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Abstract. A wide class of complex dynamical systems can be described by evolutionary processes
given by a vector field with polynomial, analytic or smooth coefficients in phase space. Such systems
are investigated by perturbation analysis of the control and behavioral spaces together with associated
bifurcation sets and discriminants. Our approach is based essentially on the theory of logarithmic
differential forms. deformations theory and integrable connections associated with deformations. Such
a connection can be represented as a holonomic system of differential equations of Fuchsian type
whose coefficients have logarithmic poles along the bifurcation set or discriminant of a deformation. In
addition we also describe another interesting application. a new method for computing the topological
index of a complex vector field on hypersurfaces with arbitrary singularities.
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Introduction

Let us consider a complex dynamical system given by an evolutionary process described
by a vector field in phase space. A point of phase space defines the state of such system. The
vector at this point indicates the velocity of change of the state. The points where the vector
field vanishes are called equilibrium points, equilibrium positions or singularities of the vector
field.

It was shown by
poiut of a generic system can be classified so that the corresponding list consists of the five
simple types: two stable (focus, node) and three unstable (saddle, focus, node).

Of course, geueric systems or, in other words, systems which are in general position
correspond to real evolutionary processes and vice versa. Such a system always depends on
parameters that are never known exactly. A small generic change of parameters transforms a
non-generic system into a generic one. Thus, at the first sight, more complicated cases might
not be cousidered since they turn into combinations of the above types after a small generic
perturbation of the system.

However. if one is interested not in an individual system but in systems depending on
parameters the situation is quite different and more complex. Thus, let us cousider the space

9] that the typical phase portraits in the neighbourhood of an equilibrinm
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of all systems divided into domains of generic systems. The dividing sets (lypersurfaces)
correspond to degenerate systems. Under a small chiange of the parameters a degenerate system
becomes non-degenerate. A one-parameter family of systems is presented by a curve which can
intersect transversely the boundary separating different domains of nondegenerate systems.

Hence, although for each fixed value of the parameter the system can be always transformed
by a small perturbation into a nondegenerate one, it is impossible to do this simultaneously
for all values of the parameter. In fact, every curve closed to the one considered intersects the
boundary of the separate hypersurface at a close enough value of the parameter.

Thus, if one studies not an individual system only but the whole family, the degenerate cases
are not removable. If the family depends on a one parameter than the simplest degeneracies
are unremovable one, those represented by boundaries of codimension one (that is, boundaries
given by one equation) in the space of all systems. The more complicated degenerate systems,
forming a set of codimension two in the space of all systems, may be gotten rid of by a small
perturbation of the one-parameter family.

If one analyzes two-parameter families then one needs not to consider degenerate systews
forming a set of codimension three and so on. Therefore at first it ought to analyze all generic
systems, then degeneracies of codimension one, then - two and so on (see [4]). Herewith one
must not restrict the study of degenerate systems to the picture at the moment of degeneracy,
but must also include a description of the reorganizations that take place when the parameter
passes through the degenerate value.

1 Control space and parameters

Let us consider a family of smooth funections
FR"xR"— R,

describing a certain process happeuning in various copies of R" governed by the function f and
affected by the point in R". The coordinate space R™ iz usually called the space of infernal
variables while R" the space of external variables over which each copy sits. Such terminology
i suitahle when the variables in R" label in physical space as in mechanics, optics, biology or
ecology, and so on.

For systems which one alters something and then to observe what happens the variables
in R" are called the control parameters while the variables in R"™ are called the behavioral
parameters. Accordingly the space R" is referred to as the control space while R® as the behavior
space. Iu the strietly mathematical coutext it natural to call the space R" the deformation
space while its points (or their coordinates) the parameters of a deformation. The munber r is
correspondingly the exfernal or control dimension, or the dimension of deformation.

Suppose that a submanifold M € R" x R" is given by the equation

Dfu(z) =0,
where fu(z) = f(z.u). (z.u) € R® x R", aud D is the usual differential of the image
fe i RM=—=R.

In other words, the manifold M is the set of all eritical points of all the potentials f, in the
family f. Denote by £ the restriction to M of the natural projection

i R e Ry RE (T, u) = u.
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The eritical set is identified with the subset € C M consisting of singular points of the image
£. In other words, € consists of points in which the map £ is singular, that is. the rank of the
derivative DE is less than r. The image of the eritical set £(€) C R" is called the bifurcation set
B

It is not difficult to see, by computing DE, that € is the set of points (z.u) € M, at which
fulz) has a degenerate critical point. It follows that B is the locus where the number and
nature of critical poiuts change (that is, it happens jump changes in the state of a control
system): for by structural stability of Morse functions such changes can only occur by passing
through a degenerate critical point. In most applications (for instance, in problems of stability,
optimization, in studying caustics, wave fronts and so on) it is the bifurcation set that is the
most important, for it lies in the control space, hence is "observahble and all delay convention
JUILps oceur in it.

Investigations show that a bifurcation set as variety possesses highly complicated topological.
analytic, algebraic and geometric structures. Herewith it appears that characteristics of such a
variety depend mainly on the structure of its subvariety of singularities, which, in turn, also can
possess singularities and so on. This ohservation directly leads to the notion of a stratification
variety, but in the most general context the study of bifurcation sets is reduced to the study of
stratified varieties (see [11]).

Remark that in virtue of the well-known splitting lemma a smooth function f can be
represented around a point, where it hias corank k. in the form:

2 2
flzy, ..., s ert] e aifs A e O .

(perhaps with parameters in R” for f). Herewith the variables =1, ..., xp are called essential

while zp41.. .., T, — unessential. Certainly. such presentation is very far from unique. It should

be also noted that most singularities met by an r-dimensional family will even when not regular
or Morse, hiave codimension less than r. However, it is possible to write an r-parameter family
f.around a poiut, where it meets trausversely a singularity of codimmension v, in a way in which
ouly v control parameters appear. When one has done so. one may call the coordinates ou R”
that no longer appear, disconnected or dummy control parameters.

2 Deformations

In fact, general evolutionary processes can be described with the help of polynomial, analytical
or smooth functions and systems of equations as well as in a wider context by systems of
differential equations. In particular, using properties of associated bifurcation sets, the discri-
minants or, more generally, singular loci, basic properties of the corresponding systems are
investigated. Oue of the most efficient tools of the investigation is a general notion of integrable
connection associated naturally with any deformation of a system. Let us shortly discuss hasic
ideas of the theory. Consider the system of polynomial or analytic equations

flzizagang = 0
' (2.1)
fk(zl- ., Zm) =: 0]

given in a neighbourhood U of the origin in C™. For simplicity we shall assume that k=m —1
and the set X of the solutions of our system in the neighbourhood U is one-dimensional. We
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shall say that a point, laying on the curve X, is nonsingular if the differential form df; A ... A
dfm—1 does not vanish on it. Otherwise, this point (aud the curve) refers to as singular, or shortly
a singularity. Without loss of generality one can suppose that X has the only singularity at
the origin {0} € Xy C C™, that is, Xj is the germ of a reduced curve.

We shall assume now that the equations of the system (2.1) can be perturbed:

filzr, 2o oo 2m) =t
5 (2.2)
Facilaiyzeyisgzmy) = da

in such a manner that at each sufficiently small value of parameters t = (#1,....tp-1) € C™7!

in the chosen neighbourhood U the set X; of the solutions of the system (2.2) is also one-
dirensional. In other words, we shall consider the principal (flat) deformation of the curve
singularity X, given by the holomorphic map:

X — CmL (2.3)

Let X be the intersection of a ball of a small radius = > 0 centered at the distinguished point
{0} € Xy with f~Y(T), where T C C™ ! is a punctured ball of a radius ) < § < ¢ centered at
the origin 0 = f(0). Cousider the natural restriction f: X — T of the mapping (2.3). Then
for some values of parameters £ € T the fibres X; are non-singular curve germs, for other ones
the corresponding fibres may have singular points called the crifical points of map f.

3 Period integrals

Denote by € C X the set of eritical points of f and by D its image f(C) C T. Thus,
parameters corresponding to the fibres with singularities form the set D which refers to as
the discriminant set, or the discriminant of the principal deformation X, In many important
cases the discriminant is the zero-set of the only equation h(t;.....#) = 0. that is, D is a
hypersurface. Set

T' =T X'=XK-¢

The restriction f: X' — T is a local trivial differentiable fibre bundle called the Milnor fibration
of f. that is, fibres X; = f~!(t)N X (of real dimension two) form a smooth fibre bundle over T
Fix a point £y € T'. Then for each smooth closed path ~, C X,,. corresponding to the l-cycle
in H'(X,,.C). it is possible to coustruct a family of l-cycles 7(t) C X, t € T’, such that
Y(to) = Yo-

If one takes a holomorphie differential form w = g(2)dz; A. .. Adz, of the maximal degree in
a neighbourhood of the origin in C™, then using the identity df; A ... Adfp-; A = w one can
find a differential form v, which is the result of the division of w by dfy A ... Adf-1. The form
¥ 18 not determined uniquely, but up to the summands containing differentials of the functions
fioooos fm—1- It 1s easy to prove, that for all parameters £, rather close to zero, the integral

I(t) = i1 = S B 3.1
) ,[[t) ¥ ./;[:} dfy Ao Ndfmey (-1

is determined correctly. Moreover, the integral I(#) is an analytic function in the variable ¢
Integrals of such type are called the period integrals.
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Replacing the differential form w with another, the integral (3.1). generally speaking, will
also change. However, it is possible to prove that the set of all such integrals contains a finite
number of the elements (%), ..., I,(t) so that any integral of the type (3.1) may be expressed
by means of these generators as a linear combination with holomorphic coefficients. In the
present context g is the Milnor number which is a topological invariant of the singularity X.

The same observation holds, if one fixes the form w and takes various families ~(¢). For
definiteness, we shall fix a family of vanishing cycles v(¢) and consider p independent period
integrals of the following type

It =/ -
0= o Th . A

where 1 < j € p. The period integrals I;(t) can be differentiated with respect to the parameter
t. Between integrals and their derivatives there arose linear relations (syzygies) with polynomial
coefficients in ¢. These relations generate a system of differential equations for the integrals I;(2)
expressed through a finite munber of independent integrals.

4 Connection

In such a way a systemn of differential equations in the variable ¢ is associated with the germ
Xy this gystem is defined correctly outside of the diseriminant and refers to as Gauss-Manin
connection, or Gauss-Manin system, associated with the principal deformation of Xy. The
main problem is to describe a system of differential equations defined on the whole space of
parameters, which is equivalent to the initial one outside of the diseriminant (or. in other words,
to ertend the initial system to the diseriminant set). It is possible to show that the solution
of this problem depends mainly on properties of the discriminants as well as on properties of
fibres of the deformation.

It turnus out that the conunection in question can be represented in a quite elegant form. In
order to explain this idea we need the following notion. Let w be a meromorphic differential
form on 5 having poles along a reduced divisor D C §. Then w is called the logarithmic along
D differential form if and only if w and its total differential dw have poles along D at worst of
the first order. That is. hw as well as hdw are holomorphic differential forms on S where b is a
local equation of the hypersurface D C S.

The Og-module of logarithmie differential g-forms is usually denoted by Q% (log D). Logarith-
mic differential forms have many remarkable analytic and algebraie properties (for example,
see [1]).

Following [10] denote by Derg(log D) the Og-module of logarithmic vector fields along D on
S. This module consists of germs of holomorphie vector fields n on § for which n(h) belongs
to the prinecipal ideal (h)Og. In particular, the vector field 7 is tangent to D at its smooth
poiuts. The inner multiplication of vector fields and differential forms induces a natural pairing
of Og-modules

Derg(log D) x Q%(log D) — _Q%-llflog D).

For ¢ = 1 this Og-bilinear mapping is a non-degenerate pairing so that Derg(log D) and
Qg(log D) are Og-dual.

Let H be a free Og-module. Then a connection V on H with logarithmic poles along D C §
is a C-linear morphism

Vxis: H — HQos V(log D) (4.1)
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satisfying the following conditions:

1) V(w +w') = V(w) + V(w),

D V(fw)=w@df + fV(w), fe0s.
Consider the case where Qf(log D) is a free Og-module of rank m. Obviously. in such a case
O%(log D) = AP Qi(log D). p > L. It is often said that the divisor D is free or. equivalently, D

is a Saito free divisor. The following characteristic property of such divisors was discovered by

[10].

Proposition 4.1 Suppose that there exist m logarithmic vector fields V.. . ., V™ g Derg(log D)

such that for the (m x m)-matriz M whose entries are the coefficients of V’_. 5= yrauy m, one
has det(M) = ch. where ¢ i1s a unit. Then V1, ... V™ form a basis of the free Og-module
Derg(log D). In particular, Qg(log D) is a free Og-module with the dual basis w. . ... Wy

For example, Q%(log D) is free when D is the discriminant of the minimal versal deformation
of the system defined by a function with isolated singularity.

Now let D he a Saito free divisor. Then we can describe the logarithmic connection (4.1) on
0% (log D) itself. In other words, let us consider the case when H = Q¢(log D):

V: Qg(log D) — Qi(log D) @ Q(log D).

Let wi,.... Wy be free generators of the module QL(log D). Then the connection V can be
expressed in terms of Christoffel symbols in the f()ll(_mmg way:

m m
j j k
w; = E wy@uw!l, wl= E 3
j=1 k=1
The connection V is called torsion free if
m m
_E:J _E‘ L~
d{ui— £y f\wj— r-; i-irkf'”'\i&j:
i=1 k=1

and V is called integrable if

d:‘;, — :’ LW f\ ..uk thatis, dAW=V AV,

where ¥V =||w!|| is the coefficient matriz of the connection V. In particular, it means that the
composition

H ¥ H @ Q(log D) —— H @ A2 (log D)
18 zero.

5 Holonomic systems

It is possible to associate with any integrable and torsion free connection V on the module
0L (log D) a holonomic system of Fuchsian type in the following way.
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It is known (see [1]) that the multiplication by h induces the surjection
0L (log D) -2 Tors L, — 0, (5.1)

whose kernel coincides with an Og-module

dh
— + QL
Os h 2

Here 0} is the module of holomorphic differential 1-forms on S generated by the differentials
dayyo; dz, over Og,
Op = Q5 /(h Q5 + 0sdh)

is the module of regular differential 1-forms on the divisor D. and TorsQ}, is the torsion
submodule of OQF. The support of Tors QL is contained in the singular locus Sing D of the
hiypersurface D. The torsion Op-module Tors QO has a system of generators containing at least
m — 1 elements.

By definition, the generalized Fuchsian system is a holonomic system of linear differential
equations on § with merornorphic coefficients containing in Q% (log D):

gl =81 (5.2)
where I = ™(1;,..., Jy) is a vector-column of unknown functions and the matrix differential
form 2 is defined as follows: ;

dh v
Q=4—+ Ai—.
i Z Y h
i=1
Here the differential 1-forms 3; € QL, i = 1,.... £, correspond via (5.1) to non-zero elements of
the torsion submodule Tors 0%, and 4, € End(C*)®0s, i =0.1,.... ¢, are coeflicient matrices

with holomorplic entries such that the integrability condition d Q = 0 A Q holds.

It is not difficult to show that one can associate to any integrable and torsion free connection
¥ on the module Q}(log D) the generalized Fuchsian system of type (5.2) (see [3]). Moreover,
using the Christoffel symbols of such connection, it is possible to express the integrability
condition in terms of commuting relations of the coeficient matrices 4;, i =1,..., A

Under some additional assumptions on entries of the coefficient matrices 4; it is possible
to investigate the system of type (5.2) aud to deseribe its explicit solutions. In fact, such
solutions are quite useful in describing the coutrol of evolutionary processes, perturbations of
multidimensional systems, aud many applications in dynamical systems, bifurcation theory, ete.
(for example, see [8]. [4]).

6 Topological index

The index of a vector fleld is one of the very first concepts in topology and geometry of smooth
manifolds, and its properties underlie important results of the theory, including the Poincaré-
Hopf theorem, which states that the total index of a vector field on a closed smooth orientable
manifold is independent of the field and coincides with the Euler-Poincaré characteristic of the
manifold. When studying singular varieties such as bifurcation sets, discriminants, ete., it is
natural to ask whether there exists a similar invariant in a more general context. One possible
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generalization of this type. which originally arose in topology of foliations, turned out to be
well suited for use in the theory of singular varieties. In this section, we shortly describe a new
method for the caleulation of the index of vector fields on a hypersurface on the basis of the
theory of logarithmic differential forms and vector fields. The main idea of our approach is to
describe the index in terms of meromorphic differential forms defined on the ambient variety and
having logarithmic poles along the hypersurface (see [2]). We shall see that the systematic use
of the theory of logarithmic forms permits one not only to simplify the calculations dramatically
but also to clarify the meaning of the basic constructions underlying many papers on the subject
(for example, see [6]).

6.1 Regular differential forms

Let S be a complex manifold of dimension m =n+ 1, n > 1, and let Q% be the Op-module of
germs of regular (Kéhler) differentials of order g on D, so that
0}, =04,/ (h-OF, +dh A Q_?;_'Il)._ g =0,

where = € S. By analogy with smooth case, elements of Q0%  are usually called gerins of regular
holomorphie forms on D. Now let Der(D) = Homg, (0. Op) be the sheaf of germs of regular
vector fields on D and let us consider an element V' € Der(D). By V &€ Der(S) we denote a
holomorphice vector field on § such that V|p = V. Then the iuterior multiplication {contraction)
tv: QF — QL' of vector fields and differential forms defines the structure of a complex on
0%, since ¢ = 0. The contraction ¢y induces a homomorphism 1y : Q% — Q5™ of O p-modules
and also the structure of a complex on 0F. The corresponding tyv-homoelogy sheaves and groups
are denoted by H.(Q%,tv) and H.(2} . tv), respectively.

6.2 Homological index

If the vector field V has an isolated singularity at a poiut z € D. then ty-homology groups of
the complex 0%, . are finite dimensional vector spaces. so that the Euler characteristic

n+1

x(p . v) = Z{—l}idim Hi(%,.tv).

i=f]

of the complex of regular differentials is well-defined. It is called the homological index of the
vector field V' at the point z € D and denoted by Indpem po(V) (see [7]). At nonsingular
points of D the homological index coincides with the fopological index, or, equivalently, with
the Poincaré-Hopf local index.

6.3 Logarithmie index

Let us consider a vector field V € Derg(log D). The interior multiplication ty defines the
structure of a complex on 0%(log D).

Lemuna 6.1 If all singularities of the vector field V are isolated, then vy-homology groups of
the compler Q% (log D) are finite dirnensional vector spaces.
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Proof. Assume that § = C™, m = n+ 1, and the poiut z; = 0 € D C § is an isolated
singularity of the field V, so that V(zg) = 0. Then V(z) # 0 at each point z in a sufficiently
small punctured neighbourhood of ;. In a suitable neighbourhiood of = there exists a coordinate
system (t,z],..., .z),) such that V = d/8¢. Since V(h) C (h)Qgy, it follows that D = T x Dy,
where T is a small disc 1n the variable £ and Dy is a hypersurface in C". It is easy to show that
95T ollog D) = (% o(log Dy) & 0L o(log Dy) A dt) ®@c Oy

Indeed, for germs of Lolomorphic forms one has the isomorphism 0%, , = (0%, & Q‘ID; o AdE) ¢
O¢,p which can readily be obtained by considering of the canonical projections of the analytic
set T x Dy onto the first and second factors and the definition of Q% ;. The desired isomorphism
for germs of logaritlunic forms can be obtained by a similar argument with the use of the exact
sequence

) — (}‘?C“__ gt 2A --33:14 0 OC“ ; U(lug D) = (?‘E o — %,/ Tors 0%, , — 0, which follows
from the exact 5eque11(_e expressing the torsion subsheaves TorsQ%, in terms of logarithmic
differential forms (see [2]).

Further. in the g-th piece of the complex (024 ,(log D). ty) one has

Ker (1g/8:) = Im (1g/8:) = ( . y(log Dy) & ({)]) 2c Ocp.

That is. the corresponding homology groups vanish for all g. The same conclusion readily follows
for the point xy; € §Y D. Consequently the ¢y-homology groups of the complex Q% (log D) may
be non-trivial ouly at singular points of the field. Since the sheaves of logarithic forms as well
as their cohomology are colherent. we arrive at the statement of the Lemma.

Thus if the vector field V has isolated singularities, then the Euler characteristic

n+1

x (25 (log D). 1) Z'l_ ‘dim H;(Q% . (log D). 1v)

i={]

of the complex of logarithmic differential forms is well defined for any poiut z € 5. It is called
the logarithmic index of the field V at the point = and denoted by Indig p (V). It follows from
the preceding that Indi,zp (V) = 0 whenever V(x) # 0.

6.4 The index of vector fields on hypersurfaces

To study the ty-homology of the complex 0%, one can use an approach based on a representation
of regular holomorphic differential forms on the hypersurface D via meromorphic forms with
logarithmic poles along D (see [2]). Recall [loc. cite] that for all g=0,1...., 1+ 1, there exist
exact sequences

0— 0% /h- Q%5 (log D) 28 0% /h- 0%, — 0%, — 0

of 05 -modules, where Adh is the homomorphism of exterior multiplication. Hence one obtains
the exact sequence

0 — (g, /h0% ,(log D), tv) [—1] i (08 ./h% 4 t9) = (2 getv) = 0 (6.1)
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of complexes. Indeed. the fact that the multiplication by Adh induces a morphism of complexes
follows frow the identity

tp(w) A dh = tp(w A dh) + (=1)7" w A V(R),

since the second summand from the right-hand side vanishes in the quotient complex Q% /h0%
i view of the condition V(&) € (h)Os.. Now note that from the exact sequence

0 — (%40 17) — (84 19) — (5,/hD . 17) — 0

of complexes it follows that x(Q%,/hQ%,.tv) = 0. Thus from the exact sequence (6.1) one

obtains

Indpom, (V) = —x((25 ./ k25 . (log D), tv)[-1]) = x(Q25./ k5 . (log D), tv).

Proposition 6.2 Suppose that z € D is an solated singularity of a vector field V € Der(log D).
the germs v; € Og, are determined by the expansionV = Y, v,d/02. and J,V = (v1...., U )05z

Then
Indhom,pe(V) = dim 05z / SV — Indiog Do (V).

Let us consider the case when D is a Saito free divisor. Then the complex ( 0% (log D). 1v)

is naturally isomorphic to the Koszul complex K.((al, s % s O;;_:) ou the generators g; =
wi. © = L.....m. where the germs o; € Og, are determuined as coefficients of the expansion
V=3",a;V' of V in the basis of logarithmic vector fields. In this case one readily obtains the

following identity:

Indiggp.2(V) = x(Ke((e1.. ... am); Os.2)).

Corollary 6.3 Let Jiozp.V = (a1, ....0n)0s;. Suppose that the coefficients (a;.. ... Ot )
form a regular Og ,-sequence. Then

Indyompo(V) = dimOs,/ .V — dim Og. / Jiog p . V.

6.5 Normal hypersurfaces

Let Z = Sing D be the singular locus of a reduced divisor D. and let ¢ = codim (Z. D) be the
codimension of Z in D. It is well-known (see [1]) that ¢ = 1 for Saito free divisors, that is, in a
sense, the singularities of D form the maximal possible subset of the divisor. For ¢ > 2, Serre’s
criterion implies that the hypersurface D is a normal variety. For further analysis of this case
we use the following reformulation due to [10] of the notion of logarithimic forms.

Lemma 6.4 The germ w of a meromorphic differential g-form at a point © € § with poles
along D is the germ of a logarithmic form (that is, w € Q% (log D)) if and only if when there
exists a holomorphic function germ g € Og,. a holomorphic (g — 1)-form germ € € Q%I_ml and a
(i) dimeDN{zeM: g(z) =0} <n-—1,

holomorphic g-form germ 7 € QL . such that
(ii) gw = % NE+T.

/o
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Let p: 0% (log D) — Q% be the homomorphism of mmltiplication by &, and let w € QF
(log D). Then there exists au element g € Og, in Lemma 6.4 such that ghw € hQ%  +dh AS?};I._
that is, ghw = 01in Q% . Since the germ g defines a zero non-divisor in Op .., in particular, this
means that hw € Tors Q% ., where the torsion submodule of the sheaf of regular g-differentials is
denoted by Tors 0%, .. Thus, Im (g) € Tors 02}, , (actually one has the equality). If Tors QF, , = 0,
then the germ g in (21) can only be an invertible element; consequently,

i _
0%, (log D) = 0% + % ANOSE. (6.2)

In fact, this isomorphism can be obtained without the preceding argument if one directly makes
use of the exact sequence for the torsion submodules Tors Q% | (for example, see [1]).

Theorem 6.5 Let D be a normal hypersurface. Then

Indyom p=(V) = dim Qs /(h, J.V) + E?:cl,(—]_}idim H:(O% .o ),
where ¢ = 2[%] + 1. the square brackets denote the integer part of rational numbers, and the
sum is zero by convention if the lower limit is greater than the upper limit.

Proof. It is well-known that Tors Q% = 0 if 0 < g < c. Hence, together with the isomorphism
(6.2), this means that Q% /hO% (log D) = QF  for all such g. Therefore, it follows from the

exact sequence (6.1) that
Hi(0%L, wv) = H 1 (5 [-1], wv) = Hie (9%, 01)

forall i = 3,...,c—+ L. In particular, in this range the dimensions of the ty-homology groups of
the complex QF , in the two series Hy; and Hy;—; coincide. Further, one can readily see that the
dimensions of groups H; and H, also coincide (see [2]), whence the desirable formula follows.
Tle integer part in the lower limit of the sum is needed in order to distinguish between the

cases of even and odd codimension.

Corollary 6.6 Suppose that a point = € D is an isolated singularity of the hypersurface D as
well as of a vector field V € Der{log D). V(h) = ¢h and ¢ € Osz. Then

Indyom,pz(V) = dim Qg /(h. JV) + edim Ann g_(h)/(£)B..

where ¢ = —1 if n is even and £ = 0 otherwise, and B, is the local ring Og,/.J. V.

7 Conclusion

In many applications (say. in the theory of dynamical systems, bifurcation theory. in economuic,
biology, chemistry, ete.) a stable equilibriuin state describes the established conditions in the
corresponding real system (see [8], [5]). When it merges with an unstable equilibrium state the
system must jump to a completely different state: as the parameter is changed the equilibrium
condition in the neighbourhood considered suddenly disappears. The described results allow
one to investigate in detail jumps of this kind with the use of invariants of bifurcation sets and
discriminants associated with deformations of a complex system.
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KOMIIVIEKCHBIE JTMHAMWYECKHWE CIICTEMEI

A.T. Anekcanapos!’, A.A. Kacrpo, mur., B.A. T'pyamanl)

UMucTuTtyT npobnem ynpasnerus PAH,
yn. MpocpcorozHasn, 65, Mocksa, 117997, Poccus, e-mail: ag_ aleksandrov@mail.ru

2) e fepanbHblii yHuBEpcUTeT wTaTa baua,
yHusepcuteT, Baun, 40170-110, Bpasunus, e-mail: armando@impa.br

Annoraums. [upokull K1ace CIKILIX THHAMEYECKHX CHCTEM MOMKET OLITL OIHCAL KAK SBOJIOLN-
OHILIL NpOLece, 33JalLIl BEKTOPILIM 10IeM ¢ HOTHHOMHATLILIMUE, AIATHTHYECKHMH WIH [TTATKHMH
koapbunnenTamu B Grazosom npocTpanctse. Takie CHCTEMLI HCCIEIYIOTCH METOIOM BOIMYLIEHNH u
AIATTHIOM IPOCTPAIICTE YIPABTIEHHsS 0 IOBEIEHHs BMECTE ¢ COOTEETCTEYIOMMN H1hYPKAIIMONIILIM MIO-
SKECTBOM H guckpusuianTon. (OQnueniBaeTes NOIX0T K M3VUYEHHIO TAKUX CHCTEM, OCHOBANNLIA Ha Me-
Togax Teopuu Jorapudauueckuyx uddepenunannunix Gops, Teopul JedopMaliil B HHTerpHpyeMLIx
cEA3UOCTel, accolMUpoBaliLy ¢ Jedopyanuamu. Takasd cBA3HOCTL MOMKeT OLITL [peIcTABIela B BH-
e roaonoMiol cucremn! auchdepennuatninix ypasienuit dyvkcosoro tuna, koddduunenTs KOTopol
00188107 JorapudMuHecKinMi NOIOCAMH BI01L OudVPKALHONIOND MIIOKECTEA WM JUCKPUMUIIANTA
dechopuanun. KpaTko obey#aaeTes M Apyroe MUTepeclioe NPHIOMKelHe — HOBLIT MeTO1 BLIMUCTeHHs
TOHOMOTHHECKOrO HILIEKCA KOMILIEKCHIOrO BEKTOPIOrO [0 11 THIEPHOBEPXIOCTH ¢ NPOU3BOILILIMK
0COBEIIIOCTAMH.

Kmaouesbie ciosa: gorapudmyudeckue auduwhepenuuapibie GopuMLl, THIEPHOBEPXIOCTL € 0C0-
DennocTsvy, Kpyuende Tuchdepellinaos, peryispie sveposopdube Tudidepennuainine GopuLL
dopua-BLIYET, HIIEKC BeKTOPHOTO O,



