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Abstract One of the methods of studying differential equations is the transmutation
operators method. Detailed study of the theory of transmutation operators with
applications may be found in the literature. Application of transmutation operators
establishes many important results for different classes of differential equations
including singular equations with Bessel operator. In this paper transmutation
operators are used in more general case when in Euler–Poisson–Darboux equation
as the space-variable Laplace operator is replaced by some abstract operator acting
in Banach space. Also some other abstract singular equations are studied by this
method.

1 Introduction

One of the method of studying to differential equations is transmutation operators
method. Detailed study of the theory of transmutation operators with applications
may be found in [1, 2]. Application of transmutation operators establishes many
important results for different classes of differential equations including singular
differential equations with Bessel operator

Bk = d2

dt2 + k

t

d

dt
, k ∈ R.

For example, singular PDE named Euler–Poisson–Darboux equation (EPD) has the
form

∂2u(t, x)

∂t2 + k

t

∂u(t, x)

∂t
= �u(t, x), k > 0, x ∈ R
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where � is the space-variable Laplace operator. In the paper [3] singular EPD was
leading to a simpler wave equation (with k = 0) using the appropriate transmutation
operator. In this case, the formulas for the solution are written using spherical means
acting by spatial variables.

In this paper transmutation operators are used in more general case when in EPD
equation the space-variable Laplace operator is replaced by some abstract operator
acting in Banach space. Also some other abstract singular equations will be studied
by this method.

In the future we will assume that A is a closed operator in a Banach space E with
a dense in E domain D(A).

2 Euler–Poisson–Darboux Equation: Bessel Operator
Function

Consider the Euler–Poisson–Darboux equation expressed as follows:

u′′(t) + k

t
u′(t) = Au(t), t > 0 (1)

for k > 0 in Banach space E.
As we will see further the correct initial condition for the EPD equation (1) are

u(0) = u0, u′(0) = 0. (2)

Wherein, if k ≥ 1 then the initial condition u′(0) = 0 is not needed that is usual
situation for some equations with a singularity in the coefficients at t = 0.

Correct choice of initial conditions depending on the parameter k ∈ R and
solution to the problem (1)–(2) when A is space-variable Laplace operator is given
in Chapter 1 in [3]. Next results on the theory of singular equations in partial
derivatives can be found, for example, in the papers [4–10] and their bibliography.

The problem (1)–(2) for k = 0 studied in details in [11–13]. In these papers
the fact that the problem (1)–(2) is uniformly correct only if the operator A is
the generator of the cosine operator function (COF) C(t) was established. For
terminology, see [11–14]. In the same papers, necessary and sufficient conditions
that the operator A is a generator COF are given. These conditions are formulated
in terms of the estimation of the norm of the resolvent R(λ) = (λI − A)−1 and its
derivatives of the operator A

As for abstract EPD equation (1), then is was studied in [15], in Chapter 1 in
[16, 17] under various assumptions about the operator A.

The Cauchy problem (1)–(2) was studied in [18], in which the necessary and
sufficient solvability conditions are formulated in terms of the estimation of the
norm of the resolvent R(λ) and its weighted derivatives. In the present paper, unlike
in [18], we give the necessary and sufficient condition for operator A is formulated
in terms of the fractional degree of the resolvent and its non-weight derivatives as in
the case k = 0.
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Denote by Cn(I,E0) a space of n times strongly continuously differentiable for
t ∈ I functions with values in E0 ⊂ E. Let L(E) is the space of linear bounded
operators.

Definition 1 A solution of Eq. (1) is a function u(t) that is twice strongly continu-
ously differentiable for t ≥ 0 which takes values belonging to D(A) for t > 0. That
means u(t) ∈ C2(R̄+, E) ∩ C(R+,D(A)), and satisfies Eq. (1).

Definition 2 Problem (1)–(2) is called uniformly well posed if there exists a
commuting on D(A) with the A operator function Yk(·) : [0,∞) → L(E) and
numbers M ≥ 1, ω ≥ 0, such that for all u0 ∈ D(A) function Yk(t)u0 is its unique
solution and

‖Yk(t)‖ ≤ M exp(ωt), (3)

∥
∥Y ′

k(t)u0
∥
∥ ≤ Mt exp(ωt) ‖Au0‖ . (4)

Function Yk(t) is the Bessel operator function (OFB) of the problem (1)–(2) and
the set of operators for which the problem (1)–(2) is uniformly correct, denoted
by Gk . Moreover, G0 is the set of generators of the operator cosine function, and
Y0(t) = C(t).

In Definition 2 and throughout the following, we use the notation Y ′
k(t)u0 =

(Yk(t)u0)
′.

Theorem 1 ([19]) Let problem (1)–(2) be uniformly well posed for values of
parameter m ≥ 0 (A ∈ Gm). Then this problem is also uniformly well posed
fork > m ≥ 0 (A ∈ Gk ⊃ Gm). The corresponding Bessel operator function
Yk(t) has the form

Yk(t) = �k,mYm(t) = μk,m

1∫

0

sm(1 − s2)(k−m)/2−1Ym(ts) ds, (5)

μk,m = 2�(k/2 + 1/2)

�(m/2 + 1/2)�(k/2 − m/2)
,

where �(·) is the Euler gamma-function.
The equality (5) written on the initial element u0 is called the translation formula

by the parameter k for the solution of the Cauchy problem for Eq. (1).
The integral on the right side of Eq. (5) called the Poisson integral, and

�k,m is transmutation operator intertwining differential operators Bm and Bk

(for terminology see [1]). Operator �k,m is the particular case of Erdelyi–Kober
operator (see. [20]) preserving the initial conditions (2).

Note that in this paper we get along with the concept of an integral of a
continuous function, but if necessary, we can use the Bochner integral of a function
with a value in a Banach space.
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If operator A ∈ G0 is a COF generator C(t) then (see. [21]) uniformly by t ∈
[0, t0], t0 > 0 for u0 ∈ E. When k → 0 operator Pk,0 strongly converges to a
identity operator I and OFB Yk(t) strongly converges to a COF C(t):

lim
k→0

Yk(t)u0 = C(t)u0.

Let ρ(A) is resolvent operator set of A, Kν(·) is Macdonald function or modified
Bessel function of the third kind of order ν.

Theorem 2 ([19]) If problem (1)–(2) is uniformly well posed and Re λ > ω, then
λ2 ∈ ρ(A) and the representation for resolvent of operator A

λ(1−k)/2R(λ2)x = 2(1−k)/2

�(k/2 + 1/2)

∞∫

0

K(k−1)/2(λt)t(k+1)/2Yk(t)x dt.

holds for each x ∈ E.

Theorem 3 ([19]) Let the problem (1)–(2) is uniformly well posed and Yk(t) is
OFB of this problem. Then the operator A is the generator of a C0—semigroup
T (t), and this semigroup admits the representation

T (t)x = 1

2k �(k/2 + 1/2) tk/2+1/2

∞∫

0

sk exp

(

− s2

4t

)

Yk(s)x ds, x ∈ E. (6)

The semigroup T (t) defined by the equality (6) can be extended to an operator
function that is analytic in some sector 
ϕ and get the representation (see [22], p.
269)

T (z) = 1

2πi

∫

�1
⋃

�2

eλzR(λ) dλ,

where �1
⋃

�2 is a contour consisting of rays λ = σ + ρ exp(−iϕ), 0 ≤ ρ < ∞
and λ = σ + ρ exp(iϕ), 0 ≤ ρ < ∞, σ ≥ ω0,

π

2
< ϕ <

π

2
+ arcsin

1

M0(k)
.

Therefore, to find a criterion for the uniform well-posedness of problem (1)–(2) one
can restrict considerations to the class of operators that are generators of analytic
C0–semigroups T (t). We denote this class of operators by G. In [23] can be found
that if A ∈ G then for Re λ > ω and for α > 0 there exists a fractional degree of
the resolvent R(λ) which has the form

Rα(λ)x = 1

�(α)

∞∫

0

tα−1 exp(−λt)T (t)x dt, x ∈ E.
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A necessary condition for the uniform well-posedness of problem (1)–(2) is
obtained in the following assertion.

Theorem 4 ([19]) If problem (1)–(2) is uniformly well posed and Re λ > ω, then
λ2 belongs to the resolvent set ρ(A) of the operator A, and the fractional power of
the resolvent admits the representation

R1+k/2(λ2) = 1

�(k + 1) λ

∞∫

0

tk exp(−λt)Yk(t) dt

in addition,

∥
∥
∥
∥

dn

dλn

(

λR1+k/2
(

λ2
))

∥
∥
∥
∥

≤ M �(k + n + 1)

(Re λ − ω)k+n+1 , n = 0, 1, 2, . . . (7)

In fact the estimates (7) are sufficient for the uniform well-posedness of problem
(1)–(2).

Theorem 5 (Criterion of the Uniform Well-Posedness [19]) Let A ∈ G is a
generator of an analytic C0–semigroup. For the problem (1)–(2) to be uniformly
well posed it is necessary and sufficient that for some constants M ≥ 1, ω ≥ 0 the
number λ2 with Re λ > ω belonged to the resolvent set of the operator A and for
the fractional degree of the resolvent of the A operator estimates (7) were correct.

Example 1 Let m > 0 and E = L2
xm(0,∞) is a Hilbert space of complex-valued

functions v(x), x ∈ (0,∞), squared integrable with the weight xm and with the
norm

‖v(x)‖2 =
∫ ∞

0
xm |v(x)|2 dx.

Consider presented into[24] set of the form

S =
{

v(x) ∈ C∞(−∞,∞), v(−x) = v(x),

∣
∣
∣v

(n)(x)

∣
∣
∣ ≤ Mn

(1 + x2)N

}

,

where n ≥ 0, N ≥ 0 are arbitrary integers, Mn are constants independent of x, and
operator A is Bessel operator

A = d2

dx2 + m

x

d

dx

on functions from the set S considering on [0,∞). Obviously, D(A) = L2
xm(0,∞)

and operator A is a symmetric upper semibounded operator, i.e. (Av, v) ≤ 0. By
the Friedrichs theorem, its closure A is a selfadjoint operator.
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Following [24, 25], we define the Fourier–Bessel transform on functions in S by
the formulas

v̂(s) =
∫ ∞

0
x2p+1 jp(sx) v(x) dx,

v(x) = γp

∫ ∞

0
s2p+1 jp(sx) v̂(s) ds,

m = 2p + 1, γp = 1

22p �2(p + 1)
, jp(x) = 2p �(p + 1)

xp
Jp(x),

where Jp(x) is the Bessel function. The set S is invariant under the one-to-one
Fourier–Bessel transform.

For Re λ > 0, the operator A has the resolvent R(λ) defined by the formula

R(λ)v(x) = γp

∫ ∞

0

s2p+1

s2 + λ
jp(sx) v̂(s) ds, v(x) ∈ L2

x2p+1(0,∞),

and, by virtue of the Parseval relation, the following estimate holds:

‖R(λ)v(x)‖2 = γ 2
p

∫ ∞
0

s2p+1 |v̂(s)|2
|s2 + λ|2 ds ≤ γ 2

p

|λ|2 ‖v̂(s))‖2 = γ 2
p

|λ|2 ‖v(x))‖2, Re λ > 0.

Consequently, the operator A ∈ G, i.e., it is the generator of an analytic semigroup,
which admits the representation

T2p+1(t)v(x)= 1

2πi

∫ ω+i∞

ω−i∞
eλtR(λ)v(x) dλ = γp

2πi

∫ ω+i∞

ω−i∞
eλt

(∫ ∞

0

s2p+1

s2 + λ
jp(sx)v̂(s) ds

)

dλ =

= γp

∫ ∞

0
s2p+1jp(sx)v̂(s)

(
1

2πi

∫ ω+i∞

ω−i∞
eλt

s2 + λ
dλ

)

ds = γp

∫ ∞

0
exp(−s2t)s2p+1jp(sx)v̂(s) ds=

= γ 2
p

∫ ∞

0
exp(−s2t)s2p+1jp(sx)

(∫ ∞

0
τ 2p+1jp(sτ )v(τ ) dτ

)

ds =

= 1

xp

∫ ∞

0
τp+1v(τ)

(∫ ∞

0
s exp(−s2t)Jp(sx)Jp(sτ ) ds

)

dτ =

= 1

2t xp

∫ ∞

0
τp+1 exp

(

−x2 + τ 2

4t

)

Ip

(xτ

2t

)

v(τ ) dτ, (8)

here we have used the integral 2.12.39.3 [26], where Ip(·) is the modified Bessel
function.
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Let us show that the resolvent of the operator A satisfies the estimates (7). By
using relation (8) we obtain

R1+k/2(λ2)v(x) = 1

�(k/2 + 1)

∫ ∞

0
tk/2 exp(−λ2t)T2p+1(t)v(x) dt =

= γp

�(k/2 + 1)

∫ ∞

0
tk/2 exp(−λ2t)

∫ ∞

0
exp(−s2t)s2p+1jp(sx)v̂(s) dsdt =

= γp

∫ ∞

0

s2p+1

(s2 + λ2)1+k/2 jp(sx)v̂(s) ds, v(x) ∈ L2
x2p+1(0,∞).

Next, by virtue of the Parseval relation, the representation

∥
∥
∥
∥

dn

dλn

(

λR1+k/2
(

λ2
))

v(x)

∥
∥
∥
∥

2

= γ 2
p

∫ ∞

0
s2p+1

∣
∣
∣
∣

dn

dλn

(
λ

(s2 + λ2)1+k/2

)∣
∣
∣
∣

2

|v̂(s)|2 ds

(9)

holds for Re λ > 0.
By differentiating the relation (see [26] 2.12.8.4)

λ

(s2 + λ2)1+k/2 =
√

π

2(2s)(k−1)/2�(k/2 + 1)

∫ ∞

0
t(k+1)/2e−λtJ(k−1)/2(ts) dt,

with respect to λ, we obtain

dn

dλn

(
λ

(s2 + λ2)1+k/2

)

= (−1)n
√

π

2(2s)(k−1)/2�(k/2 + 1)

∫ ∞

0
t (k+1)/2+ne−λtJ(k−1)/2(ts) dt.

(10)

By taking into account relation (10), from the representation (9) we obtain the
estimate

∥
∥
∥
∥

dn

dλn

(

λR1+k/2
(

λ2
))

v(x)

∥
∥
∥
∥

2

≤ π γ 2
p

2k+1 �2(k/2 + 1)
×

×
∫ ∞

0
s2p−k+2

∣
∣
∣
∣

∫ ∞

0
t(k+1)/2+ne−λtJ(k−1)/2(ts) dt

∣
∣
∣
∣

2

|v̂(s)|2 ds =

= π γ 2
p

2k+1 �2(k/2 + 1)

∫ ∞

0
s2p−2k−2n−1

∣
∣
∣
∣

∫ ∞

0
τ k+ne−λt/sτ (1−k)/2J(k−1)/2(τ ) dτ

∣
∣
∣
∣

2

|v̂(s)|2 ds ≤
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≤ M0 π γ 2
p

2k+1 �2(k/2 + 1)

∫ ∞

0
s2p−2k−2n−1

∣
∣
∣
∣

∫ ∞

0
τ k+ne−λt/s dτ

∣
∣
∣
∣

2

|v̂(s)|2 ds ≤

≤ M1 �2(k + n + 1)

(Re λ)2(k+n+1)
‖v(x)‖2, n = 0, 1, 2, . . .

Therefore, the estimates (7) hold. Theorem 5 is true for the considered operator
A, and A ∈ Gk for each k ≥ 0. In particular, A ∈ G0 and the corresponding cosine
operator function has the form

C(t)v(x) = 1

2πi

∫ σ−i∞

σ−i∞
eλt λ R(λ2)v(x) dλ =

= γp

2πi

∫ σ+i∞
σ−i∞

λeλt

∫ ∞
0

s2p+1

s2 + λ2
jp(sx)v̂(s) dsdλ = γp

∫ ∞
0

s2p+1jp(sx) cos st v̂(s) ds.

for σ > 0
It is convenient to use relation (5) to find the function Yk(t). For k > 0, we have

the representation

Yk(t)v(x) = 2

B(1/2, k/2)

∫ 1

0
(1 − τ 2)k/2−1C(tτ )v(x) dτ =

= 2

B(1/2, k/2)

∫ 1

0
(1 − τ 2)k/2−1γp

∫ ∞

0
s2p+1jp(sx) cos stτ v̂(s) dsdτ =

= γp

∫ ∞

0
s2p+1jp(sx) j(k−1)/2(st) v̂(s) ds.

Example 2 Let m > 0 and let E = L2
xm

(

R+
2

)

be the Hilbert space of complex-
valued functions v(x, y), (x, y) ∈ R+

2 that are square integrable with weight xm

and with the norm

‖v(x, y)‖2 =
∫ ∞

−∞

∫ ∞

0
xm |v(x, y)|2 dxdy.

Consider the set

S2 =
{

v(x, y) ∈ C∞ (R2) , v(−x, y) = v(x, y),

∣
∣
∣
∣

∂n

∂xn

∂j

∂yj
v(x, y)

∣
∣
∣
∣
≤ Mn,j

(1 + x2 + y2)N

}

,
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where n, j ≥ 0, N ≥ 0 are arbitrary integers and the Mn,j are constants
independent of x, y, and define the operator A by the differential expression

A = ∂2

∂x2 + m

x

∂

dx
+ ∂2

∂y2

on functions in the set S2 considered on R+
2 . Obviously, D(A) = L2

xm

(

R+
2

)

and
A is a symmetric upper semibounded operator; i.e., (Av, v) ≤ 0. By the Friedrichs
theorem, its closure A is a selfadjoint operator.

In addition to the Fourier–Bessel transform on functions in the set S2, we define
the Fourier transform (with respect to the variable y) by the formulas

w̃(x, ξ) = 1√
2π

∫ ∞

−∞
e−iξy w(x, y) dy, w(x, y) = 1√

2π

∫ ∞

−∞
eiξy w̃(x, ξ) dξ.

The Fourier–Bessel and Fourier transforms are one-to-one mappings of S2 onto
S2. For Re λ > 0, the operator A has the resolvent R(λ) defined by the formula

R(λ)v(x, y) = γp√
2π

∫ ∞

−∞

∫ ∞

0
eiξy s2p+1

s2 + ξ2 + λ
jp(xs) ˜̂v(s, ξ) dsdξ,

in addition, by virtue of the Parseval relation, we have the estimate

‖R(λ)v(x, y)‖2 ≤ γ 2
p

|λ|2 ‖v(x, y)‖2, Re λ > 0.

Consequently, the operator A ∈ G, i.e., it is the generator of the analytic
semigroup

T2p+1(t)v(x, y) = γp

2π

∫ ∞

−∞

∫ ∞

0
exp(−s2t − ξ2t + iξy) s2p+1 jp(sx) ˜̂v(s, ξ) dsdξ =

= 1

4π
√

2 t
√

t xp

∫ ∞

0
τp+1 exp

(

−x2 + τ 2

4t

)

Ip

(xτ

2t

) ∫ ∞

−∞
exp

(

− (η − y)2

4t

)

v(τ, η) dηdτ.

By analogy with Example 1, one can prove the estimates

∥
∥
∥
∥

dn

dλn

(

λR1+k/2
(

λ2
))

v(x)

∥
∥
∥
∥

2

≤ M1 �2(k + n + 1)

(Re λ)2(k+n+1)
‖v(x)‖2, n = 0, 1, 2, . . . ,
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and consequently, A ∈ Gk for any k ≥ 0, in addition,

C(t)v(x, y) = γp√
2π

∫ ∞

−∞

∫ ∞

0
eiξys2p+1jp(sx) cos

(

t

√

s2 + ξ2

)

˜̂v(s, ξ) dsdξ,

Yk(t)v(x, y) = γp√
2π

∫ ∞

−∞

∫ ∞

0
eiξys2p+1jp(sx) j(k−1)/2

(

t

√

s2 + ξ 2

)

˜̂v(s, ξ ) dsdξ.

Example 3 Let E = L∞(0,∞) is a space of measurable functions v(x) of variable
x ∈ (0,∞) with norm ‖v(x)‖ = ess sup

(0,∞)

|v(x)|.
Operator A is the Bessel differential expression for m = 2 on considered on

the semiaxis [0,∞) even functions v(x) from L∞(−∞,∞) such that v′′(x) +
2/x v′(x) ∈ E. Then A is closed operator with a dense domain of definition and
the problem

∂2u

∂t2
+ 2

t

∂u

∂t
= ∂2u

∂x2
+ 2

x

∂u

∂x
, t, x > 0, u(0, x) = v(x),

∂u(0, x)

∂t
= 0

has the unique solution of the form

u(t, x) = T t
x v(x) = 1

2

∫ π

0
v

(√

x2 + t2 − 2xt cos ϕ

)

sin ϕ dϕ.

Function u(t, x) for each t ≥ 0 belongs to E and estimates (3), (4) with ω = 0
are valid. Therefore, A ∈ G2. We show that the operator A is not a generator COF,
i.e. A /∈ G0. Indeed, the unique solution to the problem

∂2u

∂t2 = ∂2u

∂x2 + 2

x

∂u

∂x
, t, x > 0, u(0, x) = v(x) ∈ D(A),

∂u(0, x)

∂t
= 0

is

u(t, x) = (x + t)v(x + t) + (x − t)v(x − t)

2x
= v(x + t) + v(x − t)

2
+ t

2x

∫ t+x

t−x

v′(s) ds.

(11)

Obviously for defined by equality (11) function u(t) evaluation (3) for k = ω = 0
is not valid and, therefore, A /∈ G0. Based on this example, it can be argued that the
statement is the opposite of Theorem 1 is, generally speaking, false, i.e. for k > 0
enclosure G0 ⊂ Gk is strict.
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Here are some more properties of OFB Yk(t). Let u0 ∈ D(A) then for OFB Yk(t)

the relations

Y ′
k(t)u0 = t

k + 1
Yk+2(t)Au0, lim

t→0
Y ′′

k (t)u0 = 1

k + 1
Au0,

Yk(t)Yk(s) = T t
s Yk(s)

are valid. Here T t
s is generalized translation corresponding to Eq. (1), defined by the

equality (see [25])

T t
s H(s) = 1

B(k/2, 1/2)

∫ π

0
H

(√

s2 + t2 − 2st cos ϕ

)

sink−1 ϕ dϕ.

Along with Eq. (1) for m > 0 we consider the equation perturbed by the operator
coefficient B:

u′′(t) + m

t
u′(t) + Bu(t) = Au(t), t > 0. (12)

In [27] investigated the question of belonging of the operator A − B to the
correctness class Gm when A ∈ Gk and B ∈ L(E) is bounded operator and it
is established that A − B ∈ Gm, m ≥ k.

Theorem 6 ([27]) Let for some k > 0 A ∈ Gk , B is bounded operator, Yk(t; A)

and B commute. Then A − B ∈ Gm for any m ≥ k and

Yk(t; A − B) = Yk(t; A) + (−1/2)N+1�(k/2 + 1/2)t2B

�(k/2 + 1)�(N + 1/2)
×

×
1∫

0

s2N

(
1

s

d

ds

)N

(1−s2)k/2
1F2

(

1; k/2 + 1, 2; t2(s2 − 1)B/4
)

Y2N(ts; A) ds,

where N is the smallest integer such that 2N ≥ k, 1F2(α; β, γ ; ·) is generalized
hypergeometric function and Ym(t; A−B) for m > k determined through Yk(t; A−
B) by the formula (5), written for the operator A − B.

If (−B) ∈ Gp, then ib [28] it is established that the closure of the operator A−B

belongs to Gm, m ≥ k + p + 1.

Theorem 7 ([28]) Let for some k ≥ 0 A ∈ Gk and (−B) ∈ Gm−k−1 for m ≥ k+1,
Yk(t; A). Let operators Ym−k−1(t; −B) commute on D = D(A)

⋂
D(B), D = E.



390 A. V. Glushak

Then the closure of the operator A − B belongs to Gm and

Ym(t; A − B) = 2�(m/2 + 1/2)

�(k/2 + 1/2)�(m/2 − k/2)
×

×
1∫

0

sk(1 − s2)(m−k)/2−1Ym−k−1

(

t
√

1 − s2; −B
)

Yk(ts; A) ds.

In the general case of the sum of n operators, the following theorem is
established.

Theorem 8 ([28]) Let Aj ∈ Gkj , kj ≥ 0, j = 1, . . . , n. If for i = j Ai and

Aj commute on D =
n⋂

j=1
D(Aj ) and D = E, then operator closure A =

n∑

j=1
Aj

belongs to Gk for k = n − 1 +
n∑

j=1
kj and

Yk(t; A) = 2n−1�(k/2 + 1/2)
n∏

j=1
�(kj /2 + 1/2)

∫

�

n∏

j=1

y
kj

j Ykj (tyj ; Aj) dy,

where � = {|y| = 1, y1, . . . , yn ≥ 0}.
Theorem 3 established that OFB Yk(t; B), B ∈ Gk generates a semigroup

T (t; B), which allows us to solve the corresponding Dirichlet problem.

Theorem 9 ([29]) Let u0 ∈ D(B), in Eq. (12) A = 0 and operator B is a generator
of a uniformly bounded C0-semigroup T (t; B). Then for m < 1 the function

u(t) = (t/2)1−m

�(1/2 − m/2)

∞∫

0

sm/2−3/2 exp

(

− t2

4s

)

T (s; B)u0 ds

is the unique limited solution to Eq. (12) for A = 0, satisfying to condition u(0) =
u0.

Weakening requirements for resolving operators of the Cauchy problem for
abstract differential equations of the first and second orders led (see [30–33]) to
the concept of an integrated semigroup and an integrated cosine operator function
(ICOF).

Lower bound of the resolvent R(λ2, A) of the operator A of the form

∥
∥
∥
∥

dn

dλn

(

λ1−αR(λ2, A)
)
∥
∥
∥
∥

≤ M n!
(λ − ω)n+1 , λ > ω, n = 0, 1, . . .
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is the criterion for existence of the generator of ICOF Cα(t) (see, for example,
theorem 2.2.5 from [33]).

Let Pν(t) is the Legendre spherical function (see [25], p. 205). In papers [34],
[35] formulas that associate ICOF with a resolving operator Yk(t) of (1), (2) are
established and the following theorem is proved.

Theorem 10 Let k = 2α > 0 and operator A is a α-times generator ICOF
Cα(t), u0 ∈ D(A). Then the problem (1), (2) uniformly correct, i.e., A ∈ Gk , and
corresponding OFB has a form

Yk(t)u0 = 2α�(α + 1/2)√
π tα

⎛

⎝Cα(t)u0 −
1∫

0

P ′
α−1(τ )Cα(tτ )u0 dτ

⎞

⎠ .

In the end of this section we note that if 0 < k < 1 then OFB Yk(t) can be used
to solve the weighted Cauchy problem for the EPD equation (1) with conditions

u(0) = u0, lim
t→0

tku′(t) = u1. (13)

For u0, u1 ∈ D(A) and A ∈ Gk ⊂ G2−k the unique solution to the Cauchy
problem (1)–(13) is (see [36])

u(t) = Yk(t)u0 + 1

1 − k
t1−kY2−k(t)u1.

3 Euler–Poisson–Darboux Equation: Bessel Operator
Function with Negative Index

In this section for EPD equation (1) for k < 0 we consider the initial problem

u(0) = 0, lim
t→0+ tku′(t) = u1, (14)

which, due to the presence of a factor in front of the derivative in the second initial
condition, will be called the weighted Cauchy problem.

Correct setting of initial conditions depending on the parameter k ∈ R for the
EPD equation (1) in the case when A is the Laplace operator with respect to spatial
variables is given in Ch. 1 of [3] and the initial conditions for the abstract EPD
equation are considered in [36]. We also note that for k < 0 Cauchy problem for
EPD equation (1) with conditions

u(0) = 0, u′(0) = u1

is not correct due to loss of uniqueness (see [37]).
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Definition 3 The problem (1), (14) is called uniformly correct if there exists a
commuting on D(A) with the A operator function Zk(·) : [0,∞) → B(E) and
numbers M ≥ 1, ω ≥ 0 such that for any u1 ∈ D(A) function Zk(t)u1 is its unique
solution and at the same time

‖Zk(t)‖ ≤ M t1−k exp(ωt),

∥
∥Z′

k(t)u1
∥
∥ ≤ M t−k exp(ωt) (‖u1‖ + t‖Au1‖) .

Operator function Zk(t) for k < 0 we will call the Bessel operator function with
a negative index (OBFNI) of the problem (1), (14). Set of operators for which the
problem (1), (14) is uniformly correct we will denote by Hk. In addition, we denote
H0 = G2 and Z0(t) = tY2(t).

Here we present the main statements about OFBNI from the article [38], which
are analogues of the corresponding properties OFB.

Theorem 11 Let the problem (1), (14) is uniformly correct, i.e., A ∈ Hk and u1 ∈
D(A). Then this problem is uniformly correct and for m < k ≤ 0, i.e., A ∈ Hm. The
corresponding Bessel operator function with a negative index Zm(t) has the form

Zm(t)u1 = μk,m tk−m

1∫

0

s(1 − s2)(k−m)/2−1 Zk(ts)u1 ds,

μk,m = 2(1 − k)

(1 − m) B(3/2 − k/2, k/2 − m/2)
,

where B(·, ·) is Euler beta-function.

Theorem 12 If the problem (1), (14) is uniformly correct and Re λ > ω, then λ2

belongs to the resolvent set ρ(A) and for any x ∈ E the representation

λ(k−1)/2R(λ2)x = 2(k−1)/2(1 − k)

�(3/2 − k/2)

∞∫

0

Kν(λt)t(k+1)/2Zk(t)x dt

is valid.

Theorem 13 Let the problem (1), (14) is uniformly correct and let Zk(t) is the
Bessel operator function with a negative index for this problem. Then operator A is
generator of C0-semigroups T (t) and for this semigroup, the representation

T (t)x = 1 − k

22−k �(3/2 − k/2) t3/2−k/2

∞∫

0

s exp

(

− s2

4t

)

Zk(s)x ds, x ∈ E

is valid.
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Theorem 14 If the problem (1), (14) is uniformly correct and Re λ > ω, then
λ2belongs to the resolvent set ρ(A) of the operator A and for the fractional degree
of the resolvent the representation

R2−k/2(λ2)x = 1 − k

�(3 − k) λ

∞∫

0

t exp(−λt)Zk(t)x dt, x ∈ E

is valid. Also inequalities

∥
∥
∥
∥

dn

dλn

(

λR2−k/2
(

λ2
))

∥
∥
∥
∥

≤ M �(n − k + 3)

(Re λ − ω)n−k+3
, n = 0, 1, 2, . . . (15)

are true.

Theorem 15 (Criterion for Uniform Correctness of the Weighted Cauchy Prob-
lem) Let operator A is a generator of the analytic C0–semigroup. In order to the
problem (1), (14) was uniformly correct, it is necessary and sufficient that for some
constants M ≥ 1, ω ≥ 0 the number λ2 with Re λ > ω belonged to the resolvent
set of the operator A and for the fractional degree of the resolvent of the operator
A the estimates (15) were valid.

Theorem 16 Suppose that the conditions of Theorem 16 are satisfied, then for k ≤
0 the equality Hk = G2−k holds true and, moreover, Zk(t) = 1

1 − k
t1−kY2−k(t).

Note that examples of operators belonging to G2−k , and, therefore, and Hk , are
given in Sect. 2.

Theorem 17 Let α < 0 and the operator A a generator of 1 − α–timesintegrated
COF C1−α(t). Then A ∈ H2α, wherein the corresponding Bessel operator function
with a negative index Z2α(t) has the form

Z2α(t) = 21−α�(3/2 − α)√
π(1 − 2α)tα

⎛

⎝C1−α(t) −
1∫

0

P ′−α(τ )C1−α(tτ ) dτ

⎞

⎠ .

If the operator A is a generator of (−α)–times integrated COF C−α(t), then

Z2α(t) = 2−α�(1/2 − α)t1−α

√
π

1∫

0

P−α(τ )C−α(tτ ) dτ.
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4 The Bessel-Struve Equation: Operator Function Struve

In this section, for k > 0, we consider the equation

u′′(t) + k

t

(

u′(t) − u′(0)
) = Au(t), t > 0, (16)

which, unlike Eq. (1), contains the value of the derivative of an unknown function at
the point t = 0.

Scalar equation of the form (16) is called the Bessel-Struve equation and it was
previously met in [39–42]. Equation (16), following to [43, 44], can also be called
a lightly loaded EPD equation. The growing interest in studying loaded differential
equations is explained by the expanding scope of their applications and the fact that
loaded equations constitute a special class of functional differential equations with
their own specific tasks. A review of publications on loaded differential equations
can be found in monographs [43, 44].

It is important to note that the presence in Eq. (16) given at t = 0 load changes
the formulation of the initial problem. In contrast to the weighted problem (1), (13)
for k > 0 we establish the well-posedness of the Cauchy problem

u(0) = u0, u′(0) = u1 (17)

for the Bessel-Struve equation (16) and we indicate the explicit form of the resolving
operator.

First, we make a remark about the point t = τ, τ ≥ 0, at which load value, i.e.
the value of an unknown function or its derivative entering the equation.

Let consider the equation

u′′(t) + k

t
u′(t) = Au(t) + B0u(τ), t > 0 (18)

with bounded operator B0 and A ∈ Gk .
For 0 < k < 1 solution to the problem (18), (2) satisfies equality (see [36])

u(t) = Yk(t)u0 + 1

1 − k

⎛

⎝t1−kY2−k(t)

t∫

0

skYk(s)B0u(τ ) ds − Yk(t)

t∫

0

sY2−k(s)B0u(τ ) ds

⎞

⎠ .

(19)

Putting in (19) t = τ in order to find u(τ) we get the equation

(I − �(τ))u(τ ) = Yk(τ )u0, (20)
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where

�(τ) = B0

1 − k

⎛

⎝τ 1−kY2−k(τ )

τ∫

0

skYk(s) ds − Yk(τ )

τ∫

0

sY2−k(s) ds

⎞

⎠ .

In particular, if the inverse operator A−1 exists then �(τ) = B0(Yk(τ ) − 1)A−1

(see [45]).
For sufficiently small τ , the norm of the bounded operator �(τ) satisfies the

inequality ‖�(τ)‖ < 1 and, therefore, from Eq. (20) can be determined

u(τ) = (I − �(τ))−1Yk(τ )u0,

after which the solution to the problem (18), (2) found by the formula (19).
A similar situation arises if, in the EPD equation, instead of the load B0u(τ), a

load of the form B1u
′(τ ) or B2u

′′(τ ) is introduced.
The operator (I − �(τ))−1 in the formula (19) makes it difficult to find

explicit representations for the resolving operator of initial problems. Finding such
a representation is simplified if the equation contains a load at the point τ = 0, then
the problem with a given load is actually solved. Here are some examples.

Let consider two equations

u′′(t) + k

t
u′(t) = A(u(t) − b0u(0)), t > 0 b0 = 0, (21)

u′′(t) + b2u
′′(0) + k

t
u′(t) = Au(t), t > 0, b2 = 0. (22)

It is easy to verify that for 0 ≤ k < 1, A ∈ Gk (note that if b0 = 1 or b2 = k + 1,
then the condition on the operator A can be changed and require that A ∈ G2−k ⊃
Gk) the unique solution to the Cauchy weighted problem (21), (13) is

u(t) = (1 − b0)Yk(t)u0 + 1

1 − k
t1−kY2−k(t)u1 + b0u0

and the unique solution to the (22), (13) unloaded is

u(t) = k − b2 + 1

k + 1
Yk(t)u0 + 1

1 − k
t1−kY2−k(t)u1 + b2

k + 1
u0.

Also note that in the paper [21] an explicit formula for a solution to a Cauchy
problem for a weekly stressed Malmsteen equation was found in the form

u′′(t) + k

t
u′(t) + l

t2 (u(t) − u(0)) = Au(t), t > 0. (23)
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If A ∈ Gm for some m ≥ 0 and k > m, l ≤ (k − 1)2/4 then a function

u(t) = 2 �(p + 1)�(q + 1)

�
(

m+1
2

)

�
(

k−m
2

)

1∫

0

sk
(

1 − s2
)(k−m)/2−1

2F1

(

p, q; k − m

2
; 1 − s2

)

Ym(ts)u0 ds,

(24)

2F1 (p, q; r; z)—Gauss hypergeometric function, p, q—real roots of quadratic
equation

x2 + 1 − k

2
x + l

4
= 0, l ≤ (k − 1)2

4
,

is the unique solution of (23) satisfying conditions (2).
If p = (k − m)/2, q = (m − 1)/2, l = (k − m)(m − 1) ≤ (k − 1)2/4 then (24)

has a form

u(t) = (k − m)

1∫

0

s
(

1 − s2
)(k−m)/2−1

Ym(ts)u0 ds. (25)

More interesting is a problem of finding explicit solution to the Cauchy problem
(16), (17), which leads to a new notion of operator function—Struve operator
function. Let go to its introduction.

Consider the Cauchy problem (16), (17) in case u0 = 0.

Theorem 18 ([46]) Let u0 = 0, u1 ∈ D(A), k = 2α > 0 and operator A is a
generator of the operator cosine function α times of Cα(t). Then a function u(t) =
Lk(t)u1, with

Lk(t)u1 = 2α �(α + 1)

tα−1

1∫

0

Pα−1(τ )Cα(tτ )u1 dτ,

is a solution to a problem (16), (17).
In formulations of theorems 10, 17 and 18 some integral operators are involved

with spherical Legendre functions in kernel Pν(t). These are Buschman–Erdélyi
transmutations, they are extensively studied cf. [1, 2, 47–51].

Remark 1 If A is an operator of multiplication by a number then

Yk(t)= �(k/2 + 1/2)

∞
∑

j=0

(

t2A/4
)j

j ! �(j + k/2 + 1/2)
= �(k/2 + 1/2)

(

t
√

A/2
)1/2−k/2

Ik/2−1/2

(

t
√

A
)

,
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with Iν(z) being a modified Bessel function,

Lk(t) =
√

π

2
� (k/2 + 1)

∞
∑

j=0

t
(

t2A/4
)j

� (j + 3/2) � (j + k/2 + 1)
=

= 2k/2−1/2√π �(k/2 + 1)

Ak/4+1/4 tk/2−1/2 Lk/2−1/2

(

t
√

A
)

,

with Lν(z) being a Struve function. Due to it we call Yk(t) as operator Bessel
function (OBF) and Lk(t) operator Struve function (OSF).

Remark 2 Let u0 = 0, then a condition on operator A in the theorem 18 to existence
of only OCF Lk(t) may be weakened. If operator A is a generator α + 1 times COF
Cα+1(t), then the next representation is valid

Lk(t)u1 = 2α �(α + 1)

tα

⎛

⎝Cα+1(t)u1 −
1∫

0

P ′
α−1(τ )Cα+1(tτ )u1 dτ

⎞

⎠ .

Also it is interesting to find formulas representing COF via OFB and These
formulas follows from theorem 17 [47] and have the next form

Cα(t) =
√

π

2α�(α + 1/2)

⎛

⎝tαY2α(t) +
t∫

0

P ′
α−1(t/ξ)ξα−1Y2α(ξ) dξ

⎞

⎠ ,

Cα+1(t) = 1

2α�(α + 1)

⎛

⎝tαL2α(t) +
t∫

0

P ′
α−1(t/ξ)ξα−1L2α(ξ) dξ

⎞

⎠ .

For OSF Lk(t) and also OBF Yk(t) (cf. theorem 1) the next shift parameter
formula is valid.

Theorem 19 ([46]) Let k = 2α and operator A is a generator α + 1 times OCF
Cα+1(t) and m > k ≥ 0. Then operator function

Lm(t) = 2

B(k/2 + 1,m/2 − k/2)

1∫

0

sk (1 − s2)(m−k)/2−1 Lk(ts) ds

is an OSF for a problem (16), (17) for a parameter choice m.
OBFs Yk(t) and OCFs Lk(t) give solving operator to a problem (16), (17).
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Theorem 20 ([46]) Let u0, u1 ∈ D(A), k = 2α > 0 and operator A is a generator
α times OCF Cα(t). Then a function u(t) = Yk(t)u0 + Lk(t)u1 with OSF Yk(t) and
OCF Lk(t), which are defined in 10 and 18, is a unique solution to the Cauchy
problem (16), (17).

Let u1 ∈ D(A) then for OCF Lk(t) the next is valid

L′
k(t)u1 = t

k + 2
Lk+2(t)Au1 + u1, lim

t→0+ L′′
k(t)u1 = 0.

OBF and OSF give solutions to a Cauchy problem for the stressed Malmsteen
equation (23) for l = −k and A ∈ Gk+2. From properties of these function we find
a solution to

u′′(t) + k

t
u′(t) − k

t2 (u(t) − u(0)) = Au(t), t > 0, (26)

satisfying (17), and it has a form

u(t) = tYk+2(t)u1 + t

k + 2
Lk+2(t)Au0 + u0,

and equality (25) for m = 0 has a form

u(t) = t

k + 2
Lk+2(t)Au0 + u0.

So it may be stated that a pass from abstract wave equation u′′(t) = Au(t)

to Euler–Poisson–Darboux (EPD) equation (1) with coefficient k > 0 a set of
admissible operators A for which an initial problem with a condition (2) is correct,
is expanded from G0 to Gk, G0 ⊂ Gk, and a further pass from EPD equation (1)
to Eq. (26) expand this set to Gk+2, Gk ⊂ Gk+2.

We also note the relations

Lk(t)x =
t∫

0

ξ
√

t2 − ξ2
Yk+1(ξ)x dξ, A ∈ Gk+1, x ∈ E,

Lk(t)x =
√

π�(k/2 + 1)

�(k/2 + 1/2)

t∫

0

2F1

(
1

2
,
k

2
; 1; 1 − t2

τ2

)

Yk(τ)x dτ, A ∈ Gk, x ∈ E.

If the problem (1), (2) is uniformly correct, i.e., A ∈ Gk and Yk(t) is OFB of this
problem then operator A is a generator of a strongly continuous semigroup T (t)

and for this semigroup the representation through OFB is valid (see Theorem 3).
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We also indicate a formula that allows us to express this semigroup in terms of OFS
Lk(t)

T (t)x = 1√
π 2k �(k/2 + 1) tk/2+1

∞∫

0

sk exp

(

− s2

4t

)

�

(

−1

2
,
k + 1

2
; s2

4t

)

Lk(s)x ds,

where �(a, b; ·) is confluent hypergeometric Tricomi function (see. ([52], p. 365 or
[25], p. 309).

5 The Legendre Equation: Legendre Operator Function

The study of many physical processes is based on solving equations containing the
Laplace operator. Using the separating of variables in curvilinear coordinate systems
one can lead to differential equations containing a singularity. If there is a certain
symmetry, these equations turn into the Euler–Poisson–Darboux and Legendre
equations. The initial problem for the abstract EPD equation was considered in
Sect. 2. In this section, we study the Cauchy problem for another abstract singular
equation, namely for the Legendre equation.

For k > 0 we consider the Legendre equation

Lku(t) ≡ u′′(t) + k coth t u′(t) + (k/2)2u(t) = Au(t), t > 0. (27)

Differential operator Lk in the left part of (27) occurs when solving the Laplace
equation in coordinates of an elongated ellipsoid of revolution [53], p. 138. If A is
scalar multiplication operator then for k = 2 spherical functions (considered in [54],
p. 53) satisfy to Eq. (27).

Also note papers [5, 55–58], in which partial differential equations containing a
singular operator of the type under consideration were studied.

As follows from the results of the paper [59], correct statement of the initial
conditions for the abstract Legendre equation (27) consists in setting the initial
conditions at the point t = 0

u(0) = u0, u′(0) = 0, (28)

in this case, if k ≥ 1 then initial condition u′(0) = 0 removed. The definition
of uniform correctness of the problem (27), (28) formulated similarly to the
Definition 2.

In [59] found that set of operators A with which the problem (27), (28) correct
uniformly coincides with the set Gk introduced in Section. The resolving operator
of this problem is denoted by Pk(t) and called operator Legendre function (OLF).

OLF can also be used and for solving the weighted Cauchy problem for the
Legendre equation. If 0 < k < 1 then more general then in (28) initial conditions
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are correct. Let consider the initial conditions of the form

u(0) = u0, lim
t→0

(
sinh t

t

)k

u′(t) = u1. (29)

For u0, u1 ∈ D(A) and A ∈ Gk ⊂ G2−k the unique solution to the Cauchy
problem (27), (29) has the form (see [59])

u(t) = Pk(t)u0 + 1

1 − k

(
sinh t

t

)1−k

P2−k(t)u1.

Note that if A ∈ Gk and k ≥ 1 then the problem (27), (29) is not correct.

Theorem 21 ([59]) Let the problem (27), (28) uniformly correct when parameter
m ≥ 0 (A ∈ Gm) then this problem uniformly correct and for k > m ≥ 0 (A ∈
Gk ⊃ Gm). While corresponding OLF Pk(t) is

Pk(t) = ϒk,mPm(t) = 2(k−m)/2 sinh1−k t

B(k/2 − m/2,m/2 + 1/2)

t∫

0

(cosh t−cosh s)(k−m)/2−1 sinhm y Pm(s) ds.

(30)

The equality (30) written on the initial element u0 is called the formula of a
shift by the parameter k of the solution of the Cauchy problem for Eq. (27) and
ϒk,m is transmutation operator transmuting differential operators Lm and Lk and
preserving initial conditions (28).

In addition, the equality

P ′
k(t)u0 = sinh t

k + 1
Pk+2(t)

(

A − k2

4
I

)

u0

is valid. From this equality follows that the first and the second producing operators

of OLF Pk(t) are equal to zero and to
1

k + 1

(

A − k2

4
I

)

, respectively.

In the particular case when the operator A = (δ + 1/2)2, δ ∈ R is the operator
of multiplication by a number then OLF Pk(t) is expressed through the associated
Legendre function of the first kind Pβ

δ (·) (see [52], p. 661)

Pk(t) = �(1 − β)

(
1

2
sinh t

)β

Pβ
δ (cosh t), β = 1 − k

2
.
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As indicated in Theorem 3, the operator A ∈ Gk is a generator of the semigroup
T (t) which in case of even k can be represented (see [59]) through the OLF Pk(t)

(see [59])

T (t) = 1

�(k/2 + 1/2)
√

t

∞∫

0

sinhk s

(

− 1

2 sinh s

d

ds

)k/2

exp

(

− s2

4t

)

Pk(s) ds.

In the case of integer k/2 semigroup T (t) can be represented through OLF Pk(t)

using for

(

− 1

2 sinh s

d

ds

)k/2

,

the definition of a fractional derivative.

In conclusion of this section, we note that the OFL Pk(t) was used by the author
in [60] to establish the criterion for stabilizing the solution of the Cauchy problem
for an abstract differential equation of the first order.

6 The Loaded Legendre Equation

In this section, we consider the equation

u′′(t)+k coth t

(

u′(t) − cosh2−k(t/2)

cosh t
u′(0)

)

+ k2

4
u(t) = Au(t), t > 0, (31)

which, unlike Eq. (27), contains the value of the derivative of the unknown function
at the point t = 0 and which we will call the weakly loaded Legendre equation.

The presence in Eq. (31) given at t = 0 load changes the setting of the initial
problem. Unlike the weighted problem (27)–(29) for k > 0 we will establish the
correctness of the Cauchy problem

u(0) = u0, u′(0) = u1 (32)

for a lightly loaded equation (31) and indicate the explicit form of the resolving
operator.

In this section, we will further assume g(t) = cosh t and

μk = 2k/2�(k/2 + 1/2)√
π �(k/2)

.
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To prove the following statements, it is convenient to use the concept of a
fractional integral of a function f (t) by the function g(t) = cosh t (see [20], p.
248)

Iα
g f (t) = 1

�(α)

t∫

0

(cosh t − cosh s)α−1 sinh s f (s) ds.

Let an operator A is a generator COF C(t), u0 ∈ D(A). Then from Theorem 21
the following representation follows for OFL Pk(t)

Pk(t)u0 = μk sinh1−k t

t∫

0

(cosh t − cosh s)k/2−1C(s)u0 ds = μk �(k/2) sinh1−k t I
k/2
g

[
C(t)

sinh t

]

u0

(33)

is valid.
Next, we consider the Cauchy problem (31)–(32) in case when u0 = 0. Let

νk = k2k/2−1 and

S(t) =
t∫

0

C(s) ds

is a sine operator function (SOF).

Theorem 22 ([61]) If u0 = 0, u1 ∈ D(A) and the operator A is a generator COF
C(t), then function u(t) = Qk(t)u1, where

Qk(t)u1 = νk sinh1−k t

t∫

0

(cosh t − cosh τ)k/2−1S(τ)u1 dτ = νk �(k/2) sinh1−k t I
k/2
g

[
S(t)

sinh t

]

u1

(34)

is the solution to the problem (31)–(32), and wherein

Q′
k(t)u1 = sinh t

k + 2
Qk+2(t)

(

A − k2

4
I

)

u1 + u1

coshk(t/2)
.

Theorem 23 ([61]) Let u0, u1 ∈ D(A) and operator A is a generator COF C(t).
Then function u(t) = Pk(t)u0+Qk(t)u1, where operator functions Pk(t) and Qk(t)

are given by (33), (34), is the unique solution to the Cauchy problem (31)–(32).
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7 Nonlocal Problems

Opposite to Sect. 1 of this paper let find a solution u(t) ∈ C2([0, 1], E) ∩
C((0, 1],D(A)) to EPD equation (1), with nonlocal integral condition

lim
t→1

Iν,β u(t) = u1 (35)

and condition

u′(0) = 0, (36)

with ν = (k − 1)/2, β > 0, Iν,β being an Erdélyi–Kober operator defined by (cf.
[20], p. 246)

Iν,β u(t) = 2

�(β) t2(β+ν)

t∫

0

s2ν+1(t2 − s2)β−1u(s) ds.

The problem (1), (35), (36) with nonlocal condition (35) in general is not correct.
Many ill-posed problems for differential–operator equations may be reduced to
operator equations of the first kind Bx = y, x, y ∈ E and the main problem is to
prove its solvability. We formulate conditions for an operator A and element u1 ∈ E

which are sufficient for unique solvability.
Let refer to papers on solvability of nonlocal problems with integral condition

for abstract first order equation [62] and [63]. Necessary and sufficient condition for
solution’s uniqueness was found in [64].

As it follows from the results of the first section of this work correct initial
problem for EPD equation (1) include given values at t = 0 and a condition (36),
which is dropped for k ≥ 1,

u(0) = u0 ∈ D(A). (37)

Further let fix a condition A ∈ Gk as valid, it means uniform correctness of the
problem (1), (37), (36), and below we consider a determination of initial element u0
in condition (37) by nonlocal condition (35). This nonlocal problem is reduced to an
operator equation of the first kind Yk(1)u0 = y which we solve on a subset D(A).

Let introduce an entire function

cosh ik,β(λ) = �((k + 1)/2)

�((k + 1)/2 + β)
0F1

(
k + 1

2
+ β; λ

4

)

,

which is called characteristic function for nonlocal condition (35).
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Theorem 24 ([65]) Let A being a bounded operator and u1 ∈ E. For unique
solvability of the problem (1), (35), (36) is necessary and sufficient for the next
condition being valid on a spectrum σ(A) of operator A

cosh ik,β(λ) = 0, λ ∈ σ(A). (38)

From the Theorem 24 it follows that position of zeroes of the function cosh ik,β(λ)

is responsible for the unique solvability of the problem (1), (35), (36) with a bounded
operator A. For EPD equation with unbounded operator A the condition (38)
will not be sufficient for the unique solvability, though position of zeroes is also
important.

Now let find necessary condition for the uniqueness of a solution for the inverse
problem (1), (35), (36) with an unbounded operator A.

Theorem 25 ([65]) Let A being a linear closed operator in E. Propose that
nonlocal problem (1), (35), (36) has a solution u(t). Then for this solution being
unique it is necessary that all zeroes μj , j = 1, 2, . . . of the entire function
cosh ik,β(λ) do not belong to the set of eigenvalues of operator A.

In contrast to Theorem 24, the proof of a sufficient condition for unique
solvability requires additional conditions.

Theorem 26 ([65]) Let the operator A ∈ Gk and each zero μj , j = 1, 2, . . . of
function cosh ik,β(λ) belongs to the resolvent set ρ(A). Let also exists such d > 0
that sup

j=1,2,...

‖R(μj )‖ ≤ d . If u1 ∈ D(An+1), where n ∈ N chosen so that the

inequality n > max{(k + β + 1)/2, (k/2 + β + 2)/2} is true then the problem (1),
(35), (36) has a unique solution.

A similar nonlocal problem for the abstract Malmsten equation, which is a
generalization of the EPD equation, was considered in [66].

We also point out that the nonlocal problem for the Legendre equation (27) with
conditions

lim
t→1

Iβ
g

(

sinhk−1 t u(t)
)

= u1, u′(0) = 0

and the boundary control problem for a lightly loaded Legendre equation (31) with
conditions

u(1) = u2, u′(1) = u3

were studied in [61]. Results on the solvability of a nonlocal problem for the
Bessel-Struve equation (16) with two nonlocal conditions containing Erdeyi-Kober
operators were announced in [67].



Transmutation Operators as a Solvability Concept of Abstract Singular Equations 405

8 Dirichlet Problem for the Bessel-Struve Equation

Boundary problems for Eq. (16) for A ∈ Gk (hyperbolic case), generally speaking,
they are not correct, but the need to solve these incorrect problems is now generally
recognized (see introduction [68–70] and their bibliography). The second chapter
of the monograph [68] explores the correctness of general boundary value problems
for a first-order differential-operator equation and for an abstract wave equation
u′′(t) = Au(t).

We will look for a solution u(t) ∈ C2([0, 1], E) ∩ C((0, 1],D(A)) of Eq. (16)
for t ∈ [0, 1], satisfying to the boundary conditions

u(0) = u0, u(1) = u1. (39)

Dirichlet Problem (16), (39) can be reformulated as the inverse problem of
finding a function u(t) and an element p ∈ D(A) which is the second initial
condition in (17). So u(t) and p should be found from the equation

u′′(t) + k

t
u′(t) = Au(t) + k

t
p (40)

by initial and final conditions from equality (39). A detailed review of the work on
various inverse problems can be found in [71].

Returning to the problem we are considering (40), (39), note that, taking into
account the Theorem 20, we should define an element p ∈ D(A) from the operator
equation

Lk(1)p = u2, (41)

where u2 = u1 − Yk(1)u0.
To establish the solvability of Eq. (41) we impose an additional condition to the

resolvent of the operator A. An important role will be played by the entire function

cosh ik(λ) = 2k/2−1/2√π �(k/2 + 1)

λk/4+1/4 Lk/2−1/2

(√
λ
)

, (42)

Condition 1 Each zero μj , j = 1, 2, . . . defined by equality (42) of entire function
cosh ik(λ) belongs to the resolvent set ρ(A) and there is such d > 0 then

sup
j=1,2,...

‖R(μj )‖ ≤ d.

Note that in the general case for k > 0 distribution of zeros μj of function
cosh ik(λ) we do not know, but in special cases for k = 0 and k = 2 zeros μj are
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calculated explicitly. In these particular cases, respectively, we have:

cosh i0(λ) = sinh
√

λ√
λ

, μj = −π2j2, j ∈ N,

cosh i2(λ) =
2

(

cosh
√

λ − 1
)

λ
, μj = −4π2j2, j ∈ N.

Let the condition 1 is valid. Since each zero μj , j = 1, 2, . . . of the function
cosh ik(λ) belongs to ρ(A), then it belongs to ρ(A) together with a circular

neighborhood�j with the radius
1

d
, whose boundary is traversed along clockwise,

we denote γj .

Condition 2 For some n, such that

n >
1

4
(k + 7 − max{3 − k, 1}) ,

series

∞∑

j=1

∫

γj

R (z) dz

cosh ik(z) (z − λ0)n
, λ0 ∈ ρ(A), Reλ0 > σ

absolutely converges.
We formulate a theorem on the solvability of the Dirichlet problem for the Bessel-

Struve equation, which was announced in [72].

Theorem 27 Let A ∈ Gk and conditions 1, 2 are valid. If u0, u1 ∈ D(An+1) then
the problem (16), (39) has a unique solution.
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