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Abstract One discusses the problem of constructing the theory of pseudo differen-
tial equations on manifolds with a non-smooth boundary. Using special factorization
principle and transmutation operators we consider some general boundary value
problems for elliptic pseudo-differential equations in canonical non-smooth mani-
folds.
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1 Introduction

We study Fredholm properties of elliptic pseudo-differential operators (or equa-
tions) in Sobolev–Slobodetskii spaces on manifolds with a boundary but in our case
the boundary may be non-smooth.

Basic principles for studying such equations are the following:

• a local principle or freezing coefficients principle;
• factorizability principle for an elliptic symbol at boundary point;
• a pluralism principle for singular boundary points which implies distinct types of

local operators.

Local principle and factorizability was first introduced in papers I.B. Simonenko
[16] (for multidimensional singular integral operators in Lebesgue Lp-spaces)
and M.I. Vishik–G.I. Eskin [2] (for pseudo-differential operators in Sobolev–
Slobodetskii Hs-spaces). For manifolds with a smooth boundary one uses an idea
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of “rectification of a boundary”, and the problems reduces to a half-space case,
for which a factorizability principle holds immediately because under localization
at a boundary point and applying the Fourier transform we obtain well known
one-dimensional classical Riemann boundary value problem for upper and lower
complex half-planes with a multidimensional parameter. This approach does not
work if a boundary has at least one singular point like a conical point. One needs
here other considerations and approaches.

The wave factorization principle was introduced by the author in 90th [18, 19]
to extend the Vishik–Eskin theory to manifolds with a singular boundary. Such
approach requires a special factorization for an elliptic symbol, and it leads
to multidimensional variant of classical Riemann boundary value problem and
multidimensional analogues of the Cauchy type integrals. It was shown [20, 28]
these multidimensional analogues transform to the Cauchy type integral with a
parameter for limit cases.

The third principle asserts that there are a lot of singularities at a boundary.
Every singularity requires a separate studying to obtain solvability conditions for
corresponding model equation. Common part of such studying is requiring the
wave factorization for an elliptic symbol with respect to corresponding cone. If we
have such factorization then we can describe needed solvability conditions (see, for
example, [22–27]).

2 Domains and Operators

We consider a certain integro-differential operator A on m-dimensional com-
pact manifold M with a boundary. This operators is defined by the function
A(x, ξ), (x, ξ) ∈ R

2m. There are some smooth compact sub-manifolds Mk of di-
mension 0 ≤ k ≤ m−1 on the boundary ∂M of manifold M which are singularities
of a boundary. These singularities are described by a local representative of operator
A in a point x0 ∈ M on the map U � x0 in the following way

(Ax0u)(x) =
∫

Dx0

∫

Rm

eiξ ·(x−y)A(ϕ(x0), ξ)u(y)dξdy, x ∈ Dx0 , (1)

where ϕ : U → Dx0 is a diffeomorphism, and the canonical domain Dx0 has a
distinct form depending on a placement of the point x0 on manifold M . We consider
the following canonical domains Dx0 : Rm,Rm+ = {x ∈ R

m : x = (x ′, xm), xm >

0},Wk = R
k×Cm−k , where Cm−k is a convex cone in R

m−k non-including a whole
line.

Such an operator A will be considered in Sobolev–Slobodetskii spaces Hs(M),
and local variants of such spaces will be spaces Hs(Dx0). Local principle asserts
that for a Fredholm property of the operator A it is necessary and sufficient an
invertibility for all “local operators” Ax0, x0 ∈ M . So, we need to describe the
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conditions for unique solvability all model equations of the following type

(Ax0u)(x) = v(x), x ∈ Dx0, (2)

in corresponding local Sobolev–Slobodetskii spaces Hs(Dx0).

2.1 Paired Equations

Such equations appear together with Eq. (2). Paired equation is called the following
equation

(AP+ + BP−)U(x) = V (x), x ∈ R
m,

where A,B are model elliptic pseudo-differential operators, P+ is restriction
operator on canonical domain D, P− is restriction operator on R

m \ D. It is easily
to show that solving the Eq. (2) is equivalent to solving the paired equation with
A = Ax0 and B = I (identity). For solving such paired equations they apply the
factorization technique and complex variables [2].

2.2 Singularities and Distributions

Author’s point of view is the following. Each boundary point of manifold M is
served by a special distribution. Such a distribution is the Fourier transform of an
indicator of canonical domain. Using these distributions we reduce the Eq. (2) to a
certain variant of the Riemann boundary value problem in the function theory of
complex variables (one or many) [1, 2, 4, 7, 9, 19–21].

2.3 Complex Variables and Wave Factorization

To obtain the conditions for unique solvability for the Eq. (2) (or equivalently
invertibility conditions for the operator (1)) we introduce the following concept.
Let us denote [32]

∗
Cm−k= {x ∈ R

m−k : x · y > 0, y ∈ Cm−k}
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Taking into account local principle we will consider only symbols non-depending
on spatial variables x and satisfying the condition

c1(1 + |ξ |)α ≤ |A(ξ)| ≤ c2(1 + |ξ |)α. (3)

Definition 1 k-Wave factorization of elliptic symbol A(ξ) with respect to the Cm−k

is called its representation in the form

A(ξ) = A �=(ξ)A=(ξ),

where the factors A �=(ξ),A=(ξ) must satisfy the following conditions:

(1) A �=(ξ),A=(ξ) are defined forall ξ ∈ R
m without may be the points R

k ×
∂

( ∗
Cm−k ∪(−

∗
Cm−k)

)
;

(2) A �=(ξ),A=(ξ) admit analytic continuation into radial tube domains T (
∗

Cm−k),

T (−
∗

Cm−k) for almost all ξ ′′ ∈ R
k respectively with estimates

|A±1
�= (ξ ′′, ξ ′ + iτ )| ≤ c1(1 + |ξ | + |τ |)±æk ,

|A±1= (ξ ′′, ξ ′ − iτ )| ≤ c2(1 + |ξ | + |τ |)±(α−æk), ∀τ ∈
∗

Cm−k .

The number æk ∈ R is called index of k-wave factorization.

Existence of such factorization permits to describe solvability picture for model
pseudo-differential equation (2) for m − k = 2 [19, 20], but in a general case we
need to know the general form of a distribution supported on a conical surface (we
can’t find such form in [5]). We try to reduce the problem to a half-space case using
transmutation operators.

3 Transmutations, Distributions and the Fourier Transform

Below we consider the case k = 0 because all conclusions will be the same, only k-
dimensional parameter can be appear. Let C be a convex cone in the space Rm, and
this cone does not include any whole straight line, it is important because we use
the theory of analytic functions of several complex variables [1, 31, 32]. Moreover
we suppose that a surface of this cone is given by the equation xm = ϕ(x ′), x ′ =
(x1, · · · , xm−1), where ϕ : R

m−1 → R is a smooth function in R
m−1 \ {0}, and

ϕ(0) = 0.
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Let us introduce the following change of variables [14, 29, 30]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t1 = x1

t2 = x2

· · ·
tm−1 = xm−1

tm = xm − ϕ(x ′)

and we denote this operator by Tϕ : Rm → R
m.

Obviously, this is a smooth transformation excluding an origin. Let f be a local
integrable function which generates a distribution defined by the formula

(f,ψ) =
∫

Rm

f (x)ψ(x)dx.

We define a functional Tϕf by the formula

(Tϕf,ψ) = (f, T −1
ϕ ψ).

According to the Schwartz theorem on one-dimensional distribution from S′(R)

supported at the origin 0 [5, 32] we can conclude that if a distribution f ∈ S′(Rm)

supported in the hyper-plane xm = 0 then it has the following form

f (x) =
n∑

k=0

ck(x
′) ⊗ δ(k)(xm), x = (x ′, xm),

where ck ∈ S′(Rm−1), k = 0, 1, · · · , n, are arbitrary distributions.
Therefore we can assert that if a distribution f ∈ S′(Rm) is supported on ∂C

then Tϕf is supported on R
m−1.

An arbitrary distribution f ∈ S′(Rm) supported on conical surface ∂C can
written in the form

f (x) = T −1
ϕ

(
n∑

k=0

ck(y
′) ⊗ δ(k)(ym)

)
, (4)

where ck ∈ S′(Rm−1), k = 0, 1, · · · , n, are arbitrary distributions.
Further, for functions u(x) from S(Rm) their Fourier transform is defined by the

formula

(Fu)(ξ) ≡ ũ(ξ) =
∫

Rm

eix·ξu(x)dx.
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The Fourier transform for distributions is defined as follows

(Ff,ψ) = (f, Fψ),

therefore

(FTϕf,ψ) = (f, T −1
ϕ Fψ).

Let f ∈ S′(Rm) be a distribution supported on ∂C. According to the above
conclusions it has the special form (4). Using properties of Tϕ and F we will find

Ff = Vϕ

(
n∑

k=0

c̃k(ξ
′)ξk

m

)
,

where

FT −1
ϕ F−1 ≡ Vϕ.

For a distribution f ∈ S′(Rm) the transform Vϕ is given by the formula

(Vϕf̃ , ψ) ≡ (f̃ , V−ϕψ), ∀ψ ∈ S(Rm).

If û(x ′, ξm) denotes the Fourier transform of the function u(x ′, xm) with respect
to a variable xm then one can make the following conclusion. Let us denote

Fx ′→ξ ′(e−iξmϕ(x ′)) ≡ Kϕ(ξ ′, ξm),

and after this we obtain an integral representation for the operator Vϕ :

(FT −1
ϕ u)(ξ) =

∫

Rm

Kϕ(ξ ′ − η′, ξm)ũ(η′, ξm)dη′.

3.1 Examples

3.1.1 Plane Sector

The case m = 2 is a very good, there is only one mentioned cone. We write it as
follows

Ca+ = {x ∈ R
2 : x = (x1, x2), x2 > a|x1|, a > 0},
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and further evaluate:

(FT −1
ϕ u)(ξ) = ũ(ξ1 + aξ2, ξ2) + ũ(ξ1 − aξ2, ξ2)

2
+

v.p.
i

2π

+∞∫

−∞

ũ(η, ξ2)dη

ξ1 + aξ2 − η
− v.p.

i

2π

+∞∫

−∞

ũ(η, ξ2)dη

ξ1 − aξ2 − η
≡ (Vϕũ)(ξ).

We denote by S1ũ the operator

(S1ũ)(ξ1, ξ2) = v.p.
i

2π

+∞∫

−∞

ũ(η, ξ2)dη

ξ1 − η

and analogously S2 for the second variable.

3.1.2 Standard Cone

As it was shown the kernel Kϕ is computable for concrete function ϕ(x ′). Let
ϕ(x ′) = a|x ′|, a > 0,. If we will look at the formulas from [31] (see also [16]
in which a real analogue of these formulas is given as the Poisson kernel) we will
find

Kϕ(ξ ′, ξm) = a2m−1π
m−2

2 �(m/2)(|ξ ′|2 − a2ξ2
m

)m/2
.

Therefore for such multidimensional cone the operator Vϕ looks as follows

(Vϕũ)(ξ) =
∫

Rm−1

a2m−1π
m−2

2 �(m/2)ũ(η′, ξm)dη′
(|ξ ′ − η′|2 − a2ξ2

m

)m/2
.

In our opinion we could call it a conical potential.
Of course this formula should be treated in a distribution sense. Below we give

such definition for the operator Vϕ in the space S′(Rm).

3.1.3 Three-Wedged Pyramid

This cone looks as follows

Ca+ = {x ∈ R
3 : x3 > a1|x1| + a2|x2|, a1, a2 > 0}
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For this case the operator Vϕ is constructed exactly using two operators S1, S2
(see below)

4 Potentials Generated by Transmutations

4.1 General Situation

Now we see that the main problem is to study
Let C be a convex cone non-including a whole straight line. Let us introduce the

Bochner kernel [1, 31, 32]

Bm(z) =
∫

C

eix·zdx, z = ξ + iτ,

and related integral operator

(Bmu)(x) = lim
τ→0+

∫

Rm

Bm(x − y + iτ )u(y)dy, x ∈ R
m.

Theorem 1 If the symbol A(ξ) admits the wave factorization with the index æ, æ−
s = n+δ, n ∈ N, |δ| < 1/2, then a general solution of the Eq. (2) in Fourier images
is given by the formula

ũ+(ξ) = A−1
�= (ξ)Qn(ξ)BmQ−1

n (ξ)A−1= (ξ) ˜lf (ξ)+

+A−1
�= (ξ)V −1

ϕ F

(
n∑

k=1

ck(x
′)δ(k−1)(xm)

)
,

where ck(x
′) ∈ Hsk (Rm−1) are arbitrary functions, sk = s − æ + k − 1/2, k =

1, 2, . . . , n, lf is an arbitrary continuation of f onto Hs−α(Rm), Qn is an arbitrary
polynomial satisfying the condition (3) for α = n.

Using these results one needs to add some additional conditions to determine
uniquely unknown functions ck . We will consider certain particular case in the next
section.

Some special cases are very interesting, for example if C = Ca+ = {x ∈ R
m :

x = (x ′, xm), xm > a|x ′|, a > 0}. Using evaluations from [17] we can obtain the
following result.
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Corollary 1 If f ≡ 0, n = 1, then we have the following form for a general
solution in the space Hs(Ca+)

ũ+(ξ) = A−1
�= (ξ)

∫

Rm−1

a2m−1π
m−2

2 �(m/2)c̃(η′)dη′
(|ξ ′ − η′|2 − a2ξ2

m

)m/2 ,

where c(x ′) ∈ Hs−æ+1/2(Rm−1) is an arbitrary function.

5 Boundary Value Problems

According to Theorem 1 we can consider different types of boundary value
problems with boundary conditions or with co-boundary operators.

Let us consider a simple boundary value problem for the equation

(Au)(x) = 0, x ∈ Ca+ (5)

for the case æ − s = 1 + δ, |δ| < 1/2, where A is an elliptic pseudo-differential
operator with the symbol A(ξ) satisfying the condition (3) and admitting the wave
factorization with respect to the cone Ca+.

According to Theorem 1 we have the formula for a general solution, for our case
it can be written as

ũ(ξ) = A−1
�= (ξ)(V−aFc0)(ξ), (6)

where c0(x
′) is an arbitrary function from Hs0(R2).

Now we will write an expression for V−aFc0 and then we will see what kind
of conditions for a solution u is more preferable. Direct calculations led to the
following expression

A �=(ξ)ũ(ξ) = C̃1(ξ1 − a1ξ3, ξ2 − a2ξ3) + C̃2(ξ1 − a1ξ3, ξ2 + a2ξ3)+
C̃3(ξ1 + a1ξ3, ξ2 − a2ξ3) + C̃1(ξ1 + a1ξ3, ξ2 + a2ξ3),

(7)

where

C̃1(ξ1−a1ξ3, ξ2−a2ξ3) = 1

4
c̃0(ξ1−a1ξ3, ξ2−a2ξ3)−1

2
(S1c̃0)(ξ1−a1ξ3, ξ2−a2ξ3)−

−1

2
(S2c̃0)(ξ1 − a1ξ3, ξ2 − a2ξ3) + (S1S2c̃0)(ξ1 − a1ξ3, ξ2 − a2ξ3);

C̃2(ξ1−a1ξ3, ξ2+a2ξ3) = 1

4
c̃0(ξ1−a1ξ3, ξ2+a2ξ3)−1

2
(S1c̃0)(ξ1−a1ξ3, ξ2+a2ξ3)+
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+1

2
(S2c̃0)(ξ1 − a1ξ3, ξ2 + a2ξ3) − (S1S2c̃0)(ξ1 − a1ξ3, ξ2 + a2ξ3);

C̃3(ξ1+a1ξ3, ξ2−a2ξ3) = 1

4
c̃0(ξ1+a1ξ3, ξ2−a2ξ3)+1

2
(S1c̃0)(ξ1+a1ξ3, ξ2−a2ξ3)−

−1

2
(S2c̃0)(ξ1 + a1ξ3, ξ2 − a2ξ3) − (S1S2c̃0)(ξ1 + a1ξ3, ξ2 − a2ξ3);

C̃4(ξ1+a1ξ3, ξ2+a2ξ3) = 1

4
c̃0(ξ1+a1ξ3, ξ2+a2ξ3)+1

2
(S1c̃0)(ξ1+a1ξ3, ξ2+a2ξ3)+

+1

2
(S2c̃0)(ξ1 + a1ξ3, ξ2 + a2ξ3) + (S1S2c̃0)(ξ1 + a1ξ3, ξ2 + a2ξ3).

It seems the problem of finding the unknown function c0(ξ1, ξ2) is very hard, but
we suppose that we know the following function ũ(ξ1, ξ2, 0). It means that we know
the following integral

+∞∫

−∞
u(x1, x2, x3)dx3 ≡ g(x1, x2), (8)

thus

ũ(ξ1, ξ2, 0) = g̃(ξ1, ξ2). (9)

The formula (7) includes a representation for V−ac̃0, where c̃0(ξ
′) is a function

of two variables. Thus, if c̃0(ξ1, ξ2) depends on two variables ξ1, ξ2 then V−ac̃0
depends on all three variables ξ1, ξ2, ξ3.

Substituting (9) into (7) and collecting similar summands we obtain the following
equation for the unknown c̃0(ξ

′)

A−1
�= (ξ ′, 0)(c̃0(ξ

′)) = g̃(ξ ′),

or if we designate A �=(ξ ′, 0)g̃(ξ ′) ≡ f (ξ ′)

c̃0(ξ
′) = f̃ (ξ ′)

Now if we have found c̃0(ξ
′) we have the solution of the problem (5) and (8).

Also we can give a priori estimates for the solution.

Theorem 2 Let A(ξ) admits the wave factorization with respect to the Ca+. Then
the boundary value problem (5) and (8) has a unique solution for an arbitrary g ∈
Hs+1/2(R2) in the space Hs(Ca+). This solution can be constructed explicitly by the
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Fourier transform and the one-dimensional singular integral operator. The a priori
estimate

||u||s ≤ c[g]s+1/2

holds for −1/2 < δ < 0.

6 Thin Cones

As we see all local operators includes some parameters (sizes of cones) which can
be small or large. These situations correspond to so called thin cones or a half-space
case (see, for example, [20] were some calculations were given). Singularities at a
boundary can be of distinct dimensions and it is possible such singularities of a low
dimension can be obtained from analogous singularities of full dimension. It means
we need to find distributions for limit cases when some of parameters of singularities
tend to zero. This approach was partially realized in author’s papers [22, 23], and the
latest paper [27] is devoted to multi-dimensional constructions. The further author’s
idea is the following. If we know the limit operator for a thin singularity then
possible it is zero approximation for a such thin singularity. It is desirable to obtain
an asymptotic expansion with a small parameter for the distribution corresponding
to a such singularity. We will consider here a two-dimensional case.

To describe a solvability picture for a model elliptic pseudo differential equation
with an operator A

(Au)(x) = v(x), (10)

in two-dimensional cone Ca+ = {x ∈ R
2 : x2 > a|x1|, a > 0} the author earlier

considered a special singular integral operator [18, 19]

(Kau)(x) = a

2π2 lim
τ→0+

∫

R2

u(y)dy

(x1 − y1)2 − a2(x2 − y2 + iτ )2 .

This operator served a conical singularity in the general theory of boundary value
problems for elliptic pseudo differential equations on manifolds with a non-smooth
boundary. This operator is a convolution operator, and the parameter a is a size of
an angle, x2 > a|x1|, a = cot α.

We will consider two spaces of basic functions for distributions. If D(R2)

denotes a space of infinitely differentiable functions with a compact support
then D′(R2) is the corresponding space of distributions over the space D(R2),
analogously if S(R2) is the Schwartz space of infinitely differentiable rapidly
decreasing at infinity functions then S′(R2) is a corresponding space of distributions
over S(R2).
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When a → +∞ one obtains [20] the following limit distribution

lim
a→∞

a

2π2

1

ξ2
1 − a2ξ2

2

= i

2π
P 1

ξ1
⊗ δ (ξ2) ,

where the notation for distributionP is taken from V.S. Vladimirov’s books [31, 32],
and ⊗ denotes the direct product of distributions. Here δ denotes one-dimensional
Dirac mass-function which acts on ϕ ∈ D(R) by the following way

(δ, ϕ) = ϕ(0),

and the distribution P 1
x

is defined by the formula

(P 1

x
, ϕ) = v.p.

+∞∫

−∞

ϕ(x)dx

x
≡ lim

ε→0+

⎛
⎝

−ε∫

−∞
+

+∞∫

ε

⎞
⎠ ϕ(x)dx

x
.

We would like to obtain an asymptotical expansion for the two-dimensional
distribution

Ka(ξ1, ξ2) ≡ a

2π2

1

ξ2
1 − a2ξ2

2

with respect to small a−1. It is defined by the corresponding formula ∀ϕ ∈ D(R2)

(Ka, ϕ) = a

2π2

∫

R2

ϕ(ξ1, ξ2)dξ

ξ2
1 − a2ξ2

2

.

For Ka ∈ D′(R2) we can suggest the following decomposition [28]

Ka(ξ1, ξ2) = i

2π

+∞∑
n=0

(−1)n

n!an
P 1

ξ1
⊗ δ(n)(ξ2).

But for Ka ∈ S′(R2) we have more explicit result [28].

Theorem 3 The following formula

Ka(ξ1, ξ2) = i

2π
P 1

ξ1
⊗ δ(ξ2) +

∑
m,n

cm,n(a)δ̃(m)(ξ1) ⊗ δ(n)(ξ2),

where cm,n(a) → 0, a → +∞, holds in a distribution sense.
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Let us return to the Eq. (10). For |æ − s| < 1/2 one has the existence and
uniqueness theorem [18]

ũ(ξ) = A−1
�= (ξ)(Kal̃v)(ξ),

where lv is an arbitrary continuation of v on the whole Hs(R2).
Below we denote lv ≡ V .

Theorem 4 If the symbol A(ξ) admits a wave factorization with respect to the cone
Ca+ and |æ − s| < 1/2 then Eq. (1) has a unique solution in the space Hs(Ca+), and
for a large a it can be represented in the form

ũ(ξ) = i

2π
A−1

�= (ξ)v.p.

+∞∫

−∞

(A−1= Ṽ )(η1, ξ2)dη1

ξ1 − η1
+

A−1
�= (ξ)

∑
m,n

cm,n(a)

+∞∫

−∞
(ξ1 − η1)

m(A−1= Ṽ )
(n)
ξ2

(η1, ξ2)dη1

assuming Ṽ ∈ S(R2), A−1= Ṽ means the function A−1= (ξ)Ṽ (ξ).

7 Conclusion

This paper is a brief description of latest author’s studies on elliptic pseudo-
differential equations and boundary value problems on manifolds with non-smooth
boundaries. Other approaches, similar problems, interesting statements can be found
in books and monographs [3, 6–8, 10–13, 15].
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