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Abstract: The macro-scale distribution of secondary precipitates in friction-stir-welded 2519 alu-
minium alloy was studied. It was found that precipitation pattern essentially varied within the stir
zone in terms of volume fraction, size, and even preferential concentration of the particles, either
at grain boundaries or within the grain interior. This effect was attributed to local variations in
welding temperature and cooling rate, which led to complex precipitation phenomena including
coarsening, dissolution, and partial reprecipitation. Specifically, the precipitation coarsening was
most pronounced at the weld root due to the lowest welding temperature being in this area. On the
other hand, the highest welding temperature at the upper weld surface enhanced the dissolution
process. The reprecipitation phenomenon was deduced to be most prominent in the weld nugget due
to the slowest cooling rate being in this microstructural region.

Keywords: friction-stir welding; aluminium alloys; microstructure; second-phase precipitates

1. Introduction

Friction-stir welding (FSW) is an innovative joining technique that enables solid-state
joining [1,2]. This technique is sometimes considered one of the most significant recent
achievements in the field of joining, e.g., [3,4]. Nevertheless, one of the current challenges
in this field is the welding of heat-treatable aluminium alloys. In this case, FSW typically
leads to the dissolution of secondary precipitates in the stir zone [5–22], thus resulting in
significant material softening [6,13,17,19,23,24].

To minimize this problem, several new FSW-derivative techniques have been invented
recently, for instance, the stationary-shoulder FSW and bobbin-tool FSW. In the first ap-
proach, material mixing is conducted entirely by the tool probe, whereas the tool shoulder
is kept stationary [25,26]. This gives rise to comparatively low heat input and provides a
relatively uniform temperature distribution within the stir zone. In the bobbin-tool FSW,
a specially designed, double-sided welding tool is used for joining [26]. The benefits of
this technique include an essentially homogeneous temperature field within the weld zone,
reduced axial force, and the elimination of the incomplete penetration defect.

Nonetheless, even the above-mentioned advanced techniques cannot overcome the
softening problem in heat-treatable alloys completely. Hence, to recover alloys strength, the
welded joints of these materials typically undergo a postweld heat treatment, which may
involve solution annealing and subsequent artificial aging. The first step of this treatment,
however, frequently promotes abnormal grain growth, i.e., the catastrophic coarsening of a
few grains that eventually consume the entire stir zone [27–36].

It is important to emphasize that abnormal grain growth is frequently initiated from
the stir zone periphery. Specifically, it preferentially develops either in the near-surface
layer or at the weld root [27–29,32,37–42]. Although this effect is relatively well-known,
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its origin is still not completely clear. It is sometimes believed that this phenomenon is
associated with the specific microstructure (and, particularly, the specific precipitation
pattern) that evolved in these areas during FSW. To the best of the authors’ knowledge,
however, this issue has not been studied experimentally so far. Attempting to shed some
light on this topic, the present work is aimed at investigating the distribution of secondary
precipitates within the stir zone of a typical heat-treatable aluminium alloy.

2. Materials and Methods

The material used in this work was a commercial 2519 aluminium alloy. It was
produced by semicontinuous casting, homogenized at 510 ◦C for 24 h, swaged to a true
strain of ≈2.0, and then rolled to a true strain of ≈1.4 at 425 ◦C. To produce the age-
hardened condition (peak ageing), the rolled material was solution-annealed at 525 ◦C for
1 h, water-quenched, cold-rolled to a true strain of ≈0.2, and then artificially aged at 165 ◦C
for 6 h. The obtained material was referred to as the base material.

The 3 mm thick sheets of the base material were butt-welded using a commercial
AccurStir 1004 FSW machine. The welding tool was manufactured from tool steel and
consisted of a concave-shaped shoulder of 12.5 mm in diameter and an M5 cylindrical probe
of 2.7 mm in length. To evaluate the possible effect of the FSW heat input, two welding
trials were conducted at different conditions, viz., (i) the low-heat-input condition and
(ii) the high-heat-input one, as indicated in Table 1. These two regimes were selected on the
basis of previous experiments. To evaluate the weld thermal cycle, K-type thermocouples
were placed in close proximity to the stir zone border prior to FSW (Figure 1).

Table 1. FSW conditions applied in this work.

Weld Designation Tool Rotation Rate, rpm Tool Travel Speed, mm/min

Low heat input 500 760

High heat input 1100 380
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copy (BSE-SEM). The microstructural specimens were prepared by mechanical polishing 
in conventional fashion, followed by vibratory polishing with fumed silica suspension 

Figure 1. Thermocouple layout inside the workpiece (unit: mm). WD, ND and TD denote the welding
direction, normal direction, and transverse direction. Not to scale.

Microstructural observations were focused on the examination of second-phase pre-
cipitates and were performed mainly by backscatter-electron-scanning electron microscopy
(BSE-SEM). The microstructural specimens were prepared by mechanical polishing in
conventional fashion, followed by vibratory polishing with fumed silica suspension OP-S
(Struers, Copenhagen, Denmark). The BSE-SEM examinations were carried out using an
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FEI Quanta 600 FEG-SEM, FEI Company, Hillsboro, OR, USA, operated at an accelerated
voltage of 20 kV. To investigate the macro-scale distribution of the precipitates within the stir
zone, three different microstructural regions were examined, viz., (i) upper section, (ii) weld
nugget, and (iii) weld root (Figure 2 (In Figure 2, the significant lack of penetration was due
to the insufficient plunge depth of the welding tool. In turn, this was associated with an
attempt to provide the lowest temperature of welding as possible. This approach enabled
important insight into the influence of the low-temperature FSW on microstructure)).
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Figure 2. Optical image of the weld cross-section of the low-heat-input weld with indicated areas
of microstructural observations. ND, TD, and WD are normal direction, transverse direction, and
welding direction, respectively. In the micrograph, retreating side is left and advancing side is right.

The volume fraction and size distributions of the precipitates were quantified using
image analysis software ImageJ (ver. 1.8.0, National Institutes of Health, Bethesda, MD,
USA). Due to the penetration of the electron beam into the material depth, the acquired
images also contained precipitates lying below the specimen surface. To exclude those
from consideration, the micrographs were subjected to careful watershed segmentation in
order to differentiate the precipitates from the matrix phase and the surface precipitates
from the subsurface ones. The precipitation size was quantified using the equivalent-
diameter method.

The BSE-SEM measurements were complimented by X-ray diffraction (XRD) examina-
tions. These were conducted with the Rigaku SmartLab diffractometer, Rigaku Corporation,
Tokyo, Japan equipped with a Cu Kα radiation source in Bragg–Brentano geometry.

3. Results
3.1. Weld Thermal Cycle

As precipitation behaviour of heat-treatable alloys is a function of thermal conditions,
microstructural analysis in the present study was preceded by the evaluation of the weld
thermal history. The effect of FSW regimes on the measured thermal cycle is shown in
Figure 3a. In good agreement with expectations, the high-heat-input weld exhibited a
relatively high peak temperature and a comparatively long cooling time.

To facilitate interpretation of the precipitation behaviour, thermodynamic calcula-
tions were performed employing ThermoCalc 2020a software with the TCAl7 database
(Figure 3b). As expected, FSW resulted in the dissolution of the constituent Al2Cu (i.e., θ-)
secondary phase, with this process being the most pronounced in the high-heat-input weld.
Importantly, the dissolution was not completed in both welding conditions.
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3.2. Precipitation Pattern

The typical BSE-SEM images taken from different locations of the welded joints are
shown in Figures 4 and 5. The corresponding precipitation statistics derived from the
micrographs are summarized in Table 2 and Figure 6.

In the low-heat-input weld, the stir zone microstructure was dominated by the rela-
tively coarse precipitates distributed more or less homogeneously on the scale of several
grains (Figure 4). In the macro scale, however, a measurable difference in the volume frac-
tion of the precipitates was found (Table 2). Specifically, the highest precipitation content
was revealed in the weld nugget, whereas the lowest one was observed at the upper weld
surface (Table 2). It is also worth noting that the particle-size distributions measured in
these two local areas were characterized by a comparatively high percentage of fine-sized
precipitates (Figure 6a).
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The high-heat-input weld exhibited an even more complex precipitation pattern. The
material at the upper weld surface had the lowest precipitation content (Table 2). Impor-
tantly, the precipitates in this region were preferentially clustered along grain boundaries,
being sometimes arranged as grain-boundary layers (Figure 5a). In the weld nugget, in
addition to the grain-boundary precipitates, a significant fraction of the extremely fine
dispersoids was also found in grain interiors (Figures 5b and 6b). As a result, this mi-
crostructural region exhibited somewhat increased precipitation content (Table 2). Finally,
the weld root was characterized by the largest volume fraction of precipitates (Table 2),
which were evenly distributed throughout the material (Figure 5c).
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Significant grain refinement in both welding conditions was also noted. This effect is
normally observed in friction-stir-welded/processed materials being most pronounced at
the low-heat-input conditions, e.g., [43–47]. In heat-treatable aluminium alloys, however,
grain refinement is typically insufficient to compensate for the FSW-induced precipitation
dissolution, resulting in essential material softening in the stir zone, for example [43–47].

3.3. Phase Composition of Precipitates

In order to examine the typical phase composition of the precipitates, XRD measure-
ments were applied (Figure 7). As expected, the precipitates were dominated by the Al2Cu
(or θ-) phase, which is the typical secondary phase in Al–Cu system. These results agreed
well with our previous works [48–50]. Equally important, X-Ray data indicate the rela-
tively low fraction of the θ-phase in the high-temperature weld, thus being consistent with
BSE-SEM analysis (Table 2).
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4. Discussion
4.1. Uncertainties in the Temperature Measurements during FSW

Considering the substantial difference in precipitation patterns between the two stud-
ied welding conditions (Figures 4 and 5 and Table 2), it was surprising that the measured
peak temperatures in these two cases were relatively close (Figure 3a,b). In this context, it
is important to emphasize that the temperature measurements were conducted at the stir
zone border (Figure 1), i.e., outside the stir zone. Given the significant thermal gradient
inherent to FSW, it is highly likely that the actual temperature within the stir zone was
essentially higher than that shown in Figure 3a. This raises some doubts regarding the
relevance of the temperature measurements during FSW.

It is also noteworthy that the temperatures were measured only at the weld mid-
thickness (Figure 1). Hence, the thermal history of the material at the upper weld surface
as well as that of the weld root were virtually unknown. However, taking into account the
well-accepted concept of the dominant role of the tool shoulder in the generation of FSW
heat [1], it could be safely assumed that the highest welding temperature should be at the
upper weld surface, whereas the lowest one should be at the weld root. Moreover, given
the heat loss via air convention from the upper surface as well as the rapid heat sink into
the backing steel plate, the highest cooling rate is expected at the weld root, whereas the
lowest one is at the weld nugget.
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4.2. Precipitation Phenomena
4.2.1. Low-Heat-Input Weld

The dominant microstructural characteristic of the low-heat-input weld was a con-
siderable fraction of coarse precipitates within the stir zone (Figure 4). This observation
implied a prevalence of precipitation coarsening rather than precipitation dissolution dur-
ing low-temperature FSW. These findings are in good agreement with results recently
reported by Kalinenko et al. [48].

On the other hand, considering the ThermoCalc predictions (Figure 3b) as well as the
observed variation of the precipitation content across the stir zone (Table 2), some fraction
of precipitates obviously went into the solid solution. As follows from the arguments given
in Section 4.1, this process should be the least prominent at the weld root. Hence, this
microstructural region should exhibit the highest precipitation content. In fact, however,
the largest precipitation fraction was found in the weld nugget (Table 2).

The most plausible explanation for this observation is the partial reprecipitation of
dissolved particles during the weld cooling cycle. Despite the relatively short duration of
the cooling stage (≈12 s in Figure 3a), the reprecipitation may perhaps occur because the
average cooling rate (≈21 ◦C/s) was significantly lower than that during water quenching.
If so, the reprecipitation should be most prominent in the weld nugget due to the lowest
cooling rate in this area.

The presumed reprecipitation of dissolved dispersoids agreed well with the increased
fraction of the fine-sized precipitates revealed in the weld nugget and at the weld upper
surface (Figure 6a).

4.2.2. High-Heat-Input Weld

In the high-heat-input weld, the increase in the welding temperature should promote
precipitation dissolution. On the other hand, the prolongation of the cooling stage should
enhance the reprecipitation process.

In this context, of particular interest was the grain-boundary nature of precipitates,
which has been revealed at the upper weld surface (Figure 5a). Assuming that the grain
structure in the stir zone was produced during FSW, the grain-boundary precipitates may
only develop after FSW, during the weld cooling cycle, via reprecipitation from the solid
solution. Due to the additional heat loss via air convection in this area, the cooling period
near the upper weld surface was presumably relatively short. As a result, the reprecipitation
occurred only in the local areas with enhanced diffusion activity, i.e., at grain boundaries.

A decrease in the cooling rate in the weld nugget should promote reprecipitation in
the grain interior as well. Indeed, it has been observed in the present study (Figure 5b). The
nano-scale nature of such precipitates (Figures 5b and 6b) was presumably associated with
the limited duration of the reprecipitation process.

Considering the highest cooling rate in the weld root, the largest precipitation content
in this area (Table 2) cannot be explained in the terms of the reprecipitation effect. Hence, it
was likely attributable to the lowest welding temperature in this area, i.e., the incompletion
of the precipitation dissolution process.

It is worth noting that precipitation coarsening and precipitation dissolution, both
observed in the present study, were presumably essentially influenced by the severe plastic
deformation occurring during FSW. However, the mutual contributions of thermal and
strain-induced processes are unclear, and this issue requires further study.

5. Conclusions

This work was undertaken to investigate the macro-scale distribution of secondary
precipitates in a typical friction-stir-welded heat-treatable aluminium alloy. To this end,
2519 aluminium alloy was used as a program material and two welding conditions were
studied, viz., low-heat-input and high-heat-input. Microstructural observations were
conducted with the BSE-SEM technique in three different locations within the stir zone:
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(i) upper surface, (ii) weld nugget, and (iii) weld root. The main conclusions derived from
this study were as follows.

(1) Temperature measurements were found to be not entirely consistent with microstruc-
tural observations. This discrepancy was attributed to the substantial temperature
gradient inherent to FSW.

(2) The macro-scale distribution of the secondary precipitates within the stir zone was
heterogeneous in terms of volume fraction, size, and even their preferential concentra-
tion at grain boundaries or within the grain interior. This effect was most pronounced
under the high-heat-input welding conditions.

(3) The inhomogeneous character of the precipitate distribution was attributed to local
variation in FSW temperature and cooling rate. These variations led to complex precip-
itation phenomena, including coarsening, dissolution, and even partial reprecipitation
during the weld cooling cycle.

(4) The precipitation coarsening was found to be most pronounced at the weld root due
to the lowest FSW temperature being in this area. On the other hand, the precipi-
tation dissolution was found to be the most prominent at the upper weld surface
because the highest welding temperature was in this region. The most intense par-
ticle reprecipitation was concluded to occur in the weld nugget due to the slowest
cooling rate.
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