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Abstract 

Background: Despite the achievements of human genomics, comprehensive genome analysis, in-

cluding acquiring the knowledge about intercellular and interindividual variations at (sub)chromoso-

mal/cytogenomic level, remains a difficult task. This basically results from a lack of heuristic algo-

rithms for uncovering (cyto)genomic and/or somatic genome variations and the functional outcomes. 

However, current developments in molecular cytogenetics and “cytopostgenomics” may offer a so-

lution of the problem. The aim of the study: To present a heuristic algorithm for molecular cytoge-

netic and cytopostgenomic analysis of the human genome to uncover mechanisms of genetic 

(brain/neurodevelopmental) diseases. Materials and methods: Data on cytogenetic and (cyto)ge-

nomic variations (chromosome abnormalities, chromosome/genome instability, copy number varia-

tion (CNV) etc.) addressed by original molecular cytogenetic techniques and processed by original 

bioinformatic (cytopostgenomic) methods were used to develop the algorithm. Karyotyping was per-

formed in 8556 individuals. FISH analysis was applied when required (cases of somatic mosai-

cism/chromosome instability). Molecular karyotyping by SNP-array was performed in 600 (~7%) 

cases. Results: Using our long-term experience of studying chromosomal and genomic variations/in-

stability in neurodevelopmental disorders as well as original developments in (cyto)genomic data 

processing, we managed to present a heuristic algorithm for molecular cytogenetic and cytopost-

genomic analysis of the human genome to uncover mechanisms for brain diseases. Estimated effi-

ciency of the algorithm was established to achieve 84%. Analyzing the dynamics of applying cyto-

genetic and cytogenomic techniques throughout ~35 years of our diagnostic research we found that 

the diagnostic efficiency had been increasing from ~7% (exclusive diagnosis by karyotyping) to more 

than 80% (molecular cytogenetic and cytopostgenomic analysis). Conclusion: Here, we propose a 

heuristic algorithm for molecular cytogenetic and cytopostgenomic analysis of the human genome to 
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uncover mechanisms for genetic diseases. The efficiency and ability to uncover mechanisms of chro-

mosome instability allows us to conclude that the algorithm may be highly competitive for basic and 

diagnostic genomic/cyto(post)genomic research. 
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netics; human disease; brain disease; bioinformatics; neurodevelopmental disorders; cytogenomics 
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Introduction. Molecular cytogenetic and 

cytogenomic analyses have become an important 

part of diagnostic and basic research focused on 

uncovering genetic mechanisms of a disease  

[1-4]. Brilliant discoveries of novel genetic 

mechanisms for brain disorders [5, 6, 7] obliged 

to reevaluate diagnostic workflows and ap-

proaches to identification of genomic variations 

associated with a disease. Nonetheless, there are 

still numerous problems associated with cytoge-

nomic diagnosis roughly referred to genome 

mapping, difficulties of interpretation of genome 

variations (i.e. copy number variation or CNV), 

and understanding the meaning of somatic ge-

nome variations [3, 8, 9]. On the other hand, sys-

tems analysis applied to cytogenomic data seems 

to be able to solve these problems [10]. Addition-

ally, molecular cytogenetic and genetic tech-

niques (e.g. fluorescence in situ hybridization or 

FISH and genome scanning methods) have a 

number of limitations, i.e. analysis of specific ge-

nome loci (FISH), lack of reproducible interpre-

tation and moderate cell scoring potential (ge-

nome scanning methods) [11], which are, how-

ever, may be also overcome by the application of 

bioinformatic or “cytopostgenomic” methods 

[12]. Furthermore, these methods are required 

for complementing the knowledge about ge-

nome variations [13], i.e. genome behavior at the 

interindividual [14] and at intercellular levels 

[15]. Accordingly, it is highly likely that combi-

nations of molecular cytogenetic, cytogenomic 

and bioinformatic techniques may underlie ap-

proaches to uncovering disease mechanisms  

[16-19]. 

To succeed in unraveling genomic mecha-

nisms of genetic diseases, genome data are to be 

processed for estimating functional outcomes of 

changes in genetic material [16, 20]. More pre-

cisely, these data are to be used for uncovering 

molecular and cellular pathways to a  

disease [20]. In the molecular cytogenetic/cy-

togenomic context, these studies have to address 

somatic chromosomal mosaicism and chromo-

some/genome instability in addition to disease 

pathways [15, 20-25]. Furthermore, cytoge-

nomic variations are generally more complex 

than those affecting single genes [26, 27]. In to-

tal, there is a need to address all the variations 

detectable in an individual genome (variome) 

with respect to mosaicism and genomic/chromo-

somal instability for understanding causes and 

consequences of cytogenomic variations [28]. 

This becomes even more significant, taking into 

account the ability of chromosome instability or 

genome chaos to produce pathological condi-

tions (e.g. cancer and neurodegeneration) 

through the lifespan [25, 29-32]. Finally, the sys-

tems biology methodology (bioinformatics or 

systems genomics) [33, 34], applied to cytoge-

nomic and cytogenetic data should be efficient 

for uncovering genetic/genomic mechanisms of 

a variety of clinical conditions [10, 28, 35] lead-

ing to a possibility of treating diseases associated 

with chromosome imbalances, which are gener-

ally considered as incurable [36]. In conclusion, 

we suggest that combining all the aforemen-

tioned methods and may provide a heuristic al-

gorithm for unraveling cytogenomic mecha-

nisms for genetic brain diseases.  

The aim of the study. Here, using our pre-

vious developments in molecular cytogenetics 

and cytopostgenonics and analysis of data on 

karyotyping of 8556 individuals with neurode-

velopmental disorders and congenital malfor-

mations, we have presented a heuristic algorithm 

for unraveling (cyto)genomic mechanisms for 

genetic diseases. 

Materials and methods. Karyotyping 

data, acquired as described previously [37, 38], 
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was obtained during a long-term study (from 

1985 to present) of 8556 individuals with neuro-

developmental disorders (intellectual disability, 

autism, epilepsy, behavioral abnormalities) and 

congenital malformations. FISH was applied in 

cases of somatic mosaicism and/or chromosome 

instability according to previous protocols of hy-

bridization and detection [37-39]. FISH data 

were acquired from Vorsanova et al. 2021 and 

2022 [37, 38]. Molecular karyotyping by SNP 

array was performed in 600 cases from the kary-

otyped cohort. The protocol of SNP array was re-

peatedly described previously [40-43]. Bioinfor-

matic analyses were carried out by an original 

methodology, which included systems genome 

(variome) analysis, data fusion, “CNV launder-

ing” and pathway-based prioritization of ge-

nomic variations. All these techniques were re-

cently described in detail elsewhere [16, 20, 28, 

44, 45]. 

Results and discussion. Previously, we 

proposed that karyotyping (cytogenetic analysis) 

is the initial step of genomic data analysis, which 

is required for understanding the variability and 

behavior of an individual genome [17]. More 

precisely, it was recommended to obtain two 

data sets: cytogenetic and genomic (cytoge-

nomic). This proposal was lately supported by 

Breman and Stankiewicz, who noted that karyo-

typing is to be applied at the start of diagnostic 

genome research [46]. Figure 1 schematically 

demonstrates this idea.  

 
Fig. 1. Schematic depiction of the algorithm for investigating the molecular and cellular mecha-

nisms of diseases mediated by CIN. To succeed, one has to follow green arrows or, in other words, 

to analyze chromosome instability by karyotyping and FISH (analysis of larger amounts of cells) 

instead of the commonly accepted workflow including only cytogenetic karyotyping and molecular 

karyotyping; bioinformatics is mandatory for uncovering disease mechanisms. (Copyright © 

Vorsanova et al. 2019 [17]; an open access article distributed under the conditions of the Creative 

Commons by Attribution License, which permits unrestricted use, distribution, and reproduction in 

any medium or format, provided the original work is correctly cited). 
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Taking into account the efficiency of com-

bining FISH and SNP array (Fig. 2) [36-40], we 

propose to use these techniques for analyzing cy-

togenomic variations. The idea is even more ap-

posite for cases of chromosomal instability and 

mosaicism as well as aneuploidy/polyploidy 

cases, inasmuch as it gives an opportunity to un-

cover the molecular and cellular causes of the in-

stability in addition to detection intercellular var-

iations caused by genome chaos (i.e. description 

of the nature of chromosomal instability) [6, 8, 

10, 17, 25, 28, 30, 31]. 

 

 
 

Fig. 2. An example of molecular cytogenetic analysis depicted by a study of a female with non-mo-
saic monosomy X; (A) FISH with a DXZ1 DNA probe (chromosome X, one green signal) and 

D1Z1 DNA probe (chromosomes 1, two red signals); (B) SNP-array results demonstrating non-mo-
saic X chromosome loss (regular monosomy X). (Copyright © Vorsanova et al. 2021 [37]; an open 

access article distributed under the conditions of the Creative Commons by Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium or format, provided 

the original work is correctly cited). 
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Focusing on karyotyping data obtained 

from studying 8556 individuals with neurode-

velopmental disorders and congenital malfor-

mations, allowed us to select a very specific 

group of individuals (n=600; ~7%), who require 

molecular karyotyping and extended bioinfor-

matic analysis of genome data. SNP array was 

selected as a technique of choice, inasmuch as it 

allows detecting chromosomal imbalances and 

CNVs at the highest resolution [40-43] and seg-

mental uniparental disomies within imprinted 

loci [40, 47]. Thus, a heuristic algorithm for com-

prehensive genome analysis for medical genetics 

does require both karyotyping (classical cytoge-

netics) and molecular karyotyping by SNP array. 

Since FISH allows single-cell monitoring of ge-

nomic/chromosomal variations, it is, thereby, re-

quired for cases of mosaicism and chromo-

some/genome instability  

Despite the studies reporting significantly 

increased diagnostic efficiency rates resulted 

from the application of array genome scanning 

techniques, understanding the mechanisms of the 

diseases and unraveling the cellular and molecu-

lar pathways requires a bioinformatic addition to 

the analytic workflows [16, 28, 32, 36, 44, 48]. 

Bioinformatic approaches to analyze data ob-

tained by new sequencing technologies includ-

ing panel versions were suggested to be an alter-

native [9, 11, 48, 49]. However, the alternative 

remains questionable, since these approaches do 

not provide intrinsic data on diseases mecha-

nisms/pathways, inasmuch as genomic mecha-

nisms are much more sophisticated than previ-

ously envisaged [20, 28, 50]. Moreover, these 

mechanisms become even more complicated 

when somatic genomic mosaicism and chromo-

some/genome instability are taken into account 

[3, 7, 15, 25, 51, 52]. Considering the data that 

applications of the simplest digital tools appre-

ciably increase the yield of molecular cytoge-

netic genome analysis [1, 17, 53-55], sophisti-

cated bioinformatic techniques are likely to pro-

vide the highest efficiency in diagnostic/research 

cytogenomic analyses [7, 16, 28, 44, 45]. Here, 

we have added to the algorithm all of our original 

developments in genomic data processing, which 

include OMICs data input/processing (variome 

analysis, data collection, CNV prioritization)  

[3, 10, 12, 16, 28, 44], CNV laundering [45], 

pathway-based analyses of variome for candi-

date process or CNV prioritization [16, 20, 28, 

36, 44] (Fig. 3). 

Combining the aforementioned cytoge-

netic, molecular cytogenetic and cytogenomic 

or cytopostgenomic approaches seems to result 

in uncovering mechanisms of a disease associ-

ated with a set of genomic variations (disease 

variome), clinical outcomes of which are me-

diated by chromosomal/genomic instability 

and/or molecular and cellular pathways (candi-

date processes). In this light, it is to note again 

that morbid conditions associated with chro-

mosomal/genomic instability range from infer-

tility to pathogenic aging, from early onset 

neurodevelopmental disorders to late onset 

neurodegenerative and neuropsychiatric dis-

eases, from immunodeficiency to cancer [1-3, 

6, 7, 15, 22-25, 29-31, 51, 52]. Finally, the de-

scribed heuristic algorithm in its final form 

may be depicted, as follows (Fig. 4). 

Our long-term experience (from 1985 to 

the present) [1, 17, 37, 38] allowed us to high-

light the dynamics of efficiency changes in de-

pendence of introducing molecular cytogenetic 

and postgenomic techniques (Fig. 5). Initially, 

karyotyping uncovers ~7% of genomic varia-

tions (chromosomal abnormalities) in neurode-

velopmental disorders. The introduction of in 

situ hybridization (ISH) gave instantly 12% of 

detection of chromosomal abnormalities. Fur-

ther introduction and developments of FISH 

(e.g. increasing DNA probe numbers, multi-

color FISH [39], analysis of chromosomal in-

stability and mosaicism) increased the effi-

ciency to 34% (~3 times increase). Metaphase 

or classical comparative genomic hybridiza-

tion (CGH) in combination with FISH and kar-

yotyping allowed to detect chromosomal vari-

ations in 40% of individuals from the neurode-

velopmental cohort. Substitution of CGH by 

array CGH (CGH on chips; laser detection) in-

creased the efficiency to 48%. SNP array with 

the highest resolution of molecular karyotyp-

ing (up to 1 kbp), used instead of array CGH, 

gave an unprecedented efficiency in detection 

of chromosomal abnormalities and CNV (in-

cluding intragenic CNV) estimated as 61-64% 
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(depending on protocol/variation size filter). 

Finally, in silico molecular cytogenetic analy-

sis using bioinformatic, postgenomic/cytopost-

genomic or pathway-based classification made 

a breakthrough in efficiency of genomic varia-

tion detection, which achieved 80-84%. In this 

context, we would like to mention that these 

efficiency rates were achievable by an ex-

tremely thorough selection (clinical and cyto-

genetic selection) of cases to be addressed by 

genome scanning, FISH and cytopostgenomic 

methods. 

 

 

 
 

Fig. 3. Bioinformatic part of the algorithm (see text for more details). 
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Fig. 4. Schematic representation of the algorithm for molecular cytogenetic and cytopostgenomic 

analysis of the human genome, which is based on data collection (non-genomic, classical and mo-

lecular karyotypic, whole-genome etc.), analysis of somatic mosaicism and chromosome instability 

by FISH and karyotyping, postgenomic pathway based classification of variome and candidate pro-

cesses; to finalize the algorithm, all these data sets are then processed by bioinformatic analysis for 

the fusion.  

 

 

 
Fig. 5. Dynamics of diagnostic/detective efficiency depending on the introduction of molecular cy-

togenetic and postgenomic techniques in neurodevelopmental disorders from 1985 to the present. 
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Conclusion. Our communication de-

scribes a heuristic algorithm for molecular cy-

togenetic and cytopostgenomic analysis of the 

human genome, which may be successfully 

used to uncover mechanisms for genetic dis-

eases (especially, brain genetic disorders). The 

algorithm is also applicable for identification 

of causes and consequences of somatic chro-

mosomal mosaicism and chromosome/genome 

instability, which are common mechanisms for 

a wide spectrum of human morbid conditions. 

The rise of detection rates produced by intro-

ducing molecular cytogenetic and cytopost-

genomic techniques was a basis for developing 

the algorithm, the efficiency of which was high 

enough to conclude that it is highly competi-

tive for research and diagnostic purposes dur-

ing forthcoming genomic or cyto(post)ge-

nomic studies. 
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