class of polynomials of degree $\leq \varkappa_{k}+n_{k}-1$ (for $\varkappa_{k}+n_{k} \leq 0$ by P_{k}, assume that $P_{k}=0$), and let Q_{k} have a similar meaning with respect to polynomials of degree at most $-\left(\varkappa_{k}+n_{k}\right)-1$. Thus,

$$
\begin{array}{lll}
\operatorname{dim} P_{k}=\varkappa_{k}+n_{k}, & \operatorname{dim} Q_{k}=0 & \text { for } \varkappa_{k}+n_{k} \geq 0, \\
\operatorname{dim} P_{k}=0, & \operatorname{dim} Q_{k}=-\left(\varkappa_{k}+n_{k}\right) & \text { for } \varkappa_{k}+n_{k} \leq 0 .
\end{array}
$$

In all cases,

$$
\operatorname{dim} P_{k}-\operatorname{dim} Q_{k}=\varkappa_{k}+n_{k} .
$$

Theorem 1. Under the conditions

$$
\lambda_{\tau}-\alpha_{k, \tau} \notin \mathbb{Z}, \quad \tau \in F,
$$

the problem (4) is solvable in the class of functions $\psi \in C_{\lambda}^{\mu}(\hat{D}, F)$ satisfying the condition $\operatorname{deg} \psi \leq$ $n_{k}-1$ at infinity if and only if

$$
\left\langle\left(X^{+}\right)^{-1} g, q\right\rangle=0, \quad q \in Q_{k},
$$

where the following notation is introduced:

$$
\psi=X_{k} I\left[\left(X_{k}^{+}\right)^{-1} g\right]+X_{k} p, \quad p \in P_{k} .
$$

If this condition is fulfilled, then the general solution is given by the formula

$$
\psi=X_{k} I\left[\left(X_{k}^{+}\right)^{-1} g\right]+X_{k} p, \quad p \in P_{k} .
$$

Note that, according to (7), the multiplication operator $g \rightarrow\left(X_{k}^{+}\right)^{-1} g$ determines an isomorphism $C_{\lambda}^{\mu} \rightarrow C_{\lambda-\delta_{k}}^{\mu}$. Due to (9), the weighted order $\lambda_{k}=\lambda-\delta_{k}$ satisfies the condition $-1<\lambda_{k}<0$, so the operator $g \rightarrow X_{k} I\left[\left(X_{k}^{+}\right)^{-1} g\right]$ acting from $C_{\lambda}^{\mu}(\Gamma, F)$ to $C_{\lambda}^{\mu}(\hat{D}, F)$ is bounded. If the condition (9) is violated for some τ, then we can only say that the function $\psi=X_{k} I\left[\left(X_{k}^{+}\right)^{-1} g\right]$ belongs to the class $C_{\lambda-0}^{\mu}$ (i.e., the class $C_{\lambda-\varepsilon}^{\mu}$ for any $\varepsilon>0$).

The theorem also implies that the index of the problem is $\operatorname{dim} P_{k}-\operatorname{dim} Q_{k}=\varkappa_{k}+n_{k}$.
Let us turn to the problem (1)-(3), for which we set

$$
\begin{equation*}
a=G_{0} X_{2}^{-}\left(X_{1}^{+}\right)^{-1} \tag{10}
\end{equation*}
$$

Due to (7), this function belongs to the class $C_{\delta_{2}-\delta_{1}}^{\mu}(\Gamma, F)$. According to (8), the weighted order $\delta_{2}-\delta_{1}$ lies strictly between -1 and 1 , so the function a is integrable on Γ. Moreover, in this notation, we can introduce the polynomial classes

$$
\begin{equation*}
P_{2}^{0}=\left\{p \in P_{2} \mid\langle a p, q\rangle=0, q \in Q_{1}\right\}, \quad Q_{1}^{0}=\left\{q \in Q_{1} \mid\langle a p, q\rangle=0, p \in P_{2}\right\} . \tag{11}
\end{equation*}
$$

Lemma 1. In the decompositions

$$
\begin{equation*}
P_{2}=P_{2}^{0} \oplus P_{2}^{1}, \quad Q_{1}=Q_{1}^{0} \oplus Q_{1}^{1} \tag{12}
\end{equation*}
$$

the subspaces P_{2}^{1} and Q_{1}^{1} have a common dimension $r=\operatorname{dim} P_{2}^{1}=\operatorname{dim} Q_{1}^{1}$. Moreover, there exists a unique linear operator R, which to any integrable function $g \in L(\Gamma)$ on Γ assign a polynomial $p=R g \in P_{2}^{1}$ with the following property:

$$
\begin{equation*}
\left\langle a p, q_{i}\right\rangle=\left\langle g, q_{i}\right\rangle, \quad 1 \leq i \leq r, \tag{13}
\end{equation*}
$$

where q_{1}, \ldots, q_{r} is some basis in Q_{1}^{1}.
Proof. According to the definition (11), the bilinear form $\langle a p, q\rangle$ is nondegenerate on the product $P_{2}^{1} \times Q_{1}^{1}$ in the sense that the equations $\langle a p, q\rangle=0, q \in Q_{1}^{1}$, imply $p=0$ and, conversely, the equations $\langle a p, q\rangle=0, p \in P_{2}^{1}$, imply $q=0$. Hence the equality $\operatorname{dim} P_{2}^{1}=\operatorname{dim} Q_{1}^{1}$ is obtained directly.

Indeed, let the elements p_{1}, \ldots, p_{s} and q_{1}, \ldots, q_{r} form bases in P_{2}^{1} and Q_{1}^{1}, respectively. Then, by virtue of the nondegeneracy property indicated above, rows and columns of the $(s \times r)$-matrix A with elements $\left\langle a p_{i}, q_{j}\right\rangle$ are linearly independent, so this matrix is a square matrix.

Assuming that $p=\xi_{1} p_{1}+\ldots \xi_{r} p_{r} \in P_{2}^{1}$, we can write the system (13) as follows:

$$
\sum_{i=1}^{r} \xi_{i}\left\langle a p_{i}, q_{j}\right\rangle=\left\langle g, q_{j}\right\rangle, \quad j=1, \ldots, r .
$$

Since the matrix A of this system is invertible, with respect to the inverse matrix $B=\left(B_{i j}\right)_{1}^{r}$ we arrive at the equation

$$
\xi_{i}=\sum_{j=1}^{r} B_{i j}\left\langle g, q_{j}\right\rangle,
$$

so we can set

$$
R g=\sum_{1 \leq i, j \leq r} B_{i j} p_{i}\left\langle g, q_{j}\right\rangle
$$

The uniqueness of the operator R with the property (13) is almost obvious. Indeed, let $p \in P_{2}^{1}$ and $\left\langle a p, q_{i}\right\rangle=0,1 \leq i \leq r$. Then $\langle a p, q\rangle=0$ for all $q \in Q_{1}$ and, therefore, $p \in P_{1}^{0}$, which, according to the decomposition (12), is possible only for $p=0$.

Theorem 2. Let the conditions (9) hold for both values $k=1,2$ and let the function $g_{1}, g_{2} \in L(\Gamma)$ be determined by the equations

$$
\begin{equation*}
2 X_{1}^{+} g_{1}=2 f_{1}+G_{0} G_{2}^{-1}\left[-f_{2}+X_{2}^{+} S\left(X_{2}^{+}\right)^{-1} f g_{2}\right], \quad X_{2}^{+} g_{2}=f_{2} \tag{14}
\end{equation*}
$$

with the singular Cauchy operator S. The problem (1)-(3) is solvable in the class $C_{\lambda}^{\mu}(\hat{D}, F)$ of vectorvalued functions $\phi=\left(\phi_{1}, \phi_{2}\right)$ analytic in $D=\mathbb{C} \backslash \Gamma$ if and only if

$$
\begin{equation*}
\left\langle g_{1}, q\right\rangle=0, \quad q \in Q_{1}^{0} ; \quad\left\langle g_{2}, q\right\rangle=0, \quad q \in Q_{2} . \tag{15}
\end{equation*}
$$

If these conditions are fulfilled, then, in the notation of Lemma 1, the general solution of the problem is given by the formula

$$
\begin{equation*}
\phi_{1}=X_{1}\left[I\left(g_{1}-R g_{1}+p_{2}^{0}\right)+p_{1}\right], \quad \phi_{2}=X_{2}\left(I g_{2}-R g_{1}+p_{2}^{0}\right), \quad p_{1} \in P_{1}, p_{2}^{0} \in P_{2}^{0} \tag{16}
\end{equation*}
$$

with the operator R from Lemma 1 .
Proof. We write the boundary condition (3) in the component-wise form

$$
\phi_{1}^{+}-G_{1} \phi_{1}^{-}=f_{1}+G_{0} \phi_{2}^{-}, \quad \phi_{2}^{+}-G_{2} \phi_{2}^{-}=f_{2},
$$

and consecutively apply Theorem 1 to the second and first equations. Then the necessary and sufficient conditions for the solvability of the problem take the following form:

$$
\begin{equation*}
\left\langle\left(X_{1}^{+}\right)^{-1}\left(f_{1}-G_{0} \phi_{2}^{-}\right), q\right\rangle=0, \quad q \in Q_{1} ; \quad\left\langle\left(X_{2}^{+}\right)^{-1} f_{2}, q\right\rangle=0, \quad q \in Q_{2}, \tag{17}
\end{equation*}
$$

If these conditions are fulfilled, then the solution is given by the formulas

$$
\begin{array}{ll}
\phi_{1}=X_{1} I\left[\left(X_{1}^{+}\right)^{-1}\left(f_{1}-G_{0} \phi_{2}^{-}\right)\right]+X_{1} p_{1}, & p_{1} \in P_{1}, \\
\phi_{2}=X_{2} I\left[\left(X_{2}^{+}\right)^{-1} f_{2}\right]+X_{2} p_{2}, & p_{2} \in P_{2} . \tag{18}
\end{array}
$$

From the last equation, according to the Sokhotski-Plemelj formula we have

$$
2 \phi_{2}^{-}=X_{2}^{-}\left[-\left(X_{2}^{+}\right)^{-1} f_{2}+S\left(X_{2}^{+}\right)^{-1} f_{2}\right]+2 X_{2}^{-} p_{2}=G_{2}^{-1}\left[-f_{2}+X_{2}^{+} S\left(X_{2}^{+}\right)^{-1} f_{2}\right]+2 X_{2}^{-} p_{2},
$$

so in the notation (10), (14) we get

$$
\begin{equation*}
\left(X_{1}^{+}\right)^{-1}\left(f_{1}-G_{0} \phi_{2}^{-}\right)=g_{1}+a p_{2} . \tag{19}
\end{equation*}
$$

As a result, the first relation in (17) takes the form

$$
\left\langle g_{1}+a p_{2}, q\right\rangle=0, \quad q \in Q_{1} .
$$

Obviously, it is equivalent to the pair of relations $\left\langle g_{1}, q\right\rangle=0, q \in Q_{1}^{0}$, and $\left\langle g_{1}+a p_{2}, q\right\rangle=0, q \in Q_{1}^{1}$. Assuming that $p_{2}=p_{2}^{0}+p_{2}^{1}, p_{2}^{j} \in P_{2}^{j}$, in the last equation we can replace p_{2} by p_{2}^{1}. Due to Lemma 1 , we obtain that $p_{2}^{1}=-R g_{1}$. Together with the first relation, we arrive at the solvability condition (15) for g_{1}. At the same time, (19) turns into

$$
\left(X_{1}^{+}\right)^{-1}\left(f_{1}-G_{0} \phi_{2}^{-}\right)=g_{1}-R g_{1}+a p_{2}^{0}, \quad p_{2}^{0} \in P_{2}^{0} .
$$

Substituting this expression into (18), we obtain (16), which completes the proof of the theorem.
Note that the number of linearly independent orthogonality conditions in (15) is equal to $\operatorname{dim} Q_{1}^{0}+$ $\operatorname{dim} Q_{2}$. On the other hand, the formula (16) shows that the space of solutions of the homogeneous problem has the dimension $\operatorname{dim} P_{1}+\operatorname{dim} P_{2}^{0}$. Therefore, the index of the problem is equal to

$$
\varkappa(G)=\operatorname{dim} P_{1}+\operatorname{dim} P_{2}^{0}-\operatorname{dim} Q_{1}^{0}-\operatorname{dim} Q_{2} .
$$

According to (12) we have

$$
\operatorname{dim} P_{2}^{0}=\operatorname{dim} P_{2}-\operatorname{dim} P_{2}^{1}, \quad \operatorname{dim} Q_{2}^{0}=\operatorname{dim} Q_{2}-\operatorname{dim} Q_{2}^{1} .
$$

Substituting these expressions into the previous equality and taking into account the relation $\operatorname{dim} P_{2}^{1}=$ $\operatorname{dim} Q_{1}^{1}$, by virtue of Lemma 1, we obtain the equation

$$
\varkappa(G)=\sum_{k=1,2}\left(\operatorname{dim} P_{k}-\operatorname{dim} Q_{k}\right)=\varkappa_{1}+\varkappa_{2}-n_{1}-n_{2}
$$

for the index of the problem, similar to the scalar case.
The linear conjugation problem (1) in the space C_{λ}^{μ} with any weight order λ can be solved with the help of the canonical matrix-valued function $X(z)$. The problem on the existence and asymptotics at the points $\tau \in F$ was examined in [5]. However, in the case (3) with a triangular matrix, this question is solved elementarily.

We search for the canonical matrix for this coefficient in a similar form:

$$
X=\left(\begin{array}{cc}
X_{1} & X_{0} \\
0 & X_{2}
\end{array}\right)
$$

then the relation $X^{+}=G X^{-}$for these matrices is reduced to the equation

$$
X_{0}^{+}=G_{1} X_{0}^{-}+G_{0} X_{2}^{-}
$$

for the unknown function X_{0}. This is an inhomogeneous conjugation problem; its solution can be written by the formula $X_{0}=X_{1} I\left[\left(X_{1}^{+}\right)^{-1} X_{2}^{-} G_{0}\right]$. Since $\left(X_{1}^{+}\right)^{-1} X_{2}^{-} G_{0} \in C_{\delta_{2}-\delta_{1}}^{\mu}(\Gamma, F)$ and by virtue of (8) and (9) the weight orders δ_{k} satisfy the condition $-1<\delta_{2}-\delta_{1}<1$, we conclude that the function X_{0} in the sectors $S_{\tau, j}$ belongs to the classes

$$
X_{0}(z) \in \begin{cases}C_{\delta_{2}}^{\mu}\left(\hat{S}_{\tau, j}, \tau\right), & \delta_{2, \tau}<\delta_{1, \tau} \\ C_{\delta_{1}-0}^{\mu}\left(\hat{S}_{\tau, j}, \tau\right), & \delta_{2, \tau} \geq \delta_{1, \tau}\end{cases}
$$

Consequently,

$$
\begin{equation*}
X_{0} \in C_{\delta^{\prime}-0}^{\mu}(\hat{D}, F), \quad \delta_{\tau}^{\prime}=\min \left(\delta_{1, \tau}, \delta_{2, \tau}\right) \tag{20}
\end{equation*}
$$

and

$$
X^{-1}=\left(\begin{array}{cc}
X_{1}^{-1} & -X_{1}^{-1} X_{2}^{-1} X_{0} \tag{21}\\
0 & X_{2}^{-1}
\end{array}\right) \in C_{\delta^{\prime \prime}-0}^{\mu}(\hat{D}, F), \quad \delta_{\tau}^{\prime \prime}=\max \left(\delta_{1, \tau}, \delta_{2, \tau}\right) .
$$

As in the scalar case, we can write the general solution of the problem (1), (3) in the class C_{λ}^{μ}. Indeed, for the vector-valued function $\psi=X^{-1} \phi \in C_{\lambda-\delta^{\prime \prime}}^{\mu}(\hat{D}, F)$, we have the boundary-value problem $\psi^{+}-\psi^{-}=g$ with the right-hand side $g=\left(X^{+}\right)^{-1} f \in C_{\lambda-\delta^{\prime \prime}}^{\mu}(\Gamma, F)$. Since $-1<\lambda-\delta^{\prime \prime}<0$, its general solution has the form $\psi=I g+p$ with some polynomial vector $p=\left(p_{1}, p_{2}\right)$. It follows that

$$
\begin{equation*}
\phi=X I\left[\left(X^{+}\right)^{-1} f\right]+X p . \tag{22}
\end{equation*}
$$

Note that in the class C_{λ}^{μ}, where λ satisfies the condition (9), the problem (1), (3) is always solvable and its solution is given by the formula

$$
\phi_{1}=X_{1} I\left[\left(X_{1}^{+}\right)^{-1}\left(f_{1}+G_{0} \phi_{2}^{-}\right)\right], \quad \phi_{2}=I f_{2} .
$$

At the same time, this solution can be represented in the form (22), although the right-hand side of this formula, by virtue of (20), (21), belongs only to the class $C_{\lambda+\delta^{\prime}-\delta^{\prime \prime}}^{\mu}$.

The right-hand side of (22) satisfies the condition (2) if we impose the corresponding conditions on the function f and the polynomial p; this leads to the description of the kernel and cokernel of the problem appearing in Theorem 2. According to [5], we can write the asymptotic representation for the matrix $X(z)$ in the sectors $S_{\tau, k}$ based on the spectral characteristics of the matrix

$$
G_{\tau}=\prod_{j=1}^{n_{\tau}}[G(\tau, j)]^{\sigma_{\tau, j}}
$$

where the order of the product corresponds to the order of arcs $\Gamma_{\tau, j}$ with a common start point τ passing counterclockwise. Using this asymptotics, we can show that in fact the formula (22) defines a solution in the class C_{λ}^{μ}.

Acknowledgment. This work was supported by the Ministry of Education and Science of the Russian Federation (project No 1.7311.2017/BC) and the Ministry of Education and Science of the Republic of Kazakhstan (international project No 3492.GF4).

REFERENCES

1. G. N. Aver'yanov and A. P. Soldatov, "Asymptotics of solutions of the linear conjugation problem at the corner points of the curve," Differ. Uravn., 52, No. 9, 1150-1159 (2016).
2. F. D. Gakhov, Boundary-Value Problems [in Russian], Fizmatlit, Moscow (1963).
3. E. S. Meshcheryakova and A. P. Soldatov, "The Riemann-Hilbert problem in the family of Hölder weight spaces," Differ. Uravn., 52, No. 1, 518-527 (2016).
4. N. I. Muskhelishvili, Singular Integral Euqations [in Russian], Nauka, Moscow (1968).
5. A. P. Soldatov, "The linear boundary-value conjugation problem," Izv. Akad. Nauk SSSR. Ser. Mat., 43, No. 1, 184-202 (1979).
6. I. N. Vekua, Systems of Singular Integral Euqations [in Russian], Nauka, Moscow (1970).
G. N. Averyanov

Belgorod State National Research University, Belgorod, Russia
E-mail: averianov@bsu.edu.ru
A. P. Soldatov

Dorodnitsyn Computing Center of the Russian Academy of Sciences, Moscow, Russia E-mail: soldatov48@gmail.com

[^0]: Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 160, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS'17, Saint Petersburg, July 24-28, 2017, 2019.

