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Abstract—The formation energies of vacancies and their complexes in copper and nickel at zero and finite tem
peratures are calculated by the embedded-atom method in the quasi-harmonic approximation. The role of tem
perature effects in the formation of various atomic configurations of intrinsic point defects is studied.

1. INTRODUCTION

Point defects and their complexes substantially 
affect the microstructure and its evolution in materials 
subjected to deformation, hydrogenation, irradiation, 
and other external influences. For example, the hydro
gen saturation of many metals and alloys causes an 
anomalously large number of vacancies [1], which 
affects the strength of the material in the technological 
operations of hydrogen introduction and removal. 
Increased interest in hydrogen power engineering and 
hydrogen-accumulating materials requires information 
on the types of defect complexes in certain materials 
and their effect on sorption-desorption processes. An 
important characteristic of defect complexes is their 
atomic configuration, which is responsible for the 
defect mobility. A kinetic factor, which results from the 
formation of primary defects and their structural evolu
tion, is also important. The authors of [2] showed that 
the kinetics of structural transformations in palladium 
and its alloys are nonmonotonic: long-term changes in 
their defect structure were detected. An important 
kinetic factor is the binding energy of a complex, i.e., 
the decrease in the free energy of the system induced by 
the coalescence of point defects to form the complex. 
The role of this factor increases with the time of system 
evolution, which develops toward a decrease in the free 
energy.

The main quantity that controls the atomic structure 
and size of point-defect complexes (PDCs) is the 
energy of their formation. Most materials contain a 
variety of point defects, including vacancies and inter
stitial and substitutional impurities, and more extended 
defects, such as dislocations, disclinations, and grain 
boundaries. Since various types of PDC are simulta
neously present in a material, it is difficult to distin
guish the effect of defect complexes of a certain type. 
As a result, it is difficult (or even impossible) to exper
imentally determine the energy of their formation. The

fundamental characteristics of point defects and their 
complexes are usually obtained from theoretical calcu
lations. Calculating the Gibbs energy of a PDC has 
recently been reduced to calculating the formation 
energy at zero temperature [3-6]. However, such calcu
lations ignore the entropy of atomic thermal vibrations, 
which can substantially affect the Gibbs energy of 
defects at finite temperatures [7].

In this work, we use model systems (copper, nickel) 
to calculate the formation and binding energies of 
vacancies and their complexes at zero and finite tem
peratures.

2. CALCULATION PROCEDURE

We calculate the Gibbs energy, enthalpy, entropy, 
and the binding energy of a PDC as a function of tem
perature using the quasi-harmonic approximation that 
takes into account the thermal expansion of a crystal 
lattice. The quantity controlling the PDC stability is the 
binding energy of the complex, i.e., the difference 
between the sum of the free Gibbs energies of the single 
defects forming the complex and the free Gibbs energy 
of the defect complex. The thermodynamic characteris
tics of defects are described in terms of excess thermo
dynamic quantities. An excess thermodynamic quantity 
AX related to a defect is defined to be

^ d e f e c t  ( - ^ d e f e c t / - ^ b u lk ) ^ b u lk >  ( 1 )

where Ndefect and Nbulk are the numbers of atoms in the 
system with and without the defect, respectively. The 
excess thermodynamic quantity related to a defect is 
determined as the difference between the thermody
namic quantity of the system with the defect and the 
thermodynamic quantity of the same number of atoms 
in the volume of the perfect crystal. Then, the excess
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mation, the free energy F(a, T) of a solid with a lattice 
parameter a at a temperature T  is

Fig. 1. Point defects and PDCs under study: (a) monova
cancy (b) divacancy, (c) planar three-vacancy configuration, 
(d) tetrahedral three-vacancy configuration, (e) tetrahedral 
micropore of four vacancies, (f, g) four-vacancy square con
figuration before (f) and (g) after relaxation, and (h, i) four- 
vacancy diamond configuration (h) before and (i) after 
relaxation.

Gibbs free energy of the defect AG(7), or the energy of 
defect formation, can be written in the form [8]

AG(T) = AH(T) -  TAS(T) -  kBT\ng,  (2)

where AH(T) and AS(T) are the enthalpy and entropy of 
the defect, respectively, which are functions of temper
ature T: g is a geometric factor specifying various types 
of defects; and kB is the Boltzmann constant. At zero 
temperature and zero pressure, the free energy of the 
defect reduces to the defect-related excess potential 
energy, which can be calculated by a molecular-statics 
method for given interatomic potentials. To calculate 
the enthalpy of the defect at a finite temperature, we 
average the total energy of the system over a statistical 
ensemble whose microstates are specified by the Monte 
Carlo or molecular-dynamics method. The free energy 
is calculated with more complex theoretical approaches 
based on thermodynamic integration. In this case, the 
enthalpy should be preliminarily calculated as a func
tion of temperature [7]. All the methods used for such 
calculations require high computational capabilities; 
moreover, their application to even small PDCs is 
restricted by an insufficient enthalpy calculation accu
racy, since energy fluctuations can exceed the energy of 
defect formation at high temperatures [7]. The compu
tations can be substantially simplified using the quasi- 
harmonic approximation [9]. With this approach, one 
can calculate the free energy of a system consisting of 
several hundred atoms in a calculation cell, which is 
sufficient for studying small PDCs.

In the quasi-harmonic approximation, the total con
figuration energy is replaced by a quadratic expansion 
of the potential energy in atomic displacements near the 
equilibrium atomic positions at a fixed lattice parame
ter. Anharmonic effects are taken into account through 
a change in the lattice parameter. At any value of the lat
tice parameter, the system is equivalent to a superposi
tion of harmonic oscillators. In the harmonic approxi-

F(a,T)  = E{](a) + kHT  ̂  In 2sinh
k, n

2 kKT (3)

where E,,(a ') is the energy of the static lattice and co„(k) 
are the phonon frequencies [10]. Equation (3) describes 
the free energy as a function of the lattice parameter. At 
zero pressure, the free energy and volume are calcu
lated by minimizing Eq. (3) with respect to the lattice 
parameter for each temperature. Other thermodynamic 
quantities (entropy, enthalpy) can be calculated by tak
ing analogous sums over phonon modes. The calcula
tion procedure is described in more detail in [11]. To 
specify interatomic potentials, we used the embedded- 
atom method [12, 13]. Copper and nickel were chosen 
to be model materials for investigation, since their 
interatomic potentials are well known [14].

Vacancy complexes in a calculation cell were gener
ated by removing certain atoms from sites of the perfect 
fee lattice. The cell size was a(6 x 6 x 6), and 864 atoms 
were in the perfect structure. We also studied smaller 
(a(5 x 5 x 5)) and larger (a(8 x 8 x 8)) cells. The atomic 
configurations of a PDC were relaxed using the molec- 
ular-dynamics method with damping of atom veloci
ties. The relaxation was accompanied by a change in 
the unit cell volume and was terminated when the force 
on each atom was smaller than 10-4 eV/A and the pres
sure did not exceed 10 10 GPa. To calculate the thermo
dynamic quantities in terms of the quasi-harmonic 
approximation, we need to know the atomic coordi
nates in a system at a given temperature. In this case, we 
can also minimize the free energy with respect to the 
atomic arrangement in the cell [7]. However, this pro
cedure requires the calculation of the third derivatives 
of the potential energy with respect to atomic displace
ments, which results in a long computation time in the 
embedded-atom method. Therefore, the atomic coordi
nates in the system with a defect were calculated under 
the assumption that the thermal expansion of the mate
rial is uniform; that is, we neglected the difference 
between the thermal expansion coefficients of the per
fect crystal and the defect zone. The atomic coordinates 
were calculated using the following scheme: (i) the lat
tice parameter of the perfect crystal was determined at 
a given temperature in the quasi-harmonic approxima
tion; (ii) the equilibrium positions of atoms in the sys
tem with a defect were calculated by minimizing the 
total energy at zero temperature; and (iii) the obtained 
atomic coordinates were uniformly changed according 
to the lattice parameter calculated in the first step. The 
geometry thus obtained was used to calculate the ther
modynamic characteristics of the defect in accordance 
with the above definition of the excess thermodynamic 
quantities.
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Table 1. Formation energy Ep volume, and entropy of a monovacancy and divacancy at zero temperature (Eb is the vacancy 
binding energy)

Defect Ep eV S/k vf/v0 Eb, eV

Monovacancy
Copper

Our calculation 1.27 1.36 0.70
Other calculations 1.09 [8], 1.11 [16], 1.13 [17]

1.21 [5], 1.26,1.27 [14],
1.29 [18], 1.32 [19], 1.33 [20], 1.41 [21]

1.245 
1.404 [14]

0.75 [16]
0.74, 0.70 [14] 
0.80 [5]

Experiment
Divacancy

1.03 [22], 1.15 [23], 1.3 [24], 1.17-1.29 [25], 1.28 [26] 2.35 [26] 0.75-0.85 [25]
0.15

Our calculation 2.39 2.63 1.38 0.15 [27]
Other calculations 
Experiment

Monovacancy

2.25 [5], 2.79 [27]
2.15 [23]

Nickel
7.4 [22]

1.63 [5] 0.16 [5]

Our calculation 
Other calculations 
Experiment 
Divacancy

1.59
1.51 [16], 1.63 [19], 1.67 [28], 1.77 [17], 1.76 [21] 
1.6 [29], 1.78 [30], 1.79 [24]

1.95 0.82
0.86 [16]
0.97 [31]

Our calculation 
Other calculations

2.99
3.47 [27]

3.97 1.59 0.19
0.21 [27]

3. GEOMETRY OF POINT-DEFECT COMPLEXES

We considered vacancies and vacancy complexes 
consisting of at most four point defects. Figure 1 sche
matically shows the PDCs under study. Apart from a 
monovacancy and a divacancy (Figs. la, lb), we also 
analyzed a trivacancy having two possible atomic con
figurations (Figs. lc, Id). In the former case, all vacan
cies lie in one plane and form an equilateral triangle. In 
the latter configuration, the atom located at the site that 
forms a regular tetrahedron together with the three 
vacancies is shifted to the center of this tetrahedron. 
This atom is shown as a small solid circle in the initial 
and final positions in Figs. lc and Id, respectively. This 
configuration represents three vacancies “smeared” 
over four lattice sites and is a stacking-fault tetrahedron 
of a minimum size. This configuration was described 
for the first time in [15]. We also considered three con
figurations of four-vacancy complexes (tetravacancies). 
In the first configuration, an atom is removed from the 
center of a tetrahedron (Fig. le) and the complex of 
four vacancies forms a micropore. In the next configu
ration, four vacancies are located at the corners of a 
square. The two small solid atoms in Fig. If are relaxed 
toward the center of the square so that the distance
between them becomes ~a! J l . After relaxation, these 
atoms leave two vacancies behind them and the final 
configuration consists of six vacancies located at the 
corners of the octahedron around the displaced atoms

(Fig. lg). The last configuration represents a diamond- 
type tetravacancy (Fig. lh). This configuration consists 
of two equilateral triangles with one common side 
formed by vacancies. In this case, atoms can shift as in 
the case considered above for the trivacancy. After 
relaxation, the atoms tend to occupy the center of the 
tetrahedron and strongly interact with each other (Fig. 
li).

4. RESULTS AND DISCUSSION

Above all, we discuss the results obtained for 
vacancy complexes at zero temperature. The results of 
calculations for the monovacancy and divacancy in 
copper and nickel are given in Table 1. Copper is one of 
the most extensively studied materials. Monovacancy 
formation in copper has been investigated by both 
semiempirical [5, 8, 14, 16, 28] and ab initio [17-21] 
methods. As is seen from Table 1, our results agree well 
with the results of other theoretical calculations and 
experimental studies. On the whole, the scatter of the 
calculated values lies within the limits of experimental 
error. The formation energy of a monovacancy in nickel 
is higher than that in copper. As follows from the exper
imental data in [24] and the theoretical calculations in 
[20] (which were performed with the full-potential lin
earized muffin-tin orbital (FLMTO) method), the 
energy of formation of a monovacancy in transition
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Table 2. Formation energy Ep volume, entropy, and binding 
energy of three- and four-vacancy complexes at zero temper
ature

Defect Ep eV S/k v/v0 Eb, eV

Copper
Trivacancy, plane 3.38 3.77 2.08 0.44
Trivacancy, tetrahedron 3.41 6.32 1.58 0.40
Tetravacancy, tetrahedron 4.22 3.96 3.05 0.87
Tetravacancy, square 4.35 4.84 2.46 0.73
Tetravacancy, diamond 4.4 5.74 2.69 0.69

Nickel
Trivacancy, tetrahedron 3.96 9.17 1.94 0.82
Tetravacancy, tetrahedron 5.52 6.06 3.36 0.85
Tetravacancy, square 5.34 11.45 2.70 1.03
Tetravacancy, diamond 4.93 11.89 2.46 1.43

metals increases as the number of d electrons 
decreases.

Our estimates performed using the full-potential lin
earized augmented-plane-wave (FLAPW) method in 
the generalized gradient approximation (GGA) for a 
cell with 32 atoms with relaxation of the atomic posi
tions and volume show that the energy of vacancy for
mation in copper is 1.14 eV, which is slightly lower 
than the value calculated by the above technique and is
0.2 eV lower than the value calculated by the FLMTO 
method in [20]. It should be noted that the authors of 
[20] did not take into account relaxation of atomic posi
tions near a vacancy, and the volume of the lattice with 
a defect was equal to that of the perfect lattice. More
over, they used the local-density approximation for the 
exchange-correlation potential.

The divacancy calculations are much scarcer [5]. 
The energy of divacancy formation agrees well with the 
value obtained in [5], where the molecular-dynamics 
and Monte Carlo methods were employed. The differ
ence in the volumetric change induced by the defect 
formation is more significant (Table 1). The binding 
energy of vacancies Eb is only 0.01 eV lower than that 
in [5]. The energy of divacancy formation is somewhat 
higher than the experimental value (2.15 eV) obtained 
in [23]. It should be noted that the experimental value 
was obtained for monovacancies or monovacancies 
along with divacancies. The calculated energy of 
monovacancy formation in nickel also agrees satisfac
torily with the experimental data. The binding energy 
of vacancies in nickel is only slightly higher than in 
copper.

In the literature, it is assumed [32] that it is the tet
rahedral configuration of a trivacancy (which is virtu
ally immobile) that serves as a nucleation center for 
pore growth in materials. The nucleation center can 
grow via joining a fourth vacancy. It is generally 
accepted that a large number of excess vacancies do not

directly join to form a pore due to the exponentially 
decreased probability of a large number of vacancies 
meeting together. On the other hand, a trivacancy in the 
planar configuration has a low migration energy [32] 
and can rapidly reach sinks at high temperatures. 
Therefore, it is interesting to understand the physical 
nature of the formation of a certain defect configura
tion.

Table 2 lists the formation energies of the PDCs 
consisting of three or four vacancies and having the 
above configurations. We will discuss the calculation 
results for groups of complexes of the same size. Our 
calculations demonstrate that the planar configuration 
of a trivacancy in copper is energetically favorable. 
However, the difference in the energies of this configu
ration and the tetrahedral configuration is rather small 
(-0.03 eV). The calculations in [15] predicted the sta
bility of a trivacancy in the form of a tetrahedron, 
whereas in [32] the planar configuration was found to 
be stable. Note that the tetrahedral configuration of a 
trivacancy proved more stable in nickel at zero temper
ature. Among the four-vacancy complexes in copper, 
the complex with a tetrahedral configuration 
(micropore) is most stable (Table 2). In nickel, the dia- 
mond-type four-vacancy complex is energetically 
favorable (Fig. lh). In this case, the energy of formation 
of this configuration is 0.59 eV lower than that of the 
tetrahedral configuration. In copper, the difference 
between the energies of these configurations is 0.18 eV. 
Moreover, the energy of the square vacancy complex 
formation in copper differs only slightly (by -0.05 eV) 
from the energy of the diamond-type PDC.

The temperature dependences of the energy of for
mation and binding energy of PDCs in copper and 
nickel are shown in Figs. 2 and 3. We do not present the 
temperature dependences of the formation energies of 
mono- and divacancies in these figures, since these 
energies vary with temperature only slightly in both 
nickel and copper (which agrees with the results from 
[28]). For example, the energy of monovacancy forma
tion in copper at 800 K is 1.177 eV (1.181 eV [28]). As 
was found in [28], the energy of mono vacancy forma
tion in copper changes from 1.25 to 1.15 eV over the 
temperature range from 0 to 1000 K. The calculated 
thermodynamic quantities (enthalpy, entropy) are also 
consistent with the results from [28]. Our results also 
agree with the data from [28] on the temperature depen
dences obtained for nickel. The energy of monovacancy 
formation in nickel at a T= 800 K is 1.467 eV (1.503 eV 
[28]). The enthalpy and entropy of divacancy formation 
in copper obtained in [8] (2.33 and 2.84 eV, respec
tively) are consistent with our results (2.38 and 2.63 eV, 
respectively). Unfortunately, there are no published 
data on the temperature dependences for vacancy 
complexes. Our calculations show that, as the temper
ature increases above 150 K, the tetrahedral configu
ration of a trivacancy becomes more stable than the 
planar configuration (Fig. 2). As is seen from Fig. 2, 
the binding energy of a trivacancy in the tetrahedral
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T, К

T, K

Fig. 2. (a) Formation and (b) binding energies of vacancy 
complexes as functions of temperature in copper: (1 ) diva
cancy, (2) planar trivacancy, ( 3 ) tetrahedral trivacancy, 
( 4 ) diamond-type tetravacancy, (5) square tetravacancy, and 
( 6 ) tetrahedral tetravacancy.

configuration increases rapidly with temperature, 
whereas its formation energy decreases. At 800 K, this 
difference is 0.26 eV.

Figure 4 shows the calculated contributions of 
atomic thermal vibrations to the entropy of formation 
of the two trivacancy configurations in copper. The 
entropy of a trivacancy in the tetrahedral configuration 
substantially exceeds the entropy of the planar configu
ration and increases with temperature. This behavior 
also explains the strong temperature dependence of the 
binding energy of the tetrahedral trivacancy, since the 
enthalpy of PDC formation is virtually independent of 
temperature [11]. The relatively high values of the

T, K

Fig. 3. (a) Formation and (b) binding energies of vacancy 
complexes as functions of temperature in nickel: ( 1 ) diva
cancy, (2) tetrahedral trivacancy, ( 3 ) diamond-type tetrava
cancy, ( 4 ) square tetravacancy, and (5) tetrahedral tetrava
cancy.

entropy of the trivacancy are caused by the specific fea
tures of its atomic configuration. The atom at the center 
of the tetrahedron formed by vacant sites (Fig. Id) 
weakly interacts with the other atoms of the crystal lat
tice, which causes low frequencies of its thermal vibra
tions and a large contribution of the tetrahedral triva
cancy to the excess entropy. The entropy of thermal 
vibrations increases with the vibrational density of 
states at low frequencies. As a result of the thermal 
expansion of the lattice, the interaction of the atom in 
the tetrahedron with the other lattice atoms weakens, 
which leads to an additional increase in the trivacancy 
entropy. The potential barrier between the tetrahedral 
and planar trivacancy configurations is small (0.024 eV 
at 0 K). Therefore, as the temperature increases, the 
atom at the center of the tetrahedron is in a flatter effec
tive potential as compared to the parabolic potential of 
the quasi-harmonic approximation. Note that the varia
tions with temperature observed in copper are also 
observed for divacancy formation in nickel. The 
decrease in the energy of trivacancy formation with 
increasing temperature in nickel is also pronounced 
(Fig. 3a). As noted above, the minimum energy of tet
ravacancy formation in copper is characteristic of the 
tetrahedral configuration (micropore); however, as the 
temperature increases, the square configuration
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T, K

Fig. 4. Temperature dependence of the entropy of a vacancy 
complex in copper: (7) planar trivacancy and (2) tetrahedral 
trivacancy.

becomes more stable. The energies of these two types 
of vacancy complexes (square and diamond) differ 
insignificantly up to 600 K. Therefore, other factors, 
including impurities, can substantially affect the stabil
ity of tetravacancies in copper. The obtained results 
indicate that the addition of a fourth vacancy to form a 
micropore is energetically favorable only below a criti
cal temperature (about 900 K) at which the binding 
energy of the tetrahedral trivacancy coincides with the 
binding energy of the micropore. This conclusion 
agrees qualitatively with the results of investigating the 
high-temperature coalescence of excess vacancies in 
fee metals [33, 34].

Among the four-vacancy complexes in nickel, the 
diamond-type vacancy complex has a minimum forma
tion energy. This complex remains energetically favor
able at all temperatures under study, and this thermody
namic preference increases with temperature. The tem
perature dependences of the entropies of all four- 
vacancy configurations except for the diamond-type 
configuration are found to be weak, which indicates 
that they do not have specific features inherent in the 
atomic structures of the trivacancy configurations. It is 
interesting that, in nickel, the entropy contributions of 
all four-vacancy complexes increase in the temperature 
range 100-600 K and then level off. As is seen from 
Fig. 3b, the binding energies of all vacancy complexes 
in nickel (except for the micropore configuration) 
increase with temperature. The formation of the tetra
hedral configuration of a trivacancy becomes energeti
cally more favorable with increasing temperature.

5. CONCLUSIONS
We have calculated the thermodynamic characteris

tics of single vacancies and their complexes in the 
quasi-harmonic approximation using interatomic 
potentials constructed by the embedded-atom method. 
The calculated energies and volumes of formation of 
these defects at zero temperature agree satisfactorily

with the results of other theoretical calculations and 
experimental studies. The thermodynamic characteris
tics of point-defect complexes at finite temperatures 
have been calculated. The stabilization of the tetrahe
dral configuration of a trivacancy in copper has been 
shown to be mainly caused by the entropy due to atomic 
thermal vibrations. The entropy of formation of the tet
rahedral configuration of a trivacancy in copper is sig
nificantly higher than that of its planar configuration, 
and this difference increases with temperature. How
ever, the formation of a four-vacancy complex 
(micropore) in copper is thermodynamically more favor
able only up to a critical temperature of about 900 K; at 
higher temperatures, excess vacancies can coalesce. 
The energies of formation of four-vacancy complexes 
in copper differ insignificantly over the entire tempera
ture range under study. In nickel, the binding energy of 
vacancies in a diamond-type configuration is signifi
cantly higher than that in the other vacancy complexes 
over the entire temperature range.
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