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Unique precipitations in a novel refractory Nb-Mo-Ti-Co high-entropy superalloy

N. Yurchenko a, E. Panina a, Ł. Rogalb, L. Shekhawata, S. Zherebtsov a and N. Stepanov a

aLaboratory of Bulk Nanostructured Materials, Belgorod National Research University, Belgorod, Russia; bInstitute of Metallurgy and Materials
Science, Polish Academy of Sciences, Krakow, Poland

ABSTRACT
Herein, a novel refractory Nb30Mo30Ti20Co20 (at. %) high-entropy superalloy (RHESA) is introduced.
Annealing at 1200 °C led to the precipitation of a semi-coherent individual (Co, Ti)-rich B2, (Ti, O)-
rich fcc (Ti-rich oxides), and hierarchical B2+ fcc nanoparticles in the (Nb, Mo)-rich RHESA bcc phase.
B2+ fcc dispersoids were dominant, and they nucleated heterogeneously because of the coherency
ensured by the Baker–Nutting orientation relationship. The emergence of multi-type nanoprecipi-
tates doubled the room-temperature compressive ductility without sacrificing strength. Our study
can solve a chief problem of current RHESAs—the low stability of B2 dispersoids at T > 700 °C.

IMPACT STATEMENT
Multi-type B2, fcc, and B2+ fcc nanoprecipitates balancing mechanical properties of the refractory
Nb30Mo30Ti20Co20 high-entropy superalloy (RHESA) endownewprospects for applicationof RHESAs
at T ≥ 1200 °C.
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Introduction

High-entropy alloys are a novel class of materials
with excellent corrosion resistance [1], strength [2],
and ductility [3]. Recently, a series of studies showed
the formation of a superalloy-like structure compris-
ing coherent body-centred cubic (bcc) and B2 (ordered
bcc) phases in refractory Al-containing high-entropy
superalloys (RHESAs), which are considered as promis-
ing materials for next-generation aerospace applications
[4–7]. Two types of mutual arrangements of the phases
were reported: (I) B2 matrix+ bcc particles and (II)
bcc matrix+B2 particles. Type I, most widespread,
offers an excellent high-temperature strength but a low
room-temperature (RT) ductility [8,9]. Type II is more
preferable as it helps achieve more balanced mechanical
properties [5].

However, the main drawback of the discrete and
compositionally complex Al-rich B2 phase is the low
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solvus temperature. In numerous RHESAs, B2 particles
appear due to spinodal decomposition and dissolve at
T > 700 °C [10–13]. To date, only one study has demon-
strated that the precipitation of the Al-rich B2 phase
is slightly higher than that at 1000 °C [14]. These data
points show that the current Al-containing RHESAs can-
not compete with the state-of-the-art Ni-based superal-
loys operating at 1150 °C.

Fortunately, some B2 compounds are prone to pre-
cipitation in the refractory metal-based bcc matrix at
T ≥ 1000 °C in a controllable fashion [15–17]. Specifi-
cally, Knowles et al. [17] showed that the semi-coherent
TiFe B2 nanoparticles formed in a W-based matrix
of dendritic W-Ti-Fe alloys after solution treatment at
1250 °C for 100 h provided good mechanical properties
at 1000 °C. Motivated by the data reported in [15–17],
we endeavoured to secure new B2 phases that would
expand the potential service temperature of RHESAs to
T ≥ 1200 °C.
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This study sheds light on the unexpected multi-type
precipitation of individual (Co, Ti)-rich B2, (Ti, O)-rich
fcc (Ti-rich face-centred cubic oxides), and hierarchi-
cal B2+ fcc nanoparticles within the (Nb, Mo)-rich bcc
phase of a novel Nb30Mo30Ti20Co20 (at. %) RHESA
after annealing at 1200 °C, accompanied by a profound
increase in the RT compressive ductility.

Materials andmethods

A 20 g ingot of the alloy with a nominal composition
of Nb30Mo30Ti20Co20 was produced by the vacuum arc
melting of pure metals (≥ 99.9 wt. %). Rectangular sam-
ples measuring 8× 8× 3 mm3 were cut from the as-cast
ingot. Some samples were encapsulated in vacuumed
(10−2 Torr) quartz tubes filled with titanium chips to
prevent oxidation during annealing at 1200 °C for 24
h (further denoted as an annealed state), followed by
water quenching. The microstructure of the alloy was
studied for the as-cast and annealed states using scan-
ning electron microscopy (SEM) and energy-dispersive
X-ray spectroscopy (EDS) with an FEI Quanta 600 FEG
scanning electron microscope equipped with an energy-
dispersive detector. Data on the actual chemical com-
position (metals) of the alloy measured by SEM-EDS
analysis and the content of impurities (oxygen, nitrogen,
and hydrogen) determined by inert gas fusion are given
in Table 1.

Transmission electron microscopy (TEM; JEOL JEM-
2100 and Tecnai G2 F20 transmission electron micro-
scopes) was used for in-depth microstructural
investigations, and integrated EDS was conducted for
micro-chemical analysis. For TEM examinations, thin
foils were prepared using a Tenupol-5 twin-jet electro-
polisher with an electrolyte containing sulfuric acid and
methanol (1:9) at 10 °C and 15 V. We attempted to per-
form TEM analyses immediately after the thin foil prepa-
ration to minimise atmospheric exposure. Selected area
electron diffraction (SAED) patterns were used for phase
identification and orientation relationship analysis.

For mechanical tests in the as-cast and annealed
states, rectangular samples measuring 5× 3× 3 mm3

were used. Uniaxial compression tests were performed at

RT using an Instron 5882 test machine. Testing was car-
ried out at an initial strain rate of 10−4 s−1 until the frac-
ture of the specimens. True stress–true strain curves were
obtained using procedures described elsewhere [18].

Results

A typical microstructure of the Nb30Mo30Ti20Co20 alloy
is shown in Figure 1. The combined SEM-EDS and
TEM-SAED analyses of the as-cast and annealed states
revealed similar dendritic microstructures comprising
two dominant phases: bright-grey (Nb, Mo)-rich islands
with a bcc (W-prototype; cI2; Im-3 m) crystal structure
and dark-grey (Co, Ti)-rich interlayers with a B2 (CsCl-
prototype; cP2; Pm-3 m) crystal structure; some coarse
round/needle-shaped B2 particles were embedded in
the bcc islands (Figures 1(a, b), TableS1, Supplementary
Material). We also found a minor (Ti, O)-rich phase with
an fcc (NaCl-prototype; cF8; Fm-3 m) crystal structure.
It was located within the B2 interlayers, predominantly
along the bcc/B2 interfaces, as sporadic, micron-sized,
black particles (highlighted with pink arrows in Figures
1(a, b), TableS1, Supplementary Material). The volume
fractions of the bcc, B2, and fcc phases in the as-cast and
annealed states were approximately 70%, 29%, and 1%,
respectively. Only a negligible diversity in the chemical
compositions and lattice parameters of the constitutive
phases between the as-cast and annealed states was noted
(Table S1, Supplementary Material).

However, an investigation of the annealed alloy at
higher magnifications revealed profuse secondary dis-
persoids inside the bcc islands that were absent in the
as-cast state, while the B2 interlayers were precipitate-
free (Figure 2(a)). Many nanoparticles consisted of seg-
ments, namely a cubic core and an elongated tail, with
different Z-contrasts (denoted by white arrows as hierar-
chical precipitates in Figure 2(a)). In-depth characterisa-
tion using high-angle annular dark-field scanning TEM
(STEM-HAADF) confirmed the occurrence of hierar-
chical nanoparticles with diverse Z-contrasts (some of
them are marked with white arrows in Figure 2 (b)).
According to STEM-EDS mapping, these precipitates
consisted of (Co, Ti)-rich (Nb14.2Mo12.5Ti32.9Co40.4) and
Ti-rich (Nb4.9Mo3.4Ti90.8Co0.9) segments with various

Table 1. Actual chemical composition of the Nb30Mo30Ti20Co20 alloy.

Elements, at.%

Nb Mo Ti Co Oxygen, ppm Nitrogen, ppm Hydrogen, ppm

28.8± 0.2 32.8± 1.6 19.4± 0.8 19.0± 1.0 As-cast

392± 17 49± 12 22± 7

Annealed

403± 15 54± 10 29± 5
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Figure 1. A typical microstructure of the Nb30Mo30Ti20Co20 alloy in the as-cast (a) and annealed (b) states: SEM-BSE images, SEM-EDS
maps, and SAED patterns recorded from [001]bcc, [011]B2 (as-cast state) or [001]B2 (annealed state), and [011]fcc zone axes of the corre-
sponding phases showing the dendritic microstructure consisting of (Nb, Mo)-rich bcc islands, (Co, Ti)-rich B2 network, and (Ti, O)-rich
fcc particles.

morphologies and sizes (Figure 2). The Ti-rich seg-
ments predominantly appeared as thin (∼7–40 nm)
and elongated (∼45–130 nm) plates. Their long axes

were encompassed by or adjoined to one of the sides of
semi-circular/irregularly shaped (Co, Ti)-rich segments;
meanwhile, the plate rims remained bordered to the bcc
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Figure 2. Characterisation of the bcc islands of the annealed Nb30Mo30Ti20Co20 alloy: (a) – magnified SEM-BSE image of typical bcc
islands demonstrating the embedded dispersed particles of different morphology and Z-contrast denoted as ‘hierarchical precipi-
tates’; (b) STEM-HAADF and STEM-EDS analyses showing the presence of hierarchical nanoprecipitates (some characteristic particles
highlighted with white arrows) composed of Ti-rich and (Co, Ti)-rich segments inside the (Nb, Mo)-rich matrix.

matrix. Occasionally, small (∼40–50 nm) round-shaped
(Co, Ti)-rich segments were embedded in relatively large
(∼500 nm in width) Ti-rich needles.

A more detailed investigation of the hierarchical
nanoprecipitates was performed using high-resolution
TEM (HRTEM) and STEM-EDS (Figure 3). The (Co,
Ti)-rich segments possessed a B2 (CsCl-prototype; cP2;
Pm-3 m; a = 0.3052± 0.0029 nm) crystal structure.

Meanwhile, the Ti-rich segments had an fcc (NaCl-
prototype; cF8; Fm-3 m; a = 0.4293± 0.0014 nm) crystal
structure and contained a considerable amount of oxy-
gen, similar to that of the initial fcc particles (Figures
1(a) and 3(a, b)). We identified the orientation rela-
tionships (ORs) between the bcc matrix and different
segments of the hierarchical B2+ fcc particles (Figure
3(b)). The B2 segments adopted a cube-on-cube 001bcc ||
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Figure 3. Detailed TEM characterisation of hierarchical nanoparticles in the annealed Nb30Mo30Ti20Co20 alloy: (a) – HRTEM image
demonstrating a typical hierarchical precipitate consisting of a one (Ti, O)-rich fcc plate and two (Co, Ti)-rich B2 segments inside the
bcc matrix; (b) – SAED taken simultaneously from the bcc matrix and hierarchical B2+ fcc precipitates and sketch illustrating the ORs
between the phases.

001B2, <110 > bcc || <110 > B2 OR, which was previ-
ously observed in numerous refractory alloys, including
RHE(S)As [4,13,15,17,19,20]. In turn, the fcc segments
obeyed the Baker–Nutting (B-N) OR 001bcc || 001fcc,
<110 > bcc || <100 > fcc, which is typical of carbides,
nitrides, or oxides precipitated in steels [21–23] and other
bcc alloys [24–26]. Notably, the B-N OR was also found
between the fcc and B2 segments.

Apart from the prevailing hierarchical particles, we
detected sparse individual (Co, Ti)-rich B2 and (Ti,
O)-rich fcc nanoprecipitates (Figures 2 and 4(a)). The
latter exhibited various morphologies (plate-, cubic, or
rhombic-like), most probably due to different orienta-
tions with respect to the thin foil cross-section (the so-
called stereological effect). HRTEM investigations of the
typical plate-like fcc (Figure 4(b)) and round/irregularly

shaped B2 (Figure S1, Supplementary Material) disper-
soids showed that they held similar (as their hierarchical
counterparts) ORs relative to the bcc matrix. Multiple
dislocations (highlightedwith red arrows in theHAADF-
STEM image in Figure 4(a)) around the nanoprecipitates
were also observed.

The significant effect of annealing on mechani-
cal properties must be noted. Figure 5(a) displays
the compressive true stress–true strain curves of the
Nb30Mo30Ti20Co20 alloy in the as-cast and annealed
states tested at RT. Compared to the as-cast state,
the annealed alloy showed a slightly lower yield stress
(YSas−cast = 1185 MPa vs. YSannealed = 1120 MPa) but a
notably enhanced ductility (eas−cast = 0.095 vs.
eannealed = 0.26). Post-mortemmicrostructure investiga-
tions near themain crack revealed the absence ofmultiple
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Figure 4. Detailed TEM characterisation of individual nanoparticles in the annealed Nb30Mo30Ti20Co20 alloy: (a) – HAADF-STEM image
and STEM-EDS maps showing the individual (Co, Ti)-rich B2 (denoted with light-green arrows) and (Ti, O)-rich fcc (denoted with pink
arrows) precipitates anddislocations (denotedwith dark-red arrows) in the bccmatrix; (b) –HRTEM image illustrating the typical interface
between the bcc matrix and plate-like individual fcc particle supporting by Fast Fourier Transforms (FFTs) taken from regions denoted
and the deciphered B-N OR between the phases.

secondary cracks in the annealed alloy, in contrast to that
of the as-cast alloy (Figures 5(b, c)).

Discussion

Formationmechanisms ofmulti-type precipitates

The Nb30Mo30Ti20Co20 alloy with an initial multi-phase
(Nb, Mo)-rich bcc+ (Co, Ti)-rich B2+ (Ti, O)-rich fcc
microstructure, which could be reasonably predicted by
thermodynamic modelling (Figure S2, Supplementary
Material), experienced complex precipitation behaviour
after annealing at 1200 °C. In the dominant dendritic
bcc phase, we found a variety of secondary particles:
individual (Co, Ti)-rich B2 and (Ti, O)-rich fcc, as well
as abundant hierarchical B2+ fcc. Different groups of
researchers have already reported on the occurrence of

individual B2 dispersoids after proper heat treatment
in a bcc matrix of refractory alloys, including RHE-
SAs [4,5,7,13–15,17,19,27]; however, no data exist on the
1200 °C-B2 precipitates in RHESAs. In addition, few
studies on RHE(S)As informed aboutO-rich dispersoids,
and these inclusions were usual constituents in mechan-
ically alloyed RHE(S)As [28–30] but were absent in
arc-melted counterparts. Moreover, this is the first obser-
vation of hierarchical B2+ fcc nanoparticles in such
alloys. This encourages us to provide a plausible explana-
tion for the possible formation mechanism(s) of multi-
type precipitates in the Nb30Mo30Ti20Co20 RHESA.

Several studies have mentioned the presence of O-
rich fcc particles in the structure of arc-melted Nb-based
refractory alloys [24,31–33], albeit with diverse data:
Leonard et al. [24] and Senkov et al. [33] considered
them as oxides, while Ma et al. [31,32] insisted on the
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Figure 5. Mechanical properties and post-mortem microstructure investigations of the Nb30Mo30Ti20Co20 alloy in the as-cast and
annealed states: (a) – true stress – true strain curves obtained during compression test at RT; (b) and (c) – SEM-BSE images of the as-
cast (b) and annealed (c) specimens after RT compression test. Orange arrows in Figure 5(b) show the presence of multiple secondary
cracks in the microstructure of the as-cast specimen. The compression axis is vertical.

non-oxide origin. In the studied alloy, based on the chem-
ical composition (mostly oxygen distribution in EDS
maps) (Figures 3(a) and 4(a), Table S1, Supplementary
Material), crystal structure prototype (Figures 3(b) and
4(b)), and adopted B-N OR (different from that reported
in [31,32]), we assumed both the fcc segments of hierar-
chical B2+ fcc nanoparticles and the individual fcc dis-
persoids to be Ti-rich oxides. The initial micron-sized fcc
particles (Figure 1) could also be Ti-rich oxides, although
we did not identify the ORs held. In steels, oxides often
act as sites for the heterogeneous nucleation of ferrite
[34–36]. The latter process can be mitigated by numer-
ous factors, of which the lattice disregistry is considered
one of the main parameters. According to the Bram-
fitt theory [37], the lower the lattice mismatch between
the inclusion and the nuclei, the higher the formation
potency. For this, the inclusion and the nuclei should
have similar lattices and obey simple ORs. In our case,
the Ti-rich oxides and the B2 phase seem to satisfy both
criteria: they possess cubic crystal structures, adopt the
B-N OR, and hold the B-N and cube-on-cube ORs rela-
tive to the bcc matrix (Figures 3(b) and 4(b)). These ORs
were used to evaluate the lattice misfit parameter δ̄, as

per the formula [37]:

δ̄ =
3∑

i=1

1
3

|(d[uvw]ibcc/B2 cos θ) − d[uvw]iB2/fcc |
d[uvw]iB2/fcc

× 100%,

(1)

where [uvw]bcc, [uvw]B2, and [uvw]fcc are the Miller
indices for the low-index crystal directions of the bcc
phase, B2 phase, andTi-rich oxide, respectively; d[uvw]bcc,
d[uvw]B2, and d[uvw]fcc are the interatomic spacing along
[uvw]bcc, [uvw]B2, and [uvw]fcc, respectively, and θ is
the angle between [uvw]bcc, [uvw]B2, and [uvw]fcc. The
calculation parameters are presented in Table S2 (Supple-
mentary Material).

From the derived data, it can be interpreted that
the B2 phase or the Ti-rich oxide shows relatively
low planar (δ̄B2bcc = 5.603%) or linear (δ

〈100〉fcc
〈110〉bcc = 6.173%)

lattice disregistry to the bcc matrix, indicating semi-
coherent interfaces and almost equal abilities for homo-
geneous formation (Table S2, Supplementary Material).
In turn, both B2 dispersoids and Ti-rich oxides are more
suitable nucleation sites for each other than the bcc
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matrix because of the coherency along the <110 > B2 /
<100 > fcc directions (δ

〈100〉fcc
〈110〉B2 = 0.54%) (Table S2, Sup-

plementary Material). This means that if any of these
phases appear first in the bcc matrix, the heterogeneous
formation of another phase will be greatly alleviated.
Unfortunately, the precipitation sequence of the B2 phase
and Ti-rich oxides remains debatable. From the ener-
getic point, the independent nucleation of these phases
requires large concentration fluctuations: a simultaneous
local increase in the content of Ti and Co or Ti and O is
needed for the corresponding B2 phase or Ti-rich oxide
formation (Table S1, SupplementaryMaterial).Neverthe-
less, the experimentally observed higher fraction of hier-
archical B2+ fcc nanoparticles suggests the dominance
of the heterogeneous precipitation mechanism over the
homogeneous one.

It should also be noted that the emergence of sta-
ble (Co, Ti)-rich B2 dispersoids (and, possibly, Ti-rich
oxides) in the Nb30Mo30Ti20Co20 alloy can be antici-
pated even at T ≥ 1200 °C, according to the CALPHAD
data (Figure S2, Supplementary Material; [38]), thereby
significantly outperforming the temperature limit (<
1000 °C) of the current RHESAs. However, to obtain a
complete picture of the complex phase transformations
in the studied alloy, heat treatments at different temper-
atures and durations should be performed. These are the
goals of future studies.

Effect of precipitates onmechanical properties

Considering the slight alterations in the chemical compo-
sitions of the constitutive phases after annealing (Table
S1, Supplementary Material), we suggest other factors
resulting in negligible softening and more than two-
fold ductility increment in the Nb30Mo30Ti20Co20 alloy
(Figure 5). In refractory metals and alloys, impurities
profoundly affect their mechanical properties [39–41].
Specifically, a high oxygen content in a solid solution
increases the strength but leads to inevitable brittle-
ness [42–47]. In rare cases, controllable O-doping has
been shown to harden without significant ductility loss
[48,49]. For RHEAs, however, only two systematic stud-
ies have been conducted to elucidate the effect of O on the
mechanical performance. Chen et al. observed a rather
typical behaviour in ZrTiHfNb0.5Ta0.5Ox RHEAs when
O was added: the alloys became stronger at the expense
of the RT compression ductility [50]. Meanwhile, Lei
et al. revealed that the doping of a TiZrHfNb RHEAwith
2 at. % of O conquered the strength-ductility trade-off
by forming ordered complexes, changing the planar slip
to wavy; however, a higher O content deteriorated the
properties [51].

Interestingly, oxygen-induced embrittlement andhard-
ening can be removed by a simple heat treatment. Liu
and Inouye [42] returned the initial level of ductility to
an oxidised TZM alloy by annealing at T ≥ 1400 °C.
DiStefano and Chitwood [45] successfully utilised the
same procedure for an oxygen-contaminated Nb-1Zr
alloy. Both studies attributed annealing-invoked ductil-
ising to the formation of incoherent (Ti, Zr)- [42] or
Zr-rich [45] oxides, which scavenge excess O from the
solid solution. A similar heat treatment response appears
for the Nb30Mo30Ti20Co20 alloy: the compressive duc-
tility increased when semi-coherent Ti-rich oxides were
precipitated in the bcc matrix.

Lastly, we can roughly estimate the solid solution soft-
ening effect of O in the annealed Nb30Mo30Ti20Co20
alloy. The as-cast and annealed states showed a compar-
ative bulk oxygen content of ∼400 ppm (or ∼0.2%)
(Table 1). Assuming that all oxygen was in the solid
solution(s) or in the Ti-rich oxides in the as-cast or
annealed states, respectively, and following the depen-
dencies between the O content and the YS found in
[42,45,48,50,51] (Figure S3 and Table S3, Supplemen-
tary Material), the softening caused by O gettering was
evaluated to be �σ oxygen ∼100 MPa. In turn, the
decrease in strength could be partially compensated
by precipitation hardening. The overall contribution of
the multi-type B2, fcc, and B2+ fcc dispersoids to the
strength was estimated according to the Ashby–Orowan
equation (Supplementary Material, formula (S1) [52]) as
�σprecipitates ∼45 MPa. This indicates a good correla-
tion between the calculated oxygen depletion-induced
solid solution softening–precipitation hardening trade-
off (∼55 MPa) and the experimentally observed YS
decrease (�YSas−cast−annealed = 65 MPa).

The above data show that proper heat treatment result-
ing in the appearance ofmulti-type nanoparticles, such as
B2 and Ti-rich oxides, both in the form of individual and
hierarchical dispersoids, can be a promising strategy to
improve the strength-ductility combination in different
RHE(S)As. However, further research is required in this
direction.

Conclusions

In summary, in the search for novel RHESAs with a
possible operating temperature of ≥ 1200 °C, we intro-
duced the Nb30Mo30Ti20Co20 alloy. It had a dendritic
microstructure and comprised two dominant (Nb, Mo)-
rich bcc and (Co, Ti)-rich B2 phases and traces of
a (Ti, O)-rich fcc phase (Ti-rich fcc oxides). Anneal-
ing at 1200 °C led to the precipitation of multi-type
semi-coherent nanoparticles, namely scarce individual
(Co, Ti)-rich B2, (Ti, O)-rich fcc (Ti-rich oxides), and
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profuse hierarchical B2+ fcc inside the bcc phase. The
dominance of the hierarchical B2+ fcc dispersoids was
ascribed to the favourable heterogeneous nucleation due
to the perfect crystallographic matching ensured by the
Baker–Nutting orientation relationship.Oxygen trapping
by the Ti-rich oxides was recognised as the most proba-
ble reason for the greater than two-fold improvement in
the compressive RT ductility of the annealed alloy. Our
study is the first demonstration of B2 nanoparticle pre-
cipitation in RHESAs at 1200 °C and the evasion of the
oxygen-induced embrittlement of RHE(S)As by forming
Ti-rich oxides.
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