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Abstract In this paper we investigate the composition of a multidimensional
generalized Erdélyi–Kober operator with differential operators of high order. In
particular, with powers of the differential Bessel operator. Applications of proved
properties to solving the Cauchy problem for a multidimensional polycaloric
equation with a Bessel operator are shown. An explicit formula for solving the
formulated problem is constructed. In the appendix we briefly describe a general
context for transmutations and integral transforms used in this paper. Such a general
context is formed by integral transforms composition method (ITCM).
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1 Introduction

Various modifications and generalizations of the classical Riemann–Liouville op-
erators of fractional integration and differentiation are widely used in theory and
applications. Such modifications include, particularly, the Erdélyi–Kober operators
[1, 2]. These operators turned to be very useful in application to integral and
differential equations as well as in other issues of science and technology [3, 4].
Their various modifications, generalizations, and applications can be found in works
of Erdélyi [5, 6], Sneddon [7, 8], and Kyriakova [9].
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One-dimensional generalized Erdélyi–Kober operator with the Bessel function
in the kernel and its applications were considered by Lowndes [10, 11].

Modifications of fractional integration of Erdélyi–Kober type for two and many
variables have been studied in [12–18] and others. A survey of some studies on this
topic can be found in [3, 4, 9].

In [18] a multidimensional generalized Erdélyi–Kober operator was introduced
in the form
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where λ, α, η ∈ Rn, αk > 0, ηk ≥ −1/2, k = 1, n; �(α) is the Euler gamma
function; J̄ν(z) is Bessel-Clifford function expressed through the Bessel function
Jν(z), using the formula J̄ν(z) = �(ν + 1)(z/2)−νJν(z) and J

xk

λk
(ηk, αk) is a

particular Erdélyi–Kober integral of αk-order of kth variable
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In this paper we also study the basic properties of the operator (1.1) and show
that the inverse operator has the form
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where αk > 0, mk = [αk] + 1, ηk ≥ −1/2, k = 1, n, Īν(z) = �(ν +
1)(z/2)−νIν(z), Iν(z) is the Bessel function of the imaginary argument. m =
(m1, m2, . . . , mn) is a multi-index, and |m| = m1 + m2 + . . . + mn is its length.

Taking into account J̄ν(0) = 1, in the limit for λk → 0, k = 1, n, we obtain
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(1.3)

This operator is a multidimensional analog of the ordinary (not generalized)
Erdélyi–Kober operator. In this case, the inverse operator (1.2) takes the following
form:
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(1.4)

In addition, in [18] the following theorem is proved:

Theorem 1.1 Let αk > 0, ηk ≥ −1/2; f (x) ∈ C2(�n); lim
xk→0

x
2ηk+1
k fxk (x) = 0,

k = 1, n. Then the transmutation formula holds:
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in particular, if λk = 0, k = 1, n, then
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(0, bk) = (0, b1) × (0, b2) × . . . × (0, bn) be the Cartesian

product, bk > 0, k = 1, n.
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This Theorem implies

Corollary 1.1 Suppose that the conditions of Theorem 1.1 are satisfied. Then
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Similarly, we can prove the validity of the following theorem.
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The proof of Theorem 1.2 is analogous to the proof of Theorem 1.1.
In this paper, these properties are generalized for an iterated Bessel differential

operator of high order. The results obtained are applied to the investigation of
problems for higher-order multi-dimensional partial differential equations with
singular coefficients.

In the appendix we briefly describe a general context for transmutations and
integral transforms used in this paper. Such a general context is formed by integral
transforms composition method (ITCM), cf. [19–21].
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2 Generalization of the Properties of the Generalized
Erdelyi–Kober Operator

Let
[
B

xk
ηk

]0 = E, where E is the unit operator,
[
B

xk
ηk

]mk = [
B

xk
ηk

]mk−1 [
B

xk
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]
is the

mk th power of the operator B
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Theorem 2.1 Let αk > 0, ηk ≥ −1/2; f (x) ∈ C2m0(�n); x
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where m0 = max{m1,m2, . . . ,mn}.
We note that Theorem 2.1 is also true in the case when some or all of the λk =

0, k = 1, n.

Proof Theorem 2.1 can be proved by the method of mathematical induction on
mk, k = 1, n. We arbitrarily fix k ∈ N, where N is the set of natural numbers.
The proof of (2.1) for a fixed k and mk = 1 is given in Theorem 1.1. Assume that
equality (2.1) holds for mk = lk and prove that it holds for mk = lk + 1.

From equality
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by the induction hypothesis, if the conditions of Theorem 2.1 are satisfied, we have
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of formula (2.1). ��
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Corollary 2.1 Suppose that the conditions of Theorem 2.1 are satisfied. Then
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This Theorem is proved using the polynomial formula
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Let L(y) be a linear differential operator of order l ∈ N independent of variable
x = (x1, x2, . . . , xn) in the variable y = (y1, y2, . . . , ys) ∈ Rs.



On Some Generalizations of the Properties of the Multidimensional. . . 91

Theorem 2.3 Let αk > 0, ηk ≥ −1/2, k = 1, n, q ∈ N; f (x, y) ∈ C
2q,lq
x,y (�n ×

�s), the functions x
2ηk+1
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where the superscripts in the operators mean the variables by which these operators
operate.

Proof Using the binomial formula, we obtain
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C
j
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Next, applying Theorem 2.2, we have
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��
Corollary 2.3 Suppose that the conditions of Theorem 2.3 are satisfied. If
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where x = (x1, x2, . . . , xω), y = (xω+1, xω+2, . . . , xω+σ ), ω + σ = n, then

[
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k=1

(
B
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ηk+αk
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k

)
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1
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∂

∂xk
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the degree of an operator D
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that is representable in the form [Dxk
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]mk =
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k

(
1
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∂

∂xk

)mk

x
2ηk

k , mk be nonnegative integers, k = 1, n.

Theorem 2.4 If αk > 0, ηk ≥ −(1/2), k = 1, n, f (x) ∈ Cm0(�n), the
functions x

2ηk+1
xk

[Dxk
ηk

] lk+1f (x) are integrable in a neighborhood of the origin

and lim
xk→0

x
2ηk

k [Dxk
ηk ] lkf (x) = 0, lk = 0,mk − 1, k = 1, n, then
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]mkJλ

(
α
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f (x) = Jλ

(
α

η

)
[Dxk

ηk
]mkf (x), k = 1, n, (2.3)

where m0 = max{m1,m2, . . . ,mn}.
Proof This Theorem is also proved using the method of mathematical induction
on mk, k = 1, n. Arbitrarily fix k ∈ N. The proof of formula (2.3) for mk = 1,

k = 1, n is given in [22, 23], according to which we have

[Dxk
ηk+αk

]Jλ

(
α

η

)
f (x) = Jλ

(
α

η

)
[Dxk

ηk
]f (x), k = 1, n. (2.4)

Suppose that (2.3) holds for mk = lk and we prove that it holds for mk = lk + 1.
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(
α

η

)
f (x) = [Dxk

ηk+αk
][Dxk

ηk+αk
]lk Jλ

(
α

η

)
f (x). (2.5)

By the induction hypothesis, if the conditions of Theorem 2.4 are satisfied, we have
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]lk Jλ

(
α

η

)
f (x) = Jλ

(
α

η

)
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]lk f (x).
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Then the equality (2.5) takes the form

[Dxk
ηk+αk

]lk+1Jλ

(
α

η

)
f (x) = [Dxk

ηk+αk
]Jλ

(
α

η

)
[Dxk

ηk
]lkf (x).

Further, applying formula (2.4) to the functions [Dxk
ηk

]lk f (x), under the

conditions lim
xk→0

x
2ηk

k [Dxk
ηk ] lkf (x) = 0, we obtain the validity of formula (2.3). ��

Corollary 2.4 Suppose that the conditions of Theorem 2.4 are satisfied, then

n∏
k=1

[Dxk
ηk+αk

]mkJλ

(
α

η

)
f (x) = Jλ

(
α

η

)
n∏

k=1

[Dxk
ηk

]mkf (x).

Theorem 2.5 Let 0 < αk < 1, ηk ≥ −1/2; g(x) ∈ C2p(�n); ∂

∂xk

[
B

xk
ηk+αk

]l
g(x)

are integrable in a neighborhood of the origin and lim
xk→0

x
2(ηk+αk)+1
k

∂

∂xk

[
B

xk
ηk+αk

]l
g(x) = 0, l = 0, p − 1, p ∈ N, k = 1, n. Then

[
Bxk

ηk
− λ2

k

]p
J−1

λ

(
α

η

)
g(x) = J−1

λ

(
α

η

)[
B

xk
ηk+αk

]p
g(x), k = 1, n,

or

[
Bxk

ηk

]p
J−1

λ

(
α

η

)
g(x) = J−1

λ

(
α

η

)[
B

xk
ηk+αk

+ λ2
k

]p
g(x), k = 1, n,

in particular, if λk = 0, then

[
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ηk

]p
J−1

0

(
α

η

)
g(x) = J−1

0

(
α

η

)[
B

xk
ηk+αk

]p
g(x), k = 1, n.

The proof of the Theorem 2.5 is analogous to the proof of Theorem 2.1.

Corollary 2.5 Suppose that the conditions of Theorem 2.5 are satisfied, then

[
n∑

k=1

(
Bxk

ηk
− λ2

k

)]p

J−1
λ

(
α

η

)
g(x) = J−1

λ

(
α

η
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k=1

B
xk
ηk+αk

]p

g(x),

or [
n∑

k=1

Bxk
ηk

]p

J−1
λ

(
α

η

)
g(x) = J−1

λ

(
α

η

)[
n∑

k=1

(
B

xk
ηk+αk

+ λ2
k

)]p

g(x).
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If the conditions lim
xk→0

x
2αk

k

∂

∂xk

[
B

xk

αk−(1/2)

]l
g(x) = 0, l = 0, p − 1, k = 1, n,

are satisfied, then the last equality for λk = 0, ηk = −(1/2), k = 0,m − 1, implies
the validity of equality

	pJ−1
0

(
α

−1/2

)
g(x) = J−1

0

(
α

−1/2

)
	

p
Bg(x) (2.6)

where 	p =
[

n∑
k=1

∂2

∂x2
k

]p

is pth power of the multidimensional Laplace operator,

and

	
p
B =

[
n∑

k=1

(
B

xk

αk−(1/2)

)]p

=
[

n∑
k=1

(
∂2

∂x2
k

+ 2αk

xk

∂

∂xk

)]p

.

We note that the Theorems proved allow us to reduce higher-order equations with
singular coefficients to polyharmonic, polycaloric, and polywave equations, and
thereby to establish and investigate the correct initial and boundary value problems
for such equations.

3 Applications

The results obtained are applicable to the construction of the solution of the
analogue of the Cauchy problem for a multidimensional polycaloric equation with
the Bessel operator.

Singular parabolic equations with Bessel operator belong to the class of equations
degenerating on the boundary of the domain with respect to the space variables.
These equations are often encountered in applications. Thus, in the mathematical
simulation of numerous problems of heat transfer in immobile media (solids), the
problems of diffusion boundary layer [24], and the problems of propagation of heat
in process of injection of hot liquids in oil pools [25], we get singular parabolic
equations with Bessel operator.

Degenerating equations and equations with singular coefficients form an impor-
tant field of the contemporary theory of partial differential equations. Numerous
works are devoted to the study of these equations. In this field, an important place
is occupied by the initial and boundary-value problems for parabolic equations with
Bessel operator. The theory of classical solutions to the Cauchy problem for singular
parabolic equations of the second order was developed in [26–30]. The Cauchy
problem for singular parabolic equations in the classes of distributions and in the
classes of generalized functions of the type S′ was studied in [31, 32]. However,
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the initial and boundary value problems for equations with Bessel operators of high
orders are studied quite poorly.

In the domain � = {(x, t) : x ∈ Rn+, t ∈ R1+}, where x =
(x1, x2, . . . , xn) be a point of the n-dimensional Euclidean space Rn, Rn+ ={
x ∈ Rn : xk > 0, k = 1, n

}
, we consider the problem of finding the solution

u(x, t) of the equation

Lm
γ (u) ≡

(
∂

∂t
− 	B

)m

u(x, t) = 0, (x, t) ∈ �, (3.1)

satisfying the initial conditions

∂ku

∂tk

∣∣∣∣
t=0

= ϕk(x), x ∈ Rn+, k = 0,m − 1 (3.2)

and homogeneous boundary conditions

∂2k+1u

∂x2k+1
j

∣∣∣∣∣
xj =0

= 0, t > 0, j = 1, n, k = 0,m − 1, (3.3)

where 	B =
n∑

k=1
B

xk
γk , B

xk
γk = ∂2/∂x2

k +[(2γk+1)/xk](∂/∂xk) is the Bessel operator

acting on variable xk; γ = (γ1, γ2, . . . , γn) ∈ Rn, γk ∈ R, γk > −1/2, k = 1, n,

m is a natural number; ϕk(x), k = 0,m − 1 given differentiable functions.
We note that in the problems of the general theory of partial differential equations

containing the Bessel operator with one or more variables, the main investigation
apparatus is the corresponding integral Fourier–Bessel transform. Unlike traditional
methods, here we apply the properties of the multidimensional Erdélyi–Kober
operator to solve the problem.

Suppose that the solution of the Eq. (3.1) satisfying conditions (3.2) and (3.3)
exists. We seek this solution in the form

u(x, t) = J
(x)
0

(
α

η

)
U(x, t), (3.4)

where α, η ∈ Rn, αk = γk + (1/2) > 0, ηk = −(1/2), k = 1, n, and U(x, t)

is an unknown function differentiable sufficiently many times, and J
(x)
0

(
α

η

)
is

a multidimensional Erdélyi–Kober operator of fractional order (1.3) acting on a
variable x ∈ Rn.

Substituting (3.4) into the boundary conditions (3.3), and then into Eq. (3.1) and
the initial conditions (3.2), and using Theorem 2.3 for L(t) ≡ ∂/∂t, we arrive at the
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problem of determination of the solution U(x, t) of the equation

(
∂

∂t
− 	

)m

U(x, t) = 0, (x, t) ∈ �, (3.5)

satisfying the initial conditions

∂kU

∂tk

∣∣∣∣
t=0

= �k(x), x ∈ Rn, k = 0,m − 1, (3.6)

and the homogeneous boundary conditions

∂2k+1U

∂x2k+1
j

∣∣∣∣∣
xj=0

= 0, t > 0, j = 1, n, k = 0,m − 1, (3.7)

where �k(x) = J−1
0

(
α

η

)
ϕk(x), ηk = −(1/2), (k = 0,m − 1), J−1

0

(
α

η

)
is the

inverse operator (1.4).
By using the boundary conditions (3.7), we extend the functions �k(x) evenly to

xk < 0, (k = 0,m − 1) and denote the extended functions by �̃k(x). Then in the
domain �̃ = {(x, y) : x ∈ Rn, t > 0} we obtain the problem of finding a solution
of Eq. (3.5) satisfying the initial conditions

∂kU

∂tk

∣∣∣∣
t=0

= �̃k(x), x ∈ R, k = 0,m − 1, (3.8)

We introduce the notation W0(x, t) = U(x, t) and Wk(x, t) =
(

∂

∂t
− 	

)k

W0.

In this notation, the problem (3.5) and (3.8) is equivalent to the problem of
determination the functions Wk(x, t), k = 0,m − 1, satisfying the system of
equations

⎧⎪⎪⎨
⎪⎪⎩

∂Wk

∂t
− 	Wk = Wk+1, (x, t) ∈ �̃, k = 0,m − 2,

∂Wm−1

∂t
− 	Wm−1 = 0, (x, t) ∈ �̃

(3.9)

with the initial conditions

Wk(x, 0) = Fk(x), x ∈ Rn, k = 0,m − 1, (3.10)
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where

Fk(x) =
k∑

j=0

(−1)k−jC
j
k 	k−j �̃j (x), k = 0,m − 1. (3.11)

For the solution of problem (3.9) and (3.10), we use the following lemma.

Lemma 3.1 If g(x) ∈ L1(R
n), then the equality

t∫
0

dτ(
2
√

π(t − τ)
)n
∫
Rn

exp

[
− |x − y|2

4(t − τ)

]⎧⎨
⎩ 1(

2
√

πτ
)n
∫
Rn

g(η) exp

[
− (y − η)2

4τ

]
dη

⎫⎬
⎭ dy

= t(
2
√

πt
)n
∫
Rn

g(η) exp

[
−|η − x|2

4t

]
dy. (3.12)

Proof In view of the uniform convergence of the improper integrals on the left-
hand side of equality (3.12), we can change the order of integration with respect to
η and y. Then we take the inner integral by the formula [33]

+∞∫
−∞

exp
[
−pξ2 − qξ

]
dξ =

√
π

p
exp

(
q2

4p

)
, Re p > 0,

we obtain

n∏
j=1

+∞∫
−∞

exp

[
− (xj − yj )

2

4(t − τ )
− (yj − ηj )

2

4τ

]
dyj

=
[

2

√
π√
t

√
τ (t − τ )

]n

exp

[
−|η − x|2

4t

]
. (3.13)

Substituting (3.13) into the left-hand side of (3.12), after reducing such terms, we
obtain the assertion of Lemma 3.1. ��

We now successively solve each equation in system (3.9) starting from the last
equation. By using the initial conditions (3.10) and Lemma 3.1, we determine the
solution of problem (3.9) and (3.10). In view of the relation W0(x, t) = U(x, t), we
obtain the solution of problem (3.5)–(3.7) in the form

U(x, t) =
(

2
√

πt
)−n

m−1∑
k=0

tk

k!
∫
Rn

Fk(s) exp

[
−|s − x|2

4t

]
ds, (3.14)

where Fk(x) (k = 0,m − 1) are known functions given by equalities (3.11).
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In view of the evenness of the functions Fk(x), k = 0,m − 1, we can rewrite
equality (3.14) in the form

U(x, t) =
m−1∑
k=0

tk

k!Uk(x, t), (3.15)

where

Uk(x, t) =
∫
Rn+

Fk(s)G(x, t, s)ds, (3.16)

G(x, s, t) =
n∏

j=1

G0(xj , sj , t),

G0(xj , sj , t) = 1

2
√

πt

{
exp

[
− (sj − xj )

2

4t

]
+ exp

[
− (sj + xj )

2

4t

]}
.

To analyze the behavior of the functions Fk(x), k = 0,m − 1, it is necessary to
perform certain transformations. To this end, we prove the following lemma:

Lemma 3.2 Suppose that the functions ϕj (x) ∈ C2(m−j)−1(Rn+), j = 0,m − 1,

are continuous and bounded, and that all derivatives of the functions ϕj(x), up to
the order 2(m− j)−1, j = 0,m − 1 inclusively, are equal to zero for xk = 0, k =
1, n. Then the equalities

lim
xk→0

x
2αk

k

∂

∂xk

[
B

xk

αk−(1/2)

]l
ϕj (x) = 0, k = 1, n, l = 0,m − 1, j = 0,m − 1,

(3.17)

lim
xk→0

[Bxk
γk

]iϕj−i (x) = 0, k = 1, n, i = 0, j , j = 0,m − 1, (3.18)

are true.

Proof By induction, we can prove the following equality:

(
1

x

d

dx

)p

h(x) =
p∑

j=1

(−1)j+1Apj
h(p−j+1)(x)

xp+j−1
, (3.19)

where Apj are constants given by the recurrence relations

A(p+1)1 = Ap1 = 1, p ≥ 1, A(p+1)j = (p + j −1)Ap(j−1) +Apj, p ≥ 2, j = 2, p,

A(p+1)(p+1) = (2p − 1)App = (2p − 1)!!, p ≥ 1.
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We rewrite (3.17) in the form

lim
xk→0

H(x) = lim
xk→0

x
2αk

k

∂

∂xk

[
B

xk

αk−(1/2)

]l
ϕj (x)

= lim
xk→0

x
1+2αk

k

l∑
q=0

C
q
l (2αk)

l−q

(
1

xk

∂

∂xk

)l−q+1 ∂2qϕj (x)

∂x
2q

k

Taking (3.19) into account, we have

lim
xk→0

H(x)

=
l∑

q=0

C
q
l (2αk)

l−q

l−q+1∑
j=1

(−1)j+1A(l−q+1)j lim
xk→0

∂l−q−j+2ϕj (x)/∂x
l−q−j+2
k

x
l−q+j−1−2αk

k

Applying the L’Hospital rule l − q + j times [34] to the last equality and taking
into account the condition of the Lemma 3.2, we obtain

lim
xk→0

∂l−q−j+2ϕj (x)/∂x
l−q−j+2
k

x
l−q+j−1−2αk

k

=
lim

xk→0
x

1+2αk

k [∂2l+2qϕj (x)/∂x
2l+2q

k ]
(l − q + j)! = 0.

This proves of (3.17). Equality (3.18) is proved similarly. ��
We now transform the functions Fk(x), k = 0,m − 1. By virtue of Lemma 3.2,

the functions �k(x) satisfy all conditions of Theorem 2.5. Therefore, taking into
account formula (2.6), equality (3.11) for xk > 0, k = 1, n can be represented in
the form

Fk(x) = J−1
0

(
α

−1/2

)
fk(x), k = 0,m − 1, (3.20)

where

fk(x) =
k∑

j=0

(−1)jC
j
k 	

j
Bϕk−j (x), k = 0,m − 1. (3.21)

Taking into account the form of the inverse operator (1.4) for mj = 1, j = 1, n,

equality (3.20) can be represented as Fk(x) = [∂n/(∂x1∂x2 . . . ∂xn)]F̄k(x), where

F̄k(x) =
n∏

j=1

[
1

�(1 − αj )

] x1∫
0

x2∫
0

. . .

xn∫
0

n∏
j=1

[
(x2

j − s2
j )−αj s

2αj

j

]
fk(s)ds1ds2 . . . dsn.
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We note that, by Lemma 3.2, it follows from (3.21) that the functions fk(x),

k = 0,m − 1 for xj ≥ 0, are continuous, bounded, and fk(x)|xj =0 = 0, so that
from the last equality we have

F̄k(x)
∣∣
xj=0 = 0, j = 1, n, k = 0,m − 1. (3.22)

Taking (3.22) into account in (3.16), we integrate by parts. Then, substituting in
this equality the value of the functions F̄k(x), we obtain

Uk(x, t) = −
n∏

j=1

[
1

�(1 − αj )

] ∫
Rn+

fk(s)

n∏
j=1

[
s

2αj

j G1(xj , sj , t)
]
ds, (3.23)

where

G1(xj , sj , t) =
+∞∫
sj

(y2
j − s2

j )−αj
∂

∂yj

G0(xj , yj , t)dyj . (3.24)

Let us calculate the integral (3.24). Applying the formula [33, p. 451]

+∞∫
0

e−aλ2
cos(bλ)dλ =

√
π

4a
exp

[
− b2

4a

]
, Re a > 0,

function G0(xj , yj , t) can be represented in the form

G0(xj , yj , t) = 2

π

+∞∫
0

e−tλ2
cos(xjλ) cos(yjλ)dλ.

We find the derivative with respect to yj and substitute the obtained expression
for the function G0y in (3.24). Then we use the uniform convergence of integrals
and change the order of integration. Taking the inner integral with the help of the
Mehler–Sonine formula [35, p. 93], we get

G1(xj , sj , t)

= −2(1/2)−αj

√
π

�(1 − αj )s
(1/2)−α

j

+∞∫
0

e−tλ2
λαj +(1/2)Jαj −(1/2)(λsj ) cos(xjλ)dλ.

(3.25)
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Now, substituting (3.23) into (3.15), and its in (3.4), after changing the order of
integration, we obtain

u(x, t) = −
n∏

j=1

⎡
⎣ 2x

1−2αj

j

�(αj )�(1 − αj )

⎤
⎦m−1∑

k=0

tk

k!
∫

Rn+

fk(s)

n∏
j=1

s
2αj

j G2(xj , sj , t)ds

(3.26)

where

G2(xj , sj , t) =
xj∫

0

(x2
j − ξ2

j )αj −1 G1(ξj , sj , t)dξj (3.27)

We substitute the expression (3.25) for the function G1 in (3.27) and change the
order of integration. Then, using the Poisson formula [35, p. 93], we compute the
inner integral. As a result, we find

G2(xj , sj , t)

= −1

2
�(αj )�(1 − αj )

(
sj

xj

)(1/2)−αj
∞∫

0

e−tλ2
Jαj −(1/2)(sj λ)Jαj −(1/2)(xjλ)λdλ.

Further, taking into account the following formula [35, p. 60]

∞∫
0

e−tλ2
Jν(sλ)Jν(xλ)λdλ = 1

2t
e− x2+s2

4t Iν

(xs

2t

)
,

Re ν > −1, Re t > 0, we have

G2(xj , sj , t) = − 1

4t
�(αj )�(1 − αj )

(
sj

xj

)(1/2)−αj

e− x2
j
+s2

j
4t Iαj −(1/2)

(xj sj

2t

)
.

(3.28)

Substituting (3.28) into (3.26) and taking into account both and αj = γj +1/2 <

1, γj > −1/2, j = 1, n, we find the final form of the solution of the Eq. (3.1) for∣∣γj

∣∣ < 1/2, j = 1, n, satisfying conditions (2.5) and (2.6):

u(x, t) = 1

(2t)n

n∏
j=1

x
−γj

j

m−1∑
k=0

tk

k!
∫

Rn+

fk(s)G(x, s, t)ds, (3.29)
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where fk(x) =
k∑

j=0
(−1)jC

j
k 	

k−j
B ϕj (x),

G(x, s, t) =
n∏

j=1

{
s
γj +1
j exp

[
−x2

j + s2
j

4t

]
Iγj

(xj sj

2t

)}

=
n∏

j=1

[
s
γj +1
j Iγj

(xj sj

2t

)]
exp

[
−|x|2 + |s|2

4t

]
, |x|2 =

n∑
j=1

x2
j . (3.30)

A direct verification shows that the following theorem holds.

Theorem 3.1 Let
∣∣γj

∣∣ < 1/2, j = 1, n, and the functions ϕj (x) ∈
C2(m−j)−1(Rn+), j = 0,m − 1 are continuous, bounded, and all derivatives of
the functions ϕj (x), up to the order 2(m − j) − 1, j = 0,m − 1 inclusively, are
equal to zero for xk = 0, k = 1, n. Then the function u(x, t), defined by (3.29), is
a classical solution of equation Lm

γ (u) = 0, satisfying conditions (3.2) and (3.3).

Appendix: Integral Transform Composition Method (ITCM)
in Transmutation Theory: How It Works

In the appendix we briefly describe a general context for transmutations and
integral transforms used in this paper. Such a general context is formed by integral
transforms composition method (ITCM).

Below we give a brief survey and outline some applications of the integral
transforms composition method (ITCM) for obtaining transmutations via integral
transforms. It is possible to derive wide range of transmutation operators by
this method. Classical integral transforms are involved in the integral transforms
composition method (ITCM) as basic blocks, among them are Fourier, sine and
cosine-Fourier, Hankel, Mellin, Laplace and some generalized transforms. The
ITCM and transmutations obtaining by it are applied to deriving connection
formulas for solutions of singular differential equations and more simple non-
singular ones. We consider well-known classes of singular differential equations
with Bessel operators, such as classical and generalized Euler–Poisson–Darboux
equation and the generalized radiation problem of A. Weinstein. Methods of this
paper are applied to more general linear partial differential equations with Bessel
operators, such as multivariate Bessel-type equations, GASPT (Generalized Axially
Symmetric Potential Theory) equations of Weinstein, Bessel-type generalized wave
equations with variable coefficients,ultra B-hyperbolic equations and others. So
with many results and examples the main conclusion of this paper is illustrated:
the integral transforms composition method (ITCM) of constructing transmutations
is very important and effective tool also for obtaining connection formulas and
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explicit representations of solutions to a wide class of singular differential equations,
including ones with Bessel operators.

What is ITCM and How It Works?

In transmutation theory explicit operators were derived based on different ideas and
methods, often not connecting altogether. So there is an urgent need in transmutation
theory to develop a general method for obtaining known and new classes of
transmutations.

In this section we give such general method for constructing transmutation
operators. We call this method integral transform composition method or shortly
ITCM. The method is based on the representation of transmutation operators
as compositions of basic integral transforms. The integral transform composition
method (ITCM) gives the algorithm not only for constructing new transmutation
operators, but also for all now explicitly known classes of transmutations, including
Poisson, Sonine, Vekua-Erdelyi-Lowndes, Buschman-Erdelyi, Sonin-Katrakhov
and Poisson-Katrakhov ones, cf. [36–45, 63–65] as well as the classes of elliptic,
hyperbolic and parabolic transmutation operators introduced by Carroll [37–39].

The formal algorithm of ITCM is the next. Let us take as input a pair of arbitrary
operators A,B, and also connecting with them generalized Fourier transforms
FA,FB , which are invertible and act by the formulas

FAA = g(t)FA, FBB = g(t)FB, (A.1)

where t is a dual variable, g is an arbitrary function with suitable properties. It is
often convenient to choose g(t) = −t2 or g(t) = −tα , α ∈ R.

Then the essence of ITCM is to obtain formally a pair of transmutation operators
P and S as the method output by the next formulas:

S = F−1
B

1

w(t)
FA, P = F−1

A w(t)FB (A.2)

with arbitrary function w(t). When P and S are transmutation operators intertwin-
ing A and B:

SA = BS, PB = AP. (A.3)

A formal checking of (A.3) can be obtained by direct substitution. The main
difficulty is the calculation of compositions (A.2) in an explicit integral form, as
well as the choice of domains of operators P and S.
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Let us list the main advantages of Integral Transform Composition Method
(ITCM).

• Simplicity—many classes of transmutations are obtained by explicit formulas
from elementary basic blocks, which are classical integral transforms.

• ITCM gives by a unified approach all previously explicitly known classes of
transmutations.

• ITCM gives by a unified approach many new classes of transmutations for
different operators.

• ITCM gives a unified approach to obtain both direct and inverse transmutations
in the same composition form.

• ITCM directly leads to estimates of norms of direct and inverse transmutations
using known norm estimates for classical integral transforms on different
functional spaces.

• ITCM directly leads to connection formulas for solutions to perturbed and
unperturbed differential equations.

An obstacle for applying ITCM is the next one: we know acting of classical
integral transforms usually on standard spaces like L2, Lp,Ck , variable exponent
Lebesgue spaces [46] and so on. But for application of transmutations to differential
equations we usually need some more conditions hold, say at zero or at infinity. For
these problems we may first construct a transmutation by ITCM and then expand it
to the needed functional classes.

Let us stress that formulas of the type (A.2) of course are not new for integral
transforms and its applications to differential equations. But ITCM is new when
applied to transmutation theory! In other fields of integral transforms and connected
differential equations theory compositions (A.2) for the choice of classical Fourier
transform leads to famous pseudo-differential operators with symbol function w(t).
For the choice of the classical Fourier transform and the function w(t) = (±it)−s

we obtain fractional integrals on the whole real axis, for w(t) = |x|−s we obtain
M.Riesz potential, for w(t) = (1 + t2)−s in formulas (A.2) we obtain Bessel
potential and for w(t) = (1 ± it)−s - modified Bessel potentials [3].

The next choice for ITCM algorithm,

A = B = Bν, FA = FB = Hν, g(t) = −t2, w(t) = jν(st) (A.4)

leads to generalized translation operators of Delsart [47–49], for this case we have to
choose in ITCM algorithm defined by (A.1)–(A.2) the above values (A.4) in which
Bν is the Bessel operator, Hν is the Hankel transform, jν is the normalized (or
“small”) Bessel function. In the same manner other families of operators commuting
with a given one may be obtained by ITCM for the choice A = B,FA = FB with
arbitrary functions g(t), w(t) (generalized translation commutes with the Bessel
operator). In case of the choice of differential operator A as quantum oscillator
and connected integral transform FA as fractional or quadratic Fourier transform
[50] we may obtain by ITCM transmutations also for this case [43]. It is possible
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to apply ITCM instead of classical approaches for obtaining fractional powers of
Bessel operators [43, 51–54].

Direct applications of ITCM to multidimensional differential operators are
obvious, in this case t is a vector and g(t), w(t) are vector functions in (A.1)–
(A.2). Unfortunately for this case we know and may derive some new explicit
transmutations just for simple special cases. But among them are well-known and
interesting classes of potentials. In case of using ITCM by (A.1)–(A.2) with Fourier
transform and w(t)—positive definite quadratic form we come to elliptic Riesz
potentials [3, 55]; with w(t)—indefinite quadratic form we come to hyperbolic
Riesz potentials [3, 55, 56]; with w(x, t) = (|x|2 − it)−α/2 we come to parabolic
potentials [3]. In case of using ITCM by (A.1)–(A.2) with Hankel transform
and w(t) - quadratic form we come to elliptic Riesz B-potentials [57, 58] or
hyperbolic Riesz B-potentials [59]. For all above mentioned potentials we need
to use distribution theory and consider for ITCM convolutions of distributions, for
inversion of such potentials we need some cutting and approximation procedures, cf.
[56, 59]. For this class of problems it is appropriate to use Schwartz or/and Lizorkin
spaces for probe functions and dual spaces for distributions.

So we may conclude that the method we consider in the paper for obtaining
transmutations—ITCM is effective, it is connected to many known methods and
problems, it gives all known classes of explicit transmutations and works as a tool
to construct new classes of transmutations. Application of ITCM needs the next
three steps.

Step 1. For a given pair of operators A,B and connected generalized Fourier
transforms FA,FB define and calculate a pair of transmutations P, S by basic
formulas (A.1)–(A.2).

Step 2. Derive exact conditions and find classes of functions for which transmu-
tations obtained by step 1 satisfy proper intertwining properties.

Step 3. Apply now correctly defined transmutations by steps 1 and 2 on proper
classes of functions to deriving connection formulas for solutions of differential
equations.

The next part of this article is organized as follows. First we illustrate step 1 of
the above plan and apply ITCM for obtaining some new and known transmutations.
For step 2 we prove a general theorem for the case of Bessel operators, it is enough
to solve problems to complete strict definition of transmutations. And after that we
give an example to illustrate step 3 of applying obtained by ITCM transmutations to
derive formulas for solutions of a model differential equation.

Application of ITCM to Index Shift B–Hyperbolic
Transmutations

In this section we apply ITCM to obtain integral representations for index shift
B-hyperbolic transmutations. It corresponds to step 1 of the above plan for ITCM
algorithm.
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Let us look for the operator T transmuting the Bessel operator Bν into the same
operator but with another parameter Bμ. To find such a transmutation we use ITCM
with Hankel transform. Applying ITCM we obtain an interesting and important
family of transmutations, including index shift B-hyperbolic transmutations, “de-
scent” operators, classical Sonine and Poisson-type transmutations, explicit integral
representations for fractional powers of the Bessel operator, generalized translations
of Delsart and others.

So we are looking for an operator T
(ϕ)
ν,μ such that

T (ϕ)
ν,μBν = BμT (ϕ)

ν,μ (A.5)

in the factorized due to ITCM form

T (ϕ)
ν,μ = H−1

μ

(
ϕ(t)Hν

)
, (A.6)

where Hν is a Hankel transform. Assuming ϕ(t) = Ctα , C ∈ R does not depend on
t and T

(ϕ)
ν,μ = T

(α)
ν,μ we can derive the following theorem.

Theorem A.1 Let f be a proper function for which the composition (A.6) is
correctly defined,

Re(α + μ + 1) > 0, Re
(
α + μ − ν

2

)
< 0.

Then for transmutation operator T
(α)
ν,μ obtained by ITCM and such that

T (α)
ν,μBν = BμT (α)

ν,μ

the next integral representation is true

(
T (α)

ν,μf
)
(x)

= C
2α+3�(

α+μ+1
2 )

�(
μ+1

2 )

[x−1−μ−α

�(−α
2 )

×
∫ x

0
f (y)2F1

(α + μ + 1

2
,
α

2
+ 1; ν + 1

2
; y2

x2

)
yνdy + �(ν+1

2 )

�(
μ+1

2 )�(
ν−μ−α

2 )

×
∫ ∞

x

f (y)2F1

(α + μ + 1

2
,
α + μ − ν

2
+ 1; μ + 1

2
; x2

y2

)
yν−μ−α−1dy

]
.

(A.7)

where 2F1 is the Gauss hypergeometric function.
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Corollary A.1 Let f ∈ L2(0,∞), α = −μ; ν = 0. For μ > 0 we obtain the
operator

(
T

(−μ)
0,μ f

)
(x) = 2�(

μ+1
2 )√

π�(μ/2)
x1−μ

∫ x

0
f (y)(x2 − y2)

μ
2 −1dy, (A.8)

such that

T
(−μ)

0,μ D2 = BμT
(−μ)
0,μ (A.9)

and T
(−μ)

0,μ 1 = 1,

The operator (A.8) is the well-known Poisson operator (see [47]). We will use
conventional symbol

Pμ
x f (x) = C(μ)x1−μ

∫ x

0
f (y)(x2 − y2)

μ
2 −1dy, (A.10)

Pμ
x 1 = 1, C(μ) = 2�(

μ+1
2 )√

π�(
μ
2 )

.

We remark that if u = u(x, t), x, t ∈ R, u(x, 0) = f (x) and ut (x, 0) = 0, then

Pμ
t u(x, t)|t=0 = f (x),

∂

∂t
Pμ

t u(x, t)

∣∣∣
t=0

= 0. (A.11)

Indeed, we have

Pμ
t u(x, t)|t=0 = C(μ)t1−μ

∫ t

0
u(x, y)(t2 − y2)

μ
2 −1dy

∣∣∣
t=0

= C(μ)

∫ 1

0
u(x, ty)|t=0(1 − y2)

μ
2 −1dy = f (x)

and

∂

∂t
Pμ

t u(x, t)

∣∣∣
t=0

= C(μ)

∫ 1

0
ut (x, ty)|t=0(1 − y2)

μ
2 −1dy = 0.

Corollary A.2 For f ∈ L2(0,∞), α=ν−μ; −1 < Re ν < Re μ we obtain the first
“descent” operator

(
T (ν−μ)

ν,μ f
)
(x) = 2�(

μ+1
2 )

�(
μ−ν

2 )�( ν+1
2 )

x1−μ

∫ x

0
f (y)(x2 − y2)

μ−ν
2 −1yνdy. (A.12)
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such that

T (ν−μ)
ν,μ Bν = BμT (ν−μ)

ν,μ , T (ν−μ)
ν,μ 1 = 1.

Corollary A.3 Let f ∈ L1,w with the weight function w(y) = |y|Re ν−Re μ, α = 0,
−1 < Re μ < Re ν. In this case we obtain the second “descent” operator:

(
T (0)

ν,μf
)
(x) = 2�(ν − μ)

�2(
ν−μ

2 )

∫ ∞

x

f (y)(y2 − x2)
ν−μ

2 −1y dy. (A.13)

In [44] the formula (A.13) was obtained as a particular case of Buschman-Erdelyi
operator of the third kind but with different constant:

(
T (0)

ν,μf
)
(x) = 21− ν−μ

2

�(
ν−μ

2 )

∫ ∞

x

f (y)y
(
y2 − x2

) ν−μ
2 −1

dy. (A.14)

As might be seen in the form (A.13) as well as (A.14) the operator T
(0)
ν,μ does not

depend on the values ν and μ but only on the difference between ν and μ.

Corollary A.4 Let f ∈ L2(0,∞), Re(α + ν + 1) > 0, Re α < 0. If we take μ = ν

in (A.7) we obtain the operator

(
T (α)

ν,ν f
)
(x) = 2α+3�(α+ν+1

2 )

�(−α
2 )�( ν+1

2 )

[
x−1−ν−α

∫ x

0
f (y)

× 2F1

(α + ν + 1

2
,
α

2
+ 1; ν + 1

2
; y2

x2

)
yνdy

+
∫ ∞

x

f (y)2F1

(α + ν + 1

2
,
α

2
+ 1; ν + 1

2
; x2

y2

)
y−α−1dy

]
(A.15)

which is an explicit integral representation of the negative fractional power α of the
Bessel operator: Bα

ν .

So it is possible and easy to obtain fractional powers of the Bessel operator by
ITCM. For different approaches to fractional powers of the Bessel operator and its
explicit integral representations cf. [9, 43, 51–54, 60–62].
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Theorem A.2 If we apply ITCM with ϕ(t) = j ν−1
2

(zt) in (A.6) and with μ = ν

then the operator

(
T (ϕ)

ν,ν f
)
(x)

= νT z
x f (x) = H−1

ν

[
j ν−1

2
(zt)Hν[f ](t)](x)

= 2ν�( ν+1
2 )√

π(4xz)ν−1�(ν
2 )

∫ x+z

|x−z|
f (y)y[(z2 − (x − y)2)((x + y)2 − z2)] ν

2 −1dy

(A.16)

coincides with the generalized translation operator (see [47–49]), for which the next
properties are valid

νT z
x (Bν)x = (Bν)z

νT z
x , (A.17)

νT z
x f (x)|z=0 = f (x),

∂

∂z

νT z
x f (x)

∣∣∣
z=0

= 0. (A.18)

More frequently used representation of generalized translation operator νT x
z is

(see [47–49])

νT z
x f (x) = C(ν)

∫ π

0
f (

√
x2 + z2 − 2xz cos ϕ) sinν−1 ϕdϕ, (A.19)

C(ν) =
( ∫ π

0
sinν−1 ϕdϕ

)−1 = �(ν+1
2 )√

π �(ν
2 )

.

It is easy to see that it is the same as ours.
So it is possible and easy to obtain generalized translation operators by ITCM,

and its basic properties follows immediately from ITCM integral representation.

Application of Transmutations Obtained by ITCM to Integral
Representations of Solutions to Hyperbolic Equations with
Bessel Operators

Let us solve the problem of obtaining transmutations by ITCM (step 1) and justify
integral representation and proper function classes for it (step 2). Now consider
applications of these transmutations to integral representations of solutions to
hyperbolic equations with Bessel operators (step 3). For simplicity we consider
model equations, for them integral representations of solutions are mostly known.
More complex problems need more detailed and spacious calculations. But even for
these model problems considered below application of the transmutation method
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based on ITCM is new, it allows more unified and simplified approach to hyperbolic
equations with Bessel operators of EPD/GEPD types.

Standard approach for solving differential equations is to find its general solution
first, and then substitute given functions to find particular solutions. Here we will
show how to obtain general solution of EPD type equation using transmutation
operators.

Proposition A.3 A general solution of the equation

∂2u

∂x2 = (Bμ)tu, u = u(x, t; μ) (A.20)

for 0 < μ < 1 is represented in the form

u =
∫ 1

0

�(x + t (2p − 1))

(p(1 − p))1− μ
2

dp + t1−μ

∫ 1

0

�(x + t (2p − 1))

(p(1 − p))μ/2 dp, (A.21)

with a pair of arbitrary functions �,� .

Proof First, we consider the wave equation when a = 1,

∂2u

∂t2 = ∂2u

∂x2 . (A.22)

A general solution to this equation has the form

F(x + t) + G(x − t), (A.23)

where F and G are arbitrary functions. Applying operator (A.10) (obtained by
ITCM) by variable t we obtain that one solution to the Eq. (A.20) is

u1 = 2C(μ)
1

tμ−1

∫ t

0
[F(x + z) + G(x − z)](t2 − z2)

μ
2 −1 dz.

Let us transform the resulting general solution as follows

u1 = C(μ)

tμ−1

∫ t

−t

F (x + z) + F(x − z) + G(x + z) + G(x − z)

(t2 − z2)1− μ
2

dz.

Introducing a new variable p by formula z = t (2p − 1) we obtain

u1 =
∫ 1

0

�(x + t (2p − 1))

(p(1 − p))1− μ
2

dp,
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where

�(x + z)= [F(x + z)+F(x − z)+G(x + z)+G(x − z)]

is an arbitrary function.
It is easy to see that if u(x, t; μ) is a solution of (A.20) then t1−μu(x, t; 2−μ) is

also a solution. Therefore the second solution to (A.20) is

u2 = t1−μ

∫ 1

0

�(x + t (2p − 1))

(p(1 − p))μ/2 dp,

where � is an arbitrary function, not coinciding with �. Summing u1 and u2 we
obtain general solution to (A.20) of the form (A.21). From the (A.21) we can see
that for summable functions � and � such a solution exists for 0 < μ < 1. ��

Now we derive a general solution to GEPD type equation by transmutation
method.

Proposition A.4 A general solution to the equation

(Bν)xu = (Bμ)tu, u = u(x, t; ν,μ) (A.24)

for 0 < μ < 1, 0 < ν < 1 is

u = 2�(ν+1
2 )√

π�(ν
2 )

(
x1−ν

∫ x

0
(x2 − y2)

ν
2 −1dy

∫ 1

0

�(y + t (2p − 1))

(p(1 − p))1− μ
2

dp

+ t1−μx1−ν

∫ x

0
(x2 − y2)

ν
2 −1dy

∫ 1

0

�(y + t (2p − 1))

(p(1 − p))μ/2 dp.
) (A.25)

Proof Applying the Poisson operator (A.10) (again obtained by ITCM) with index
ν by variable x to the (A.21) we derive general solution (A.25) to the Eq. (A.24). ��

Now let apply transmutations for finding general solution to GEPD type equation
with spectral parameter.

Proposition A.5 A general solution to the equation

(Bν)xu = (Bμ)tu + b2u, u = u(x, t; ν,μ) (A.26)
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for 0 < μ < 1, 0 < ν < 1 is

u = 2�(ν+1
2 )√

π�(ν
2 )

(
x1−ν

∫ x

0
(x2 − y2)

ν
2 −1dy

×
∫ 1

0

�(y + t (2p − 1))

(p(1 − p))1− μ
2

jμ
2 −1(2bt

√
p(1 − p)) dp

+ t1−μx1−ν

∫ x

0
(x2 − y2)

ν
2 −1dy

×
∫ 1

0

�(y + t (2p − 1))

(p(1 − p))μ/2
j− μ

2
(2bt

√
p(1 − p)) dp.

)

(A.27)

Proof A general solution to the equation

∂2u

∂x2 = (Bμ)tu + b2u, u = u(x, t; μ), 0 < μ < 1

is (see [24, p. 328])

u =
∫ 1

0

�(x + t (2p − 1))

(p(1 − p))1− μ
2

jμ
2 −1(2bt

√
p(1 − p)) dp

+ t1−μ

∫ 1

0

�(x + t (2p − 1))

(p(1 − p))μ/2 j− μ
2
(2bt

√
p(1 − p)) dp.

Applying Poisson operator (A.10) (again obtained by ITCM) with index ν by
variable x to the (A.21) we derive general solution (A.25) to the Eq. (A.24). ��
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