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Abstract: In this study, the friction-stir welding (FSW) technique was successfully applied for joining
of AA2519 to AA5181 alloy. Microstructure and mechanical properties of dissimilar FSW joints were
investigated by optical microscopy, microhardness, and tensile testing. The deformation behaviour
of the welded joints was elucidated via the digital image correlation technique. After welding, the
ultimate tensile strength of joints was ~300 MPa and ductility was ~16%. The microhardness values
observed at the stir zone were higher than those in the base material AA5182. The produced welds
demonstrate nearly 100% (based on AA5182) joint efficiency.

Keywords: friction stir welding; dissimilar welding; aluminium; microstructure; mechanical properties;
AA5182; AA2519

1. Introduction

Aluminium alloys are classified into heat-treatable alloys, including copper-containing alloys
(2xxx series), magnesium- and silicon-containing alloys (6xxx series), and zinc-containing alloys
(7xxx series), and non-heat-treatable, including pure aluminium alloys (1xxx series), manganese-
containing alloys (3xxx series), silicon-containing alloys (4xxx series), and magnesium-containing
alloys (5xxx series) [1].

Given the excellent combination of low density, high strength, and consequently
high stiffness, heat-treatable Al-Cu-Mg alloys have found structural application in the
aircraft, transport, and military industries. The main mechanism of their strengthening is
age-hardening i.e., formation of nano-scale dispersion of secondary precipitates (θ-Al2Cu,
S-Al2CuMg, and so on) during ageing.

The 5xxx series non-heat-treatable alloys, having Mg as the primary alloying addition,
possesses high strength, corrosion resistance, formability, and weldability. Usually, they
have been strengthened by cold work (i.e., by the strain hardening mechanism). They are
widely used in the transport, automotive, shipbuilding, and aviation industry.

Owing to differences in properties (physical and metallurgical) and strengthening philos-
ophy, joining of dissimilar aluminium alloys is a big challenge [2,3]. Applying conventional
welding methods (e.g., fusion welding) leads to poor mechanical properties. A detrimental
effect is caused by hot cracking, porosity, eutectic melting, evaporation of alloying elements,
and so on [2,4–8]. To avoid the above problems, friction stir welding (FSW) could be employed.
It is cutting-edge joining technology in which metal is heated and plasticized by the friction
between a non-consumable rotating tool, ping, and the workpieces [2,3,9–12]. The issue that
emerges in welding of dissimilar alloys is that each material responds in its own way at higher
temperatures with respect to the deformation mechanism. In addition, the extensive deforma-
tion at moderate temperatures causes dynamic recrystallization and recovery, resulting in a
fine microstructure of the stir region [2,3,9,11]. So, this makes difficult to arrive at common
welding parameters that suit both materials. Therefore, each joint configuration requires its
own welding regime to achieve high performance.

Because of the nature of the welding process, FSW results in various microstructural
zones, i.e., stir zone, thermo-mechanically affected zone, and heat-affected zone (HAZ, the
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zone between weld and base material) [2,3,7,9,10,12]. As a rule, the microhardness profiles
of age-hardening alloys reveal that HAZ demonstrates the lowest values. On the other side,
the hardness of the non-heat-treatable alloys was nearly constant across the friction stir
welded zone.

Despite that similar FSW are being extensively studied, over recent years, many researchers
have turned their attention to the microstructural evolution of dissimilar FSW. Sound joints were
obtained between AA2219-T87 and AA5083-H321 [13,14], AA2024-T6 and AA5083-H321 [6],
AA2024-T351 and AA5083-H112 [15–17], AA2219-T6 and AA5083-H116 [18], AA2024-T351 and
AA5083-H111 [19], AA2014-T4 and AA5083-H111 [8], AA2017-T4 and AA5083-H111 [20,21], as
well as many others [2,3,7,12].

Both AA5182 and AA2519 are widely utilized for defence [22,23] and cryogenic [4]
applications. Therefore, the results on joining of above alloys could be of academic and
industrial importance because this allows to set up different properties of the materials in
a single component. The present paper aims to report the investigation dealing with the
dissimilar joining of two modern aluminium alloys used in the industry, namely AA2519-T840
and AA5182-H32. A careful literature review indicates that there is no attempt to investigate
the effect of the FSW regime on the microstructure and mechanical behaviour of the joints of
the above dissimilar alloys. The results may be helpful in the processing strategy of aluminium
alloys’ joining because dissimilar welding is a core demand of industries to substitute the
traditional joining technologies [2,3,7,9,10].

2. Materials and Methods

The materials examined in this study were AA5182 and AA2519 alloys produced by
the semi-continuous casting method in Joint Research Center, “Technology and Materials”,
Belgorod State National Research University. The chemical compositions and treatment
conditions are listed in Table 1.

Table 1. Compositions and thermomechanical treatments of the studied alloys.

Alloy Composition Primary Processing Secondary Processing
Homogenization Hot Deformation

AA2519
T840

Al–5.64Cu–0.33Mn–
0.23Mg–0.15Zr–0.11Ti

10 h at 380 ◦C followed
by 14 h at 510 ◦C

rolling at ~425 ◦C to a strain
of 1.4 (75% reduction)

40% cold rolling followed by
ageing for 190 ◦C for a half hour.

AA5182
H32

Al–4.75Mg–0.3Mn–
0.15Zr–0.1Ti–0.1Cr 24 h at 360 ◦C forging at ~500 ◦C 75% cold rolling followed by

annealing for 300 ◦C for 1 h

The 3 mm thick treated plates were friction-stir butt welded using an AccuStir 1004 FSW
machine (Figure S1). Based on the results of our previous works [24–27], two welding regimes
were selected in order to evaluate the possible influence of the weld heat input. The welding
variables are listed in Table 2. The microstructure of alloy after rolling and ageing have been
reviewed in detail in [28,29].

Table 2. Parameters of the FSW process used in this work.

Weld Designation Spindle Rate, RPM Feed Rate, mm/min

500@15 500 380
1100@30 1100 760

The AA5182 and AA2519 sheets were located on the retreating side and advancing side,
respectively. The welding tool was fabricated from a tool steel and consisted of a shoulder of
12.5 mm in diameter and a M5 cylindrical probe (pin) of 2.7 mm in length (Figure S1c). The
welding direction (WD) was parallel to the rolling direction (RD) of both alloys.

The microstructural changes on the post-weld samples were examined using a metal-
lurgical optical microscope Olympus GX71. Specimens for characterization were mechani-
cally ground, polished, and etched with standard Keller’s reagent.
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The mechanical properties and deformation behaviour of the produced joints were
examined using transverse tensile tests according to the ASTM E8M (Standard Test Methods
for Tension Testing of Metallic Materials). Smooth «dog-bone» shape tensile specimens
were machined perpendicular to the welding direction (WD). The location of the specimens
is shown in Figure 1. The gauge section (35 mm in length and 7 mm in width) of the
specimens includes all characteristic FSW zones. The surfaces of tensile specimens were
polished to eliminate defects and achieve a uniform thickness. A random ink pattern
was applied to the specimens’ surfaces and a high-speed digital camera was used for
recording the strain localization phenomena that occur during the tension of joints. Tests to
failure were carried out using an Instron 5882 testing machine equipped with a commercial
Vic-3D™ system provided by Correlated Solutions, Inc. (Irmo, SC, USA). Micrographs were
analysed using digital image correlation software at different stages throughout a tensile
test. The initial strain rate was 1.3 × 10−3 s−1. Vickers microhardness measurements were
performed using a Wolpert 402MVD tester(Bühler, Leinfelden-Echterdingen, Germany)
using a 2N load and dwell time of 10 s. Samples for mechanical testing and microstructural
examination were obtained using a wire electrical discharge machine, according to Figure 1.
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Figure 1. The schematic showing the orientation of tensile test specimens’ relative weld path.

3. Results and Discussion
3.1. Metallography

The visual inspection of dissimilar joints fabricated at both conditions revealed smooth
surfaces without any imperfections and macro defects (Figure 2).
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Macrographs of the transverse cross section of the produced joints are presented in
Figure 3. It is evident from the micrographs that the selected FSW parameters produced
defect-free structures. As AA2519 and AA5182 alloys have different etching responses, the
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metal flow from two sides was clearly visible in the welded joins. Interestingly, because
grain refinement took place at the stir zone, the grain boundaries are difficult to distinguish.
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Figure 3. Optical micrographs of 500@15 (a) and 1100@30 (b) and welds. ND, TD, and WD represent
the normal direction, transverse direction, and welding direction, respectively.

3.2. Mechanical Testing
3.2.1. Microhardness Survey

Heat generated at the stir zone during FSW softens the material, which promotes the
material flow around the tool pin with ease required for efficient stirring of materials. To
explore the heterogeneity of the obtained welds, microhardness profiles were measured.
The variations in Vickers microhardness along the mid-thickness line of the transverse cross
section across the obtained dissimilar welds are presented in Figure 4.
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Figure 4. The microhardness profiles across the welds. For the sake of clarity, the probe and shoulder
diameters (5 and 12 mm, respectively) were indicated with dash lines.

The microhardness of heat-treated AA2519 BM was noticeably higher than that of AA5182
base material. As can be clearly seen, there is a microhardness down trend from unaffected
AA2519 to AA5182. The microhardness of the stir zone was on average 20% higher compared
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with that of AA5182. This is in good agreement with the mixture and grain refinement of the
two studied Al alloys sheets in this zone. The gradual reduction of AA2519 microhardness
ascribes to precipitation growth and/or dissolution of strengthening precipitates (θ”/θ′ and
Ω-phase) owing to the exposure during welding [24–27]. Transformation from θ′ and Ω to θ
leads to a drop in strength/hardness because of the large size of the incoherent phase, huge
interparticle spacing (larger than the dislocation slip length), low precipitates’ density, and
absence of strength fields around. Similarly, a decrease in microhardness of the AA5182 alloy
side can be attributed to the loss in cold working (i.e., annealing effect) during FSW [3]. The
authors of [13,18] have reported an analogous hardness reduction in dissimilar welds of AA5083
and AA2219.

3.2.2. Tensile Tests

Hardness and tensile properties are interrelated and both are strictly connected to
microstructural changes. In order to better understand the performance, the produced
welds were subjected to tensile testing. The obtained curves are presented in Figure 5 and
the main numerical results are listed in Table 3. In addition, the typical appearance of the
failed tensile tests specimens is shown in Figure 5.
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Table 3. Tensile properties of base materials and dissimilar welds.

Alloy/Joint σYS, MPa σUTS, MPa δ, %

BM AA2519 438 ± 2 488 ± 1 8.8 ± 0.9
500@15 162 ± 2 309 ± 1 13.5 ± 1.4

1100@30 162 ± 2 304 ± 1 14.7 ± 1.3
BM AA5182 164 ± 2 313 ± 1 26.8 ± 0.5

One can easily deduce that the plastic flow of produced joints and AA5182 BM is
unsteady. The phenomenon of repeating oscillations in the plastic region of stress–strain
curves is a manifestation of the Portevin-Le Chatelier effect [1,30,31]. This follows from
alternating pinning and unpinning of moving dislocations during plastic deformation by
solute atoms (therefore, the character of plastic flow is serrated). It is interesting to note the
yield point phenomenon on BM A5182 and its absence on the tensile curves of joints.

As can be seen from the Table 3, AA2519 base material exhibits significantly higher
strength compared with AA5182. The welded specimens demonstrated practically identical
properties of the operating parameters used to fabricate the joints. This is contrary to our
previous studies [24–27] of AA2519 similar joints, where the microstructure and mechanical
properties strongly depend on the heat input conditions. The dissimilar joints revealed
only a slightly lower strength compared with BM AA5182-H321; however, their tensile
elongation is reduced by nearly 50%. It is interesting that the joints of previous versions of
studied alloys (i.e., AA2519-T87 and AA5083-H321) demonstrated an FSW join efficiency
of only 61% [13].

Given the FSW nature of dissimilar aluminium alloys, the material placed on the
advancing side dominates in the stir zone [12,13,19]. So, we suggested that, by locating the
stronger (AA2519 in our study) materials on the advancing side, one can achieve higher
joint efficiencies (including elongation).

It is not surprising that tensile specimen fractured from the weakest point in the softer
region, i.e., in the weaker AA5182 (as be will be shown in Figures 4 and 5), away from
the weld. This indicates that joints are free of defects and the achieved joint efficiency is
around 100% (based on alloy AA5182). This is much higher than what can be achieved
with electron beam [5,32,33] and TIG [8] welding processes. The presented data agree with
the results obtained in dissimilar FSWed joints of AA2219 and AA5083 [6,13,14,16–18].

3.2.3. Material Flow Behaviour Analysis

Figures 6 and 7 display series of images showing the variation in local strain distribu-
tions in the tensile direction (εyy) over the gauge length of specimens of dissimilar FSW
joints. The images were obtained with digital-image correlation measurements during
tensile testing. As expected, the strain distribution is non-homogeneous, which is caused
by the heterogeneous microstructure across the dissimilar joints. It is clearly seen that
predominant tensile strain increasingly concentrates in the HAZ of the AA5182 side, where
the lowest hardness appears (Figure 4). On the other hand, AA2519 experienced almost no
plastic strain.

During tensile testing, deformation is initiated at the AS and next concentrated in
the heat-affected zone of AA5182 alloy, and the failure is confined to this region. Anyway,
a dissimilar weld can be considered as a good weld, when the failure takes place in the
weaker of the two dissimilar materials away from the stir zone [3,4].

Further study will be necessary of welding parameters on microstructure and proper-
ties of dissimilar joints. However, we assume that AA2519 should be subjected to tempers
without pre-deformation (e.g., under T4 or T6 temper).
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Figure 7. Distribution of local longitudinal strains on the cross-section side of the 1100@30 joint,
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Materials 2022, 15, 8776 8 of 9

4. Conclusions

Dissimilar joining of AA2519-T840 and AA5182-H32 was successfully performed by friction
stir welding. From the presented investigation, the following conclusions can be drawn:

• Under both welding conditions used in this study, defect-free welds were obtained.
There is no macroscopic defects or visible porosity across the weld cross section.

• Regardless of FSW regime, the dissimilar joints exhibited ultimate tensile strength
(~300 MPa) as high as that of the base material, but ductility is reduced by 2 times.
Failures occur in softer AA5182. Therefore, a joint efficiency of ~100% is achieved.

• The variations in microhardness and tensile strength of the dissimilar joints were
connected to material flow behaviour, loss of cold work in the HAZ of AA5182, and
dissolution and coarsening of precipitates of AA2519.

• The spectacular efficiency due to AA2519 softening does not reach the strength of AA5182.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/ma15248776/s1. Figure S1: Photographs of used FSW-machine (a),
experiment setup (b), and tool (c).
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