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SOME FREE BOUNDARY PROBLEMS ARISING IN ROCK MECHANICS

A. Meirmanov, O. Galtsev, and O. Galtseva UDC 519.6+532.5+556.3

Abstract. In the article we deal with some physical processes in rock mechanics, which are described
by free-boundary problems. Some of them are well known (Muskat problems), some of them are
completely new (in-situ leaching and dynamics of cracks in underground rocks).
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1. Introduction

The free-boundary problems are a subset of those partial differential equations devoted to initial
boundary-value problems in unknown domains for different types of differential equations. The term
unknown domain means that one must define the domain where the solution is to be found, together
with a solution of the problem. To define this free boundary we need one more boundary condition for
the same differential equations as compared with the regular boundary-value problem. This condition
is usually called a free boundary condition. The systematic study of such problems for elliptic differ-
ential equations was initiated by Monakhov in [26], and for the heat equation (the Stefan problem) by
Rubinstein [31]. Later, several books and papers mostly devoted to the Stefan problem [10, 20] have
appeared.

The free-boundary problems for the Navier–Stokes equations have been intensively studied by Solon-
nikov [34, 35].

The most frequently studied free-boundary problems are the Stefan problem, the Hele–Shaw prob-
lem, and the Muskat problem. This is because these problems arise from physical processes, which
are very important from a practical standpoint. For example, the Stefan problem describes phase
transitions in pure materials (melting and solidification) and has many applications in metallurgy,
and the Hele–Shaw and Muskat problems describe the motion of underground liquids and are very
important for hydrology and oil industry. Among these three problems the Stefan problem is the most
studied. This is confirmed by the fact that out of the free-boundary problems the Stefan problem has
the largest number of publications.

On the other hand, from a practical point of view there are some very important physical processes
in rock mechanics, which involve free boundaries, and which have been studied only by engineers. For
example, in-situ leaching, and the dynamics of cracks in underground rocks. In-situ leaching initially
involves drilling of holes into an ore deposit, then explosive or hydraulic fracturing may be used to
create open pathways in the deposit for leaching solution to penetrate. The leaching solution is pumped
into the deposit where it makes contact with the ore and dissolves part of it. The solution bearing the
dissolved ore content is then pumped to the surface and processed. This method allows the extraction
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of metals and salts from an ore body without the need for conventional mining involving drill-and-
blast, open-cut or underground mining. But existing mathematical descriptions of this process have
been very primitive and involve some postulates about rock dissolution, which have no solid basis in
classical continuum mechanics.

The latter problem, which we are going to study here, arises from the modeling of cracks in under-
ground rocks. Up to now there has been no mathematical model of crack dynamics in underground
rocks. For example, for metals this process is well studied [1]. Of course, this is an open question: is
there any movement of cracks or not? But if there is, it may explain how may earthquakes occur [14].
In the rest state a single crack may be represented as a connected domain filled by pore fluids. During
regular heat impulses, which come from the Earth’s core, the stress on the boundary between fluid
and solid skeleton grows up to some limit. After this limit the boundary of the crack starts to move
(a moving free boundary) and creates strong seismic waves.

For the Muskat problem we first consider the motion of two different liquids in the pore space of a
solid body and prove the existence and uniqueness of the classical solution. Next, under the restriction
that the solid body has a periodic structure, we derive the homogenized model, which still remains a
free-boundary problem.

We apply the same scheme for in-situ leaching and dynamics of cracks. We first derive mathematical
models, describing the processes at the pore (microscopic) level, and after that we find corresponding
homogenized models.

2. Muskat Problem

It is well known [32] that the Darcy system of filtration, describing the macroscopic flow of an incom-
pressible viscous liquid, is a result of exact homogenization of the Stokes system for an incompressible
viscous liquid occupying periodic pore space in an absolutely rigid solid body.

The more complicated macroscopic motion of two immiscible incompressible viscous liquids is gov-
erned by the Muskat problem. In this model one looks for the free boundary Γ(t) ⊂ Q, which separates
two different domains Q+(t) ⊂ Q and Q−(t) ⊂ Q, Q+(t) ∪ Γ(t) ∪ Q−(t) = Q, occupied by different
fluids. In each of the domains Q±(t) the liquid motion is described by its own Darcy system of filtra-
tion, and at the free boundary the normal velocities of the liquids coincide with the normal velocity
of the free boundary.

Thus, we may expect that, as in the case of the filtration of a single liquid, the Muskat prob-
lem should be a homogenization of the initial-boundary value problem for the Stokes system with a
nonhomogeneous liquid

μ�uε + gρεe = 0, ∇ · uε = 0,
dρε
dt

= 0,

in a periodic pore space Qε of an absolutely rigid solid body Q with the following boundary and initial
conditions

uε(x, t) = 0, x ∈ ∂Qε, (2.1)

ρε(x, 0) = ρ0ε(x), x ∈ Qε, (2.2)

where ρ0ε(x) = ρ+ = const, x ∈ Q+
ε (0), ρ

0
ε(x) = ρ− = const, x ∈ Q−

ε (0), Q
+
ε (0) ∪ Q−

ε (0) = Qε, μ is
the viscosity and ge is the acceleration due to gravity.

Due to the boundary condition (2.1), the contact points of the free boundary and the solid skeleton
will be permanently fixed at the initial position. Numerical implementations predict the appearance of
a water tongue, which grows with time (see Fig. 2.1). The gradual growth of the number of capillaries
(Fig. 2.2) leads to homogenization of the liquid motion. The domain occupied by the water tongues
at a fixed time becomes under homogenization a mushy region, where the concentration s of water
varies from 1 to 0 (Fig. 2.3 and Fig. 2.4).
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Fig. 2.1. Numerical simulation: successive positions of the free boundary in a single capillary

Fig. 2.2. Numerical homogenization for t=5.5

Now, if we return to the Muskat problem, we may see that the solution of the Muskat problem
corresponding to the macroscopic joint motion of two different liquids has a very simple structure.
The free boundary separates two liquids and moves with a constant velocity (Fig. 2.5).

Thus, we cannot obtain the Muskat problem of the liquid motion in the pore space of an absolutely
rigid body as a homogenization of the corresponding initial-boundary value problem for a Stokes
system with a nonhomogeneous liquid.

But, if we look at the motion of a nonhomogeneous liquid in an elastic solid body, then the situation
changes. The contact points of the free boundary and solid body begin to move, and homogenization
conserves the free boundary, which separates the two liquids [23].
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Fig. 2.3. Homogenization by increasing the number of capillaries. Concentration of
water s for increasing times (left to right)

t

x

S=1

S=0

t=t
0

0<S<1

Fig. 2.4. The limit of rigorous numerical upscaling

Fig. 2.5. The Muskat problem

Our approach does not depend on the dimension of the space R
n and the geometry of domains there.

Therefore, we restrict ourself to R
2 and to rectangles there. In its simplest setting the problem has

the following statement.
Let Qf ⊂ Q ⊂ R

2, where Q is a unit square Q = {x : −1 < xi < 1, i = 1, 2}, Qf = {x : −1 <

x1 < 1, −1
2 < x2 < 1

2}. In dimensionless variables the evolution of the flow is driven by the input

pressure and the force of gravity. More precisely, in this problem one must find the velocity uf (x, t),
pressure pf (x, t), and density ρf (x, t) of the nonhomogeneous liquid in Qf , and displacements us(x, t)

and pressure ps(x, t) of an elastic skeleton in Qs = Q\Qf from the following system of differential
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equations {
∇ · Pf + ρf e = 0, ∇ · uf = 0, x ∈ Qf , 0 < t < T,

∇ · Ps + ρse = 0, ∇ · us = 0, x ∈ Qs, 0 < t < T,
(2.3)

dρf
dt

≡ ∂ρf
∂t

+∇ · (ρfuf ) =
∂ρf
∂t

+ uf · ∇ρf = 0, x ∈ Qf , 0 < t < T, (2.4)

where Pf = 2μD(uf ) − pf I, D(u
f ) = 1

2

(∇uf + (∇uf )∗
)
, Ps = 2λD(us) − ps I, μ = const is the

viscosity of liquids, λ = const is the Lamé’s coefficient, e is a given vector, ρs is the density of the
solid body, and I is the unit tensor.

The mass and momentum conservation laws dictate the coincidence of velocities and normal tensions
of the liquid and solid components

uf =
∂us

∂t
, Pf · n = Ps · n (2.5)

on the common boundary S = ∂Qf ∩ ∂Qs with unit normal vector n.
The boundary condition on the lateral part S0 = {x2 = ±1} of the boundary ∂Q for 0 < t < T has

the form

us(x, t) = 0. (2.6)

At the “entrance”and “exit”boundaries S± = {x ∈ ∂Q : x1 = ∓1}{
Ps · e1 = −p+(x)e1, x ∈ S+

s , Pf · e1 = −p+(x)e1, x ∈ S+
f , 0 < t < T,

Ps · e1 = 0, x ∈ S−
s , Pf · e1 = 0, x ∈ S−

f , 0 < t < T,
(2.7)

where p+(x) is a given function, S±
f = S± ∩ ∂Qf , S

±
s = S± ∩ ∂Qs, and ei is the unit vector of the

xi-axis for i = 1, 2.
To simplify our considerations, we pass to the homogeneous boundary conditions at S±

Pi · e1 = 0, x ∈ S±
i , i = f, s, 0 < t < T, (2.8)

by introducing a new pressure

pf → pf − p0(x), p0(x) =
1

2
p+(x)(1 − x1). (2.9)

With this new pressure the dynamic equations take the form{
∇ · Pf + f + ρf e = 0, ∇ · uf = 0, x ∈ Qf , 0 < t < T ;

∇ · Ps + f = 0, ∇ · us = 0, x ∈ Qs, 0 < t < T,
(2.10)

where

f(x) = (1− χ(x))ρse+∇p0(x), (2.11)

and

χ(x) = 1, for x ∈ Qf , and χ(x) = 0, for x ∈ Qs.

Finally

us(x, 0) = 0, x ∈ S0. (2.12)

The initial and boundary conditions for density are equivalent to specifying the surface Γ0 that sepa-
rates two subdomainsQ±

f (0) initially occupied by different fluids. For the sake of simplicity we suppose

that

Γ(0) = {x ∈ Qf : x1 = h(x2), −1

2
< x2 <

1

2
}, (2.13)

and

−1

2
+ δ < h(x2) <

1

2
− δ, for − 1

2
< x2 <

1

2
(2.14)

with some 0 < δ < 1.
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Thus, we may expect that the free boundary Γ(t) will not touch the given boundaries S±, at least
for some time interval 0 < t < T.

At the boundaries S± for 0 < t < T and at initial moment t = 0, the density ρf is piecewise
constant and takes two positive values characterizing the distinct phases of the flow

ρf (x, t) = ρ± = const > 0, x ∈ S±
f , 0 < t < T, (2.15)

ρf (x, 0) = ρ0(x), x ∈ Qf , (2.16)

where ρ0(x) = ρ± for x ∈ Q±
f (0).

Suppose for simplicity that ρ− ≤ ρ0(x) ≤ ρ+. If the velocity uf (x, t) is sufficiently smooth, then
the Cauchy problem

dx

dt
= uf (x, t), t > t0, x|t=t0 = ξ

determines a mapping x = γ(ξ, t;uf ; t0), γ : Qf → Qf . In particular, the free boundary Γ(t) is

determined as a set Γ(t) = {x ∈ Qf : x = γ(ξ, t;uf ; 0), ξ ∈ Γ(0)}, and subdomains Q±
f (t) = {x ∈

Qf : ρf (x, t) = ρ±} as sets

Q±
f (t) = {x ∈ Qf : x = γ(ξ, t;uf ; 0), ξ ∈ Q±

f (0)} ∩ {x ∈ Qf : x = γ(ξ, t;uf ; t0), ξ ∈ S±
f , t0 > 0}.

It is shown that the evolution described by the above equations preserves the existence and unique-
ness of two subdomains Q±

f (t), each occupied by one of the fluids, that are separated at time t > 0 by

a regular free boundary Γ(t). Thus, the problem studied is equivalent to finding {u, pf , w, ps} and
the moving boundary Γ(t).

Throughout the section, we use the customary notation for function spaces and norms (see, e.g., [17]).
Thus, for 1 < q < ∞

u ∈ Lq(Ω) ⇒ ‖u‖q,Ω =
(∫

Ω

|u|qdx
) 1

q
< ∞, u ∈ L∞(Ω) ⇒ ‖u‖∞,Ω = lim

q→∞ ‖u‖q,Ω < ∞,

u ∈ W 1
q (Ω) ⇒ ‖u‖(1)q,Ω =

( ∫
Ω

|u|qdx) 1
q +

2∑
i=1

( ∫
Ω

| ∂u
∂xi

|qdx) 1
q < ∞,

u ∈ ◦
W

1

q (Ω) ⇒ u ∈ W 1
q (Ω), and u(x) = 0, x ∈ ∂Ω,

u ∈ W l
q(Ω) ⇒ ‖u‖(l)q,Ω =

( ∫
Ω

|u|qdx) 1
q +

∑
|m|=l

( ∫
Ω

|Dmu|qdx) 1
q < ∞,

Dmu =
∂|m|u

∂m1x1 . . . ∂mnxn
, m = (m1, . . . ,mn), mi ≥ 0, |m| = m1 + . . .+mn.

Next we introduce the space of functions with noninteger derivatives. For simplicity, we consider half-
spaces R

2
f = {x = (x1, x2) ∈ R

2 : |x1| < ∞, x2 > 1
2}, R2

s = {x = (x1, x2) ∈ R
2 : |x1| < ∞, x2 < 1

2},
with the boundary R = {x ∈ R

2 : |x1| < ∞, x2 = 1
2}. The space W

l− 1
2

2 (R) is the space of all

functions v(x1) with the norm ‖v‖(l−
1
2
)

2,R =
( ∞∫
−∞

|ξ|2l−1|v̂(ξ)|2dξ
) 1

2
, where v̂ is the Fourier transform of v:

v̂(ξ) = 1√
2π

∞∫
−∞

v(x1)e
−iξ x1dx1. By [17, Chap. 2, Theorem 2.3], ‖v‖(l−

1
2
)

2,R ≤ C1 ‖v‖(l)2,R2
j
≤ C2 ‖v‖(l−

1
2
)

2,R ,

j = f, s.

For smooth functions we define the following norms: |u|(0)Ω = sup
x∈Ω

|u(x)|, 〈u〉(α)Ω = sup
x,y∈Ω

|u(x)−u(y)|
|x−y|α .

We say that a function u(x) belongs to the space Cα(Ω) if |u|(α)Ω = |u|(0)Ω + 〈u〉(α)Ω < ∞; a function
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u(x) belongs to the space Ck(Ω) if |u|(k)Ω =
k∑

|m|=0

|Dmu|(0)Ω < ∞; and a function u belongs to the space

Ck+α(Ω) if |u|(k+α)
Ω = |u|(k)Ω +

∑
|m|=k

|Dmu|(α)Ω < ∞. We say that the surface Γ ∈ Ω is Ck+α regular, if

in local coordinates it is defined by Ck+α regular functions.

If u = u(x, t) and u(x, t) ∈ B for all 0 < t < T, then u ∈ Lq

(
(0, T );B

) ⇐⇒
T∫
0

‖u(., t)‖qBdt < ∞, and

for q = ∞ u ∈ L∞
(
(0, T );B

) ⇐⇒ sup
0<t<T

‖u(., t)‖B < ∞.

Finally, u ∈ C2,1(ΩT ), ΩT = Ω× (0, T ) if max
0<t<T

(|u(., t)|(2)Ω + |∂u∂t (., t)|
(0)
Ω

)
< ∞.

For any 0 < δ < 1 we put Q(δ) = {x ∈ Q : −1 + δ < x1 < 1 − δ}, Q(δ)
f = Q(δ)

⋂
Qf , G

(δ) =

Q(δ) × (0, T ), Gf = Qf × (0, T ), G
(δ)
f = Q

(δ)
f × (0, T ).

Our main result is the following theorem.

Theorem 2.1. Under conditions

‖f‖∞,Q = C0 < ∞, Γ(0) ∈ C1+α, 0 < α < 1,

the problem (2.4)–(2.6), (2.8), (2.10), (2.12), (2.15), (2.16) has a unique solution in the interval [0, T )
for some T > 0.

The components of this solution possess the following properties.

(i) For any 0 < δ < 1, and 0 < α < 1, the velocity u and pressure p satisfy the regularity conditions

u ∈ L∞
(
0, T ;W 3

2 (Q
(δ))

) ∩ L∞
(
0, T ;C1+α(Q(δ))

)
, p ∈ L∞

(
0, T ;W 2

2 (Q
(δ))

)
, equations (2.10) al-

most everywhere in Q× (0, T ), boundary conditions (2.6), (2.15), and initial conditions (2.12)
and (2.16) in the usual sense, and boundary conditions (2.5) and (2.8) in the sense of distri-
butions as an integral identity

∫
Ω

(
P
(
u(t), p(t)

)
: D(ϕ) + f · ϕ)dx = 0 for almost all 0 < t < T

and for any smooth solenoidal functions ϕ vanishing at x ∈ S0.
(ii) The free boundary Γ(t) is a surface of class C1,α at each time t ∈ [0, T ), and the normal velocity

Vn(x, t) of the free boundary in the direction of its normal n at position x is uniformly bounded,
sup

t∈(0,T )
x∈Γ(t)

|Vn(x, t)| < ∞.

(iii) The density ρ has bounded variation, ρ ∈ L∞
(
0, T ;BV (Q(δ))

)∩BV
(
Q(δ)× (0, T )

)
, and satisfies

the transport equation (2.4) in the sense of distributions as an integral identity
∫
ΩT

ρ
(∂ψ
∂t +

u · ∇ψ
)
dxdt = − ∫

Ω

ρ0(x)ψ(x, 0)dx for any smooth functions ψ, vanishing at t = T and x ∈ S±.

The time T of the existence of the classical solution depends on the behavior of the free boundary
Γ(t). Namely, let δ±(t) be the distance between Γ(t) and the boundary S± and δ(t) = min(δ−(t), δ+(t)).
Then δ(t) > 0 for all 0 < t < T and δ(t) → 0 as t → T.

Theorems on the existence of generalized solutions to the Navier–Stokes system for nonhomogeneous
incompressible fluids were obtained in e.g., [2, 4, 9, 11, 16, 17, 21, 29, 32, 33] (without detailed analysis
of the set where the density is discontinuous). The existence and uniqueness of the classical solution to
the Stokes equations for a nonhomogeneous liquid with Dirichlet boundary conditions have been proved
in [3], and with the Neumann boundary conditions in [25]. The weak solutions to the problem (2.3)–
(2.16) at the microscopic level for arbitrary smooth periodic pore space followed by homogenization
was considered in [21]. Let us call the obtained homogenized free-boundary problem describing the
motion of two immiscible incompressible viscous liquids at the macroscopic level as the generalized
Muskat problem.

498



3. In-situ Leaching

3.1. Microscopic description.

3.1.1. Mathematical model in the form of differential equations. In dimensionless variables x → x
L ,

t → t
T , v → T

L v, p → p∗ p, where L is the characteristic size of the domain Ω ⊂ R
3 under consideration,

T is the characteristic time of the process, the behavior of liquid in the pore space Ωf (t) ⊂ Ω is
described by the dynamic Stokes equation

αμ�v −∇ p = 0, (3.1)

for the pressure p and the velocity v of the liquid.
We will take a continuity equation in its generalized form [36], as the continuity equation of the

generalized motion of the continuum media containing the solid skeleton Ωs(t) ⊂ Ω, where v ≡ 0, and
the liquid in pores:

∂�

∂t
+∇ · (�χv) = 0. (3.2)

Here χ is the characteristic function of the pore space: χ(x, t) = 1 in Ωf (t) and χ(x, t) = 0 in Ωs(t),
Ω = Ωf (t) ∪ Γ(t) ∪ Ωs(t), Γ(t) = Ωf (t) ∩ Ωs(t).

The equation (3.2) is understood in the sense of distributions. For example, as an integral identity∫
ΩT

�
(∂ϕ
∂t + χv · ∇ϕ

)
dxdt = 0, ΩT = Ω × (0, T ) for the density �(x, t) = χ(x, t)�f +

(
1 − χ(x, t)

)
�s,

which holds for any smooth ϕ(x, t), vanishing at S+, S−, t = 0 and t = T.
In particular [36], (vn − dn)�f = −dn�s, x ∈ Γ(t), t > 0, or

vn = −dn δ, x ∈ Γ(t), t > 0, (3.3)

where dn is the normal velocity of Γ(t) in the direction of the outward to Ωf (t) normal n, and vn = v ·n
is the normal liquid velocity.

Finally, the continuity equation in its differential form in the pore space Ωf (t) for t > 0 takes the
form

∇ · v = 0. (3.4)

The concentration c of the reagent is governed by the diffusion–convection equation

∂c

∂t
+ v · ∇c = αc�c, (3.5)

and concentrations c1, c2, . . . , cn of products of chemical reactions are governed by transport equations

∂ci
∂t

+ v · ∇ci = 0, i = 1, . . . , n (3.6)

in Ωf (t) for t > 0.

In (3.1)–(3.6) αμ = μ
T Lg ρ 0 , αc = DT

L2 , p∗ = Lg ρ 0, δ =
(�s−�f )

�f
, μ is the fluid viscosity, χ(x, t)

is the characteristic function of the pore space (χ = 1 in Ωf (t) and χ = 0 in Ωs(t)), �s and �f are
dimensionless densities of the solid skeleton and the pore liquid correspondingly, correlated with the
mean density of water ρ 0, L is the characteristic size of the domain under consideration, T is the
characteristic time of the process, g is the value of acceleration due to gravity, ρc is the density of the
active component and D is a diffusivity coefficient.

Now we will try to formulate the basic boundary conditions for the concentrations c, c1, c2, . . . , cn
at the free boundary. First of all, we derive these conditions for one spatial variable.

Namely, let the pore space be given by Ωf (t) = {x : 0 < x < X(t)} and Γ(t) = {x : x = X(t)} be
the free boundary (see Fig. 3.1).
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Fig. 3.1. One-dimensional structure

One has ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂x
= 0, 0 < x < X(t),

∂c

∂t
+ v

∂c

∂x
= αc

∂2c

∂x2
, 0 < x < X(t),

αc
∂c

∂x
− v(t) c = 0 at x = 0,

∂ci
∂t

+ v
∂ci
∂x

= 0, 0 < x < X(t), ci = 0 at x = 0, i = 1, . . . , n.

(3.7)

Let M(t) =
X(t)∫
0

c(x, t)dx, Mi(t) =
X(t)∫
0

ci(x, t)dx, i = 1, . . . , n denote the total amounts of the concen-

tration of the reagent c and the concentrations ci, i = 1, . . . , n, of the products of chemical reactions
in Ωf (t).

First, we calculate the rate of change of these values in time:

dM

dt
=

dX

dt
c
(
X(t), t

)
+

X(t)∫
0

∂c

∂t
(x, t)dx =

dX

dt
c
(
X(t), t

)
+

X(t)∫
0

∂

∂x

(
αc

∂c

∂x
(x, t)− v(t) c(x, t)

)
dx

=
(dX
dt

(t)− v(t)
)
c(X(t), t) + αc

∂c

∂x
(X(t), t),

dMi

dt
=

dX

dt
ci
(
X(t), t

)
+

X(t)∫
0

∂ci
∂t

(x, t)dx =
dX

dt
ci
(
X(t), t

) −
X(t)∫
0

v(t)
∂ci
∂x

(x, t)dx

=
(dX
dt

(t)− v(t)
)
ci(X(t), t) =

�s
�f

dX

dt
ci(X(t), t), i = 1, . . . , n.

To calculate the integrals, we used integration by parts, the relation (3.3), and the boundary conditions
in (3.7) at x = 0.

Thus,
dM

dt
= (

dX

dt
− v)c+ αc

∂c

∂x
,
dMi

dt
=

�s
�f

dX

dt
ci, i = 1, . . . , n, at x = X(t). (3.8)

These relations mean that changes in the concentrations of the products of the chemical reactions

occur only at Γ(t). The values
dM

dt
,
dMi

dt
, i = 1, . . . , n are called the rates of chemical reactions and

are defined additionally by the laws of chemical kinetics as:

dM

dt
= −β c,

dMi

dt
= β βi c, i = 1, . . . , n, (3.9)

500



where β, βi, i = 1, . . . , n are given constants.
On the other hand, the mass conservation law implies

�s
dX

dt
− �c

dM

dt
=

n∑
i=1

�i
dMi

dt
, (3.10)

where �c, �1, . . . , �n are dimensionless densities of the reagent and the products of the chemical reac-
tions.

The relations (3.8)–(3.10) result in

dX

dt
(t) = β γ c

(
X(t), t

)
, c

(
X(t), t

)(
ci
(
X(t), t

) − c0i

)
= 0, i = 1, . . . , n, (3.11)

and (dX
dt

(t) + β − v(t)
)
c
(
X(t), t

)
+ αc

∂c

∂x

(
X(t), t

)
= 0, (3.12)

where �s γ =
n∑

i=1
�iβi − �c, c

0
i =

�f βi

γ �s
, i = 1, . . . , n. Coming back to (3.4)–(3.6), we conclude that in

the general case the mass conservation laws for the concentrations at the free boundary have the form

(dn + β − vn) c+ αc
∂c

∂n
= 0, x ∈ Γ(t), (3.13)

c (ci − c0i ) = 0, i = 1, . . . , n, x ∈ Γ(t), (3.14)

dn = β γ c, x ∈ Γ(t), (3.15)

where dn is the normal velocity of Γ(t) in the direction outward to Ωf (t) normal n, vn = v · n is the

normal liquid velocity, and
∂c

∂n
= ∇c · n is the normal derivative of c at Γ(t).

It remains to supplement these differential equations by the missing boundary conditions at the
known boundaries S±, S0, ∂Ω = S+ ∪ S− ∪ S0, and at the free boundary Γ(t), and initial conditions.

At the free boundary Γ(t), the tangent velocity of the pore liquid vanishes:

v − vn n = 0. (3.16)

At the boundaries S±, which model the injecting (S+) and the pumping (S−) wells, we assume that
the normal tension in the liquid is proportional to the given pressure(

2αμ D(v)− p I
) · n = −p±(x, t)n, (3.17)

where I is the unit matrix, p±(x, t)n is the normal pressure and

D(v) =
1

2
(∇v +∇v∗).

At the injecting wells S+ the concentrations of the reagent and the products of the chemical reactions
are given by the quantities:

c = c+(x, t), ci = 0, i = 1, . . . , n. (3.18)

At the pumping wells S− we have
∇c · n = 0, (3.19)

and on the liquid impermeable boundary S0 we obtain

v = 0, ∇c · n = 0. (3.20)

We add the following initial conditions to the problem:

Γ(0) = Γ0, c(x, 0) = c0(x), ci(x, 0) = 0, i = 1, . . . , n, x ∈ Ω0. (3.21)

The system of differential equations (3.1), (3.4), (3.5), and (3.6) completed with the boundary and
initial conditions (3.3) and (3.13)–(3.21) forms the desired mathematical model, describing leaching
at the pore scale.
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Note that the problem (3.1), (3.3)–(3.5), (3.13), (3.15)–(3.18), (3.19)–(3.21) for the liquid velocity
and the pressure, the concentration of the active admixture, and the free boundary is independent
of the problem (3.6), (3.14), (3.18), (3.21) for the concentrations of the products of the chemical
reactions.

Fig. 3.2. One-dimensional motion

3.1.2. Numerical implementations. For the case of one spatial variable (see Fig. 3.2) the problem’s
differential equations (3.1)–(3.3), (3.21) for an incompressible liquid in the domain 0 < x < X(t) for
t > 0 take the form

∂p

∂x
= 0,

∂v

∂x
= 0,

∂c

∂t
+ v

∂c

∂x
= αc

∂2c

∂x2
.

Boundary and initial conditions (3.13)–(3.21) are transformed to

p(0, t) = p+(t), c (0, t) = c+(t), t > 0,

dX

dt
= β γ c, x = X(t), t > 0,

(
dX

dt
+ β − v) c+ αc

∂c

∂x
= 0, x = X(t), t > 0,

v (t) = −dX

dt
(t)

(ρs − ρf )

ρf
, t > 0,

X(0) = X0, c(x, 0) = c0(x), 0 < x < X0.

For γ = 1, D = 2822 μm2

sec , L = 50 μm, T = 1 sec, and different values β and c+, we can calculate the
concentration c of the reagent at the free boundary and the position of this boundary (see Fig. 3.3–3.6).

For the case of two spacial variables the system of differential equations in the domain Ω = {0 <
x1 < L, 0 < x2 < H} (see Fig. 3.7) for the liquid velocity v, liquid pressure p and concentration c of
the reagent has the form

αμ�v −∇ p = 0,
∇ · v = 0,

∂c
∂t + v · ∇c = αc� c.

It is completed with boundary conditions at the free boundary Γ(t) for t > 0:

(dn + β − vn) c+ αc
∂c

∂n
= 0, vn = −dn δ, v − vn · n = 0, dn = β γ c.

At the boundary S+, which models a well:(
2αμD(v)− p I

) · n = −p+n, c = c+.
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Fig. 3.3. Positions of the free boundary for different β

Fig. 3.4. Concentration of the reagent at the free boundary for different β

Fig. 3.5. Positions of the free boundary for different c+

On the liquid impermeable boundary S0:

v = 0,
∂c

∂n
= 0.

The problem is ended with initial conditions

Γ(0) = Γ0, c(x, y, 0) = c0(x, y), (x, y) ∈ Ω0.

We have calculated the position of the free boundary and concentration of the reagent (see Fig. 3.10-

3.11) for D = 2822 μm2

sec , L = 56 μm, H = 42 μm, T = 0.01 sec, Γ0 = 14 μm, c0 = 0, p+ = 1000,
γ = 1, and different values β and c+ (see Fig. 3.8-3.9).

In Fig. 3.8 the black line shows the initial position of the free boundary and colored lines show the
positions of the free boundary at the moment t = 0.01 sec. for different β = [0.1; 1; 5; 10].

In Fig. 3.9 the black line shows the initial position of the free boundary and colored lines show the
positions of the free boundary at the moment t = 0.01 sec. for different c+ = [0.1; 0.3; 0.5; 0.7].
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Fig. 3.6. Concentration of the reagent at the free boundary for different c+

Fig. 3.7. Two-dimensional domain

Fig. 3.8. Position of the free boundary for different β

3.2. Macroscopic description.

3.2.1. Mathematical model as a system of integral identities. Let χ(x, t) be the characteristic function
of the pore space: χ = 1 in Ωf (t) and χ = 0 in Ωs(t).

First of all, we introduce the new pressure q = p − p0(x, t), where p0(x, t) = p±(x, t) for x ∈ S±.
With this new pressure the dynamic equation (3.1) and the boundary condition (3.9) take the form

∇ · (αμD(v, x)
) −∇ q = f ≡ ∇ p0, x ∈ Ωf (t), 0 < t < t0, (3.22)

(
αμD(v, x) − q I

) · n = 0, x ∈ S±, 0 < t < t0. (3.23)
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Fig. 3.9. Position of the free boundary for different c+

Fig. 3.10. The concentration of the reagent at t=0.002 sec.

Fig. 3.11. The concentration of the reagent at t=0.0052 sec.

To get the integral identity for the velocity, we multiply Stokes equation (3.22) by arbitrary smooth
function ϕ(x, t), vanishing at Γ(t) and integrate over domain Ωf (t)∫

Ωf (t)

(
αμD(v, x) : D(ϕ, x)− q∇ · ϕ+ f · ϕ

)
dx = 0, (3.24)

D(v, x) = 1
2

(∇v+ (∇v)∗
)
, Dij(v, x) =

1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
, and D(v, x) : D(ϕ, x) =

3∑
i,j=1

Dij(v, x)Dji(ϕ, x).

The continuity equation (3.2) and boundary condition (3.3) are equivalent to the integral identity∫
ΩT

((
χρf + (1 − χ)ρs

)∂ϕ
∂t

+ ρf v · ∇ϕ
)
dxdt = 0, (3.25)

505



which is valid for arbitrary smooth function ϕ vanishing at the boundaries of S+ and S− at t = 0 and
t = t0. In (3.23) ΩT = Ω× (0, T ) ⊂ R

4.
The diffusion equation (3.5) together with the boundary conditions (3.13), (3.19), and the initial

condition (3.21) is equivalent to the integral identity∫
ΩT

χ
(
(c+

1

γ
)
∂ξ

∂t
− (αc ∇ c− v c) · ∇ξ

)
dxdt = −

∫
Ω

χ0(x)
(
c0(x) +

1

γ

)
ξ(x, 0)dx, (3.26)

which is valid for all smooth functions ξ vanishing at t = t0 and on the boundaries of S±.
Finally, transport equations (3.6) together with boundary and initial conditions (3.14), (3.21) are

equivalent to the integral identities∫
ΩT

χ
(
ci
∂ψ

∂t
+

(
ci − ρs c

0
i

(ρs − ρf )

)
v · ∇ψ

)
dxdt = 0, i = 1, . . . , n (3.27)

for arbitrary smooth functions ψ, vanishing at the boundary S−, and t = t0.
To verify these identities we just reintegrate (3.26) and (3.27) using the Stokes theorem in the form

∫
ΩT

χ
(
A
∂ψ

∂t
+B · ∇ψ)dxdt =

T∫
0

∫
Ωf (t)

(
A
∂ψ

∂t
+B · ∇ψ

)
dxdt

= −
T∫
0

∫
Ωf (t)

ψ
(∂A
∂t

+∇ ·B
)
dxdt+

T∫
0

∫
Γ(t)

ψ
(
B · n−Adn

)
sinω dσdt.

Here A(x, 0) = 0, n is an outward to Ωf (t) unit normal to Γ(t) in R
3, ω is the angle between the

outward unit normal ν to ΓT =
⋃

0<t<T

Γ(t) in R
4 and the time-axis t.

For example, to derive (3.27) we multiply the differential equation (3.6) by arbitrary smooth func-
tions ψ, vanishing at the boundary S− and t = t0, integrate over Ωt0 , use the Stokes theorem and
boundary conditions (3.3), and (3.14) ρs

(ρs−ρf )
vn = vn− dn, and ci = c0i , when we arrive at the integral

over the boundary Γ(t).
In fact,

0 =

∫
ΩT

χψ
(∂ci
∂t

+ v · ∇ci
)
dxdt =

T∫
0

∫
Ωf (t)

ψ
(∂ci
∂t

+ v · ∇ci
)
dxdt

= −
T∫
0

∫
Ωf (t)

ci

(∂ψ
∂t

+ v · ∇ψ
)
dxdt+

T∫
0

∫
Γ(t)

ψ ci
(
vn − dn

)
sinω dσdt

= −
T∫
0

∫
Ωf (t)

ci

(∂ψ
∂t

+ v · ∇ψ
)
dxdt +

T∫
0

∫
Γ(t)

ψ
c0i ρs

(ρs − ρf )
vn sinω dσdt

= −
T∫
0

∫
Ωf (t)

ci

(∂ψ
∂t

+ v · ∇ψ
)
dxdt +

T∫
0

∫
Ωf (t)

c0i ρs
(ρs − ρf )

v · ∇ψdxdt
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−
T∫
0

∫
Ωf (t)

(
ci
∂ψ

∂t
+

(
ci − c0i ρs

(ρs − ρf )

)
v · ∇ψ

)
dxdt =

∫
ΩT

χ
(
ci
∂ψ

∂t
+
(
ci − c0i ρs

(ρs − ρf )

)
v · ∇ψ

)
dxdt.

The system of integral identities (3.24)–(3.27), completed with boundary and initial conditions (3.15),
(3.16), (3.18), (3.20), and (3.21) is equivalent to the initial setting (3.1), (3.3)–(3.6), (3.13)–(3.21) of
the problem as a system of differential equations with corresponding boundary and initial conditions.

3.2.2. Homogenization. It is well known [32] that some of the limits in the integral identity (3.24)
result from Darcy’s law

v = − 1

μ1
B(∇q + f), (3.28)

where v(x, t) = 〈V〉Y ≡ ∫
Y

V(x, t,y)dy and B is a symmetric positive definite matrix.

In the case of liquid filtration Darcy’s law is usually supplemented with the standard continuity
equation ∇ · v = 0. For our physical process of in-situ leaching Darcy’s law could be taken to be the
same, while the continuity equation must take into account the dissolution of the rocks by leaching.
This is why we choose a more accurate route from the exact description at the pore scale to the
macroscopic description via homogenization. All homogenization methods assume the presence of a
small parameter ε > 0. Roughly speaking, the homogenization itself consists of two parts: the study
of the family of solutions to the mathematical problem depending on a small parameter ε, and the
limiting procedure as the small parameter ε goes to zero.

Any physical problem contains dimensionless parameters (criteria), which somehow characterize
the problem. Some of them might be small, some of them might be large, but all of them are fixed
and we cannot let them be variable. On the other hand, when the physical problem has already been
formulated as a mathematical problem, we may consider a family of mathematical problems with a
variable small parameter and look for approximate mathematical models (homogenization), when this
small parameter goes to zero.

For all physical problems in rock materials there is a natural small parameter, which is the ratio

ε0 =
l

L
, where l is the average pore size. Thus, in our physical problem describing in-situ leaching,

we consider as the small parameter exactly this criterion.
Next, we formulate several assumptions, which enable us to obtain the mathematical setting of the

in-situ leaching with a small parameter, and find some homogenized model, describing this procedure
at the macroscopic level.

The main assumption is the behavior of dimensionless criteria

αμ = μ1 ε
2 + o(ε2), αc = D0 + o(ε), (3.29)

where μ1 and D0 are some positive constants.
Next, we consider initial-boundary value problem (3.24)–(3.27), (3.10)–(3.12), with the given func-

tion χ = χε(x, t) = χ(x, t, xε ) ≡ χ(x, t,y), which is 1-periodic in y ∈ Y = (0, 1)3, characterizing the

solid pore space Ωf (t), and let vε(x, t), qε(x, t), cε(x, t), and cεi (x, t), i = 1, . . . , n, be a solution of
this problem.

For given function χ(x, t,y) the problem (3.24)–(3.27), (3.10)–(3.12) has a unique solution vε(x, t),
qε(x, t), cε(x, t), and cεi (x, t), i = 1, . . . , n.

Now, using the well-known formula (see [37]) for 1-periodic in y function Φ(x, t,y)

lim
ε→0

∫
ΩT

Φ(x, t,
x

ε
)dxdt =

∫
ΩT

( ∫
Y

Φ(x, t,y)dy
)
dxdt,

which expresses the notion of a two-scale convergence (see [22, 27, 28]), we pass to the limit as ε → 0
in integral identities (3.24)–(3.27).
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To do that, we choose some two-scale convergent subsequences {vεk(x, t)}, {qεk)}), {cεk(x, t)}, and
{cεki (x, t)}, i = 1, . . . , n, as εk → 0 in the following sense⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vεk(x, t) = V(x, t,
x

εk
) + o(εk), qεk(x, t) = q(x, t) + o(εk),

cεk(x, t) = c(x, t) + o(εk), cεki (x, t) = ci(x, t) + o(εk),

∇cεk(x, t) = ∇c(x, t) +∇yC(x, t,
x

εk
) + o(εk).

(3.30)

Here V(x, t,y), C(x, t,y) are 1-periodic in y functions.

3.2.3. Mathematical model in a form of differential equations. For the sake of simplicity in what
follows we omit index k.

To get (3.28), we choose in (3.24) test functions of the form ϕ = ζ(x, t)ϕ0(
x

ε
), where ϕ0(y) is a

solenoidal smooth function vanishing at γ(t).
Here γ(t) is a boundary between “liquid” and “solid” parts Yf = {y ∈ Y : χ(x, t,y) = 1} and

Ys = {y ∈ Y : χ(x, t,y) = 0}.
After that, using representations (3.29) and (3.30), one arrives at the integral identity

0 =

∫
ΩT

ζ(x, t)χε
(
αμD(v

ε, x) : D(ϕ0, x)
)
+ (∇qε + f) · ϕ0(

x

ε
)
)
dxdt+ o(ε)

=

∫
ΩT

ζ(x, t)χε
(
ε2 μ1D

(
V(x, t,

x

ε
), x

)
: D

(
ζ(x, t)ϕ0(

x

ε
)
)
+ f · ϕ0(

x

ε
)
)
dxdt

+

∫
ΩT

ζ(x, t)χε ∇q · ϕ0(
x

ε
)dxdt + o(ε) = I1 + I2 + o(ε).

It is easy to see that I1 →
∫
ΩT

ζ(x, t)
( ∫
Yf

(
μ1 D

(
ϕ0(y), y

)
: D

(
V(x, t,y), y

)
+ f · ϕ0(y)

)
dy

)
dxdt, and

I2 =

∫
QT

ζ χε∇ q · ϕ0(
x

ε
)dxdt =

T∫
0

∫
Ωf (t)

ζ∇ q · ϕ0(
x

ε
)dxdt

= −
T∫
0

∫
Ωf (t)

q∇ ζ · ϕ0(
x

ε
)dxdt = −

∫
QT

χεq∇ ζ · ϕ0(
x

ε
)dxdt → −

∫
Ωt0

q∇ζ · (∫
Y

χ(x, t,y)ϕ0(y)dy
)
dxdt

=

∫
ΩT

ζ∇ q · ( ∫
Y

χ(x, t,y)ϕ0(y)dy
)
dxdt =

∫
ΩT

ζ
( ∫
Y

χ(x, t,y)∇ q · ϕ0(y)dy
)
dxdt

as ε → 0.
Thus,

0 =

∫
ΩT

ζ(x, t)
( ∫

Y

χ(x, t,y)
(
μ1D

(
ϕ0(y), y

)
: D

(
V(x, t,y), y

)
+ (∇ q + f) · ϕ0(y)

)
dy

)
dxdt

=

∫
ΩT

ζ(x, t)
( ∫
Yf

ϕ0(y)
(
− μ1 ∇y · D

(
V(x, t,y), y

)
+∇ q + f

)
dy

)
dxdt
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=

∫
ΩT

ζ(x, t)
( ∫
Yf

ϕ0(y)
(
− μ1

2
�y V(x, t,y) +∇ q + f

)
dy

)
dxdt

=

∫
ΩT

ζ(x, t)
( ∫
Yf

ϕ0(y)
(
− μ1

2
�y V(x, t,y) +∇ q + f

)
dy

)
dxdt = 0.

Due to the arbitrary choice of ζ(x, t) and ϕ0(y) the latter identity results in the following differential
equation

−μ1

2
�y V +∇y Q+∇ q + f = 0 (3.31)

in the domain Πf .
The term ∇y Q(x, t,y) in (3.31) appears because of the orthogonality of solenoidal vectors to the

gradients of scalar functions.
To solve this equation, we need boundary conditions for V on the boundary γ, separating Yf and

its open supplement Ys in Π: γ = ∂Πf
⋂

∂Πs. We do not need a boundary condition for V on the
other part of ∂Πf because of the periodicity of V in y.

The desired boundary condition
V = 0, y ∈ γ (3.32)

follows from the identity V(x, t,y)
(
1 − χ(x, t,y)

)
= 0, y ∈ Y, which, in turn, is the result of the

two-scale convergence in the evident identity vε(x, t)
(
1− χ(x, t, xε )

)
= 0, x ∈ Y.

To derive the microscopic continuity equation, we pass to the limit as ε → 0 in the integral iden-

tity (3.25) with test functions ϕ = εϕ0(x, t)ϕ1(
x

ε
), where ϕ0 are arbitrary smooth functions in variables

x and t vanishing at t = 0 and t = T, and ϕ1(y) is a 1-periodic in y smooth function vanishing at γ:

0 =

∫
ΩT

(
(χερf + (1− χε)ρs)

∂ϕ

∂t
+ ρf v

ε · ∇xϕ
)
dxdt

=

∫
ΩT

ϕ0(x, t)ρf V(x, t,
x

ε
) · ∇yϕ1dxdt+ o(ε) →

∫
ΩT

ϕ0(x, t)
( ∫
Y

ρf V(x, t,y) · ∇yϕ1dy
)
dxdt = 0.

The arbitrary choice of functions ϕ0 and ϕ1 results in the microscopic continuity equation

∇ ·V = 0 (3.33)

in Yf .

3.3. Darcy’s law. Let v(x, t) = 〈V〉 =
∫
Y

V(x, t,y, τ)dy and 2
μ1
(∇ q + f) =

3∑
i=1

zi(x, t)ei, where

{e1, e2, e3} is the standard orthogonal Cartesian basis in R
3.

To find representation (3.28) for the liquid velocity v in terms of microstructure, we solve the

problem (3.31), (3.32), (3.33) using decomposition V(x, t,y, τ) =
3∑

i=1
Vi(y) zi(x, t). The functions

Vi(y) and Qi(y) for i = 1, 2, 3 satisfy in Yf the following periodic boundary-value problems

−�y V
i +∇y Q

i + ei = 0, y ∈ Yf , (3.34)

∇ ·Vi = 0, y ∈ Yf , (3.35)

Vi = 0, y ∈ γ. (3.36)

Therefore,

V =

3∑
i=1

Vi(y) zi = − 2

μ1

( 3∑
i=1

Vi ⊗ ei
)
(∇ q + f). (3.37)
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Here a⊗b is a matrix of order 2, which is defined as (a⊗b) · c = a(b · c). Coming back to (3.28), we
get

v =

3∑
i=1

〈Vi〉Y zi = − 1

μ1
B · (∇ q + f), (3.38)

where

B = 2

3∑
i=1

〈Vi〉Y ⊗ ei. (3.39)

The limit as ε → 0 in (3.25) with test function ϕ(x, t), vanishing at the boundaries S+ and S−, and
at t = 0 and t = T results in the macroscopic continuity equation:

0 =

∫
ΩT

((
χερf + (1− χε)ρs

)∂ϕ
∂t

+ ρf v
ε · ∇ϕ

)
dxdt

=

∫
ΩT

((
χ(x, t,

x

ε
)ρf +

(
1− χ(x, t,

x

ε
)
)
ρs
)∂ϕ
∂t

+ ρf V(x, t,
x

ε
) · ∇ϕ

)
dxdt+ o(ε)

→
∫
ΩT

(
m(x, t)(ρf − ρs) + ρs

)∂ϕ
∂t

+ ρf v(x, t) · ∇ϕ
)
dxdt = 0,

where m(x, t) =
∫
Y

χ(x, t,y)dy is the porosity of the pore space Ωf (t).

Due to the arbitrary choice of ϕ(x, t) the latter identity is equivalent to the desired differential
equation

∂m

∂t
=

ρf
ρs − ρf

∇ · v (3.40)

in the domain ΩT .
As before, we simply pass to the limit as ε → 0 in the corresponding integral identity (3.26) for the

acid concentration with arbitrary smooth functions ξ(x, t), vanishing at t = T and at boundaries of
S±:

−
∫
Ω

χ0(x)
(
c0(x) +

1

γ

)
ξ0(x, 0)dx =

∫
ΩT

χε
(
(cε +

1

γ
)
∂ξ

∂t
− (αc∇ cε − vε cε) · ∇ξ

)
dxdt

=

∫
ΩT

χ(x, t,
x

ε
)
(
(c+ β)

∂ξ

∂t
− αc

(∇ c+∇yC(x, t,
x

ε
)
) − cV(x, t,

x

ε
) · ∇ξ

)
dxdt + o(ε)

→
∫
ΩT

m(x, t)
(
(c+

1

γ
)
∂ξ

∂t
− (αc A · ∇ c− cv) · ∇ξ)

)
dxdt.

Thus, ∂
∂t

(
m(c+ 1

γ )
)
= ∇ · (αc A · ∇ c− cv), where

A(x, t) = m(x, t) I +
3∑

i=1

〈∇yC
(i)(x, t,y)〉Yf

⊗ ei. (3.41)

Functions C(i)(x, t,y) are defined as solutions to the periodic boundary-value problem (see [22])

∇y ·
(
χ(x, t,y)

(∇yC
(i)(x, t,y) + ei

))
= 0, y ∈ Y. (3.42)

To get macroscopic transport equations for the concentrations of products of chemical reactions,
we use representations (3.30) and pass to the limit as ε → 0 in the corresponding integral identities
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for the concentrations of products of chemical reactions

Iεi ≡
∫
ΩT

χε
(
cεi
∂ψ

∂t
+

(
cεi −

ρs c
0
i

(ρs − ρf )

)
vε · ∇ψ

)
dxdt = 0, i = 1, . . . , n,

which are valid for arbitrary smooth functions ψ, vanishing at the boundary S−, and t = T.
One has

Iεi =

∫
ΩT

(
ciχ(x, t,

x

ε
)
∂ψ

∂t
+

(
ci − ρs c

0
i

(ρs − ρf )

)
V(x, t,

x

ε
) · ∇ψ

)
dxdt+ o(ε)

→
∫
ΩT

(
mci

∂ψ

∂t
+

(
ci − ρs c

0
i

(ρs − ρf )

)
v · ∇ψ

)
dxdt = 0.

Therefore, ∫
ΩT

ψ
( ∂

∂t
(mci) +∇ ·

((
ci − ρs c

0
i

(ρs − ρf )

)
v
))

dxdt = 0,

or ∂
∂t(mci) + ∇ ·

((
ci − ρs c0i

(ρs−ρf )

)
v
)
= 0. Using continuity equation (3.40) we arrive at the following

transport equations m ∂ci
∂t +v ·∇ci =

ρs
ρf
(ci−c0i ) for the concentrations of product of chemical reactions

ci for i = 1, . . . , n in the domain ΩT .

3.3.1. Initial-boundary value problem, describing in-situ leaching at the macroscopic level. Gathering
all this together we get the final system of differential equations, describing the physical process in
consideration at the macroscopic level.

This system consists of Darcy’s law

v = − 1

μ1
B(∇q + f) (3.43)

and the nonhomogeneous continuity equation

∇ · v = δ
∂m

∂t
, δ =

ρs − ρf
ρf

, (3.44)

for the velocity and pressure of the liquid, the diffusion–convection equation

∂

∂t

(
m(c+

1

γ
)
)
= ∇ · (αc A · ∇ c− cv) (3.45)

for the acid, and transport equations

m
∂ci
∂t

+ v · ∇, ci =
ρs
ρf

(ci − c0i ) (3.46)

for the concentrations of the products of chemical reactions ci, i = 1, . . . , n, in the domain ΩT .
The problem is completed with the following boundary and initial conditions.
At the pumping wells S+ ⊂ ∂Ω for 0 < t < T the pressure of the liquid and concentrations of the

acid and products of chemical reactions are known functions

p = p+(x, t), (3.47)

ci = 0, i = 1, . . . , n, c = c+(x, t). (3.48)

At the production wells S− ⊂ ∂Ω for 0 < t < T

p = p−(x, t), (3.49)

c = c+(x, t). (3.50)
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At the impermeable boundary S0 ⊂ ∂Ω for 0 < t < T

∇c · n = 0, (3.51)

v · n = 0. (3.52)

Matrix B in (3.43) is defined in (3.34)–(3.37), (3.39), and matrix A is defined in (3.41)-(3.42).
In turn, definitions of m, B and A contain the function χ(x, t,y), its behavior for 0 < t < T is

governed by the equation
∂χ

∂t
+ β γ c(x, t) |∇yχ| = 0 (3.53)

in the domain Y.
At the initial time

c(x, 0) = c0(x), ci(x, 0) = 0, x ∈ Ω, i = 1, . . . , n, (3.54)

χ(x, 0,y) = χ0(x,y), x ∈ Ω, y ∈ Y. (3.55)

Fig. 3.12. The structure of the pore space

Fig. 3.13. The macroscopic model: concentration of product of chemical reaction at
the pumping wells for different c+

3.3.2. Numerical implementations. For the case of one spatial variable, let the pore space be defined
by symmetric cylinders of radius r (see Fig. 3.12), Ω = {0 < x < 1}, S+ = {x = 0}, and S− = {x = 1}.
The symmetry of the pore space Yf implies the diagonal form of matrices A and D: A = diag(k),
D = diag(D0). These values k and D0 almost do not change for small variations of m and we may
assume that they are constants. Under these assumptions the porosity m of the pore space is a known
function of the radius r: m = F (r) = 1 − (1 −m0)(

r
r0
)2, where m0 and r0 are given initial values of

the porosity m and radius r, the system (3.43)–(3.55) takes the form:

v = − k

μ1

∂ p

∂x
,
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Fig. 3.14. The macroscopic model: concentration of product of chemical reaction at
the pumping wells for different λ

Fig. 3.15. The macroscopic model: concentration of the acid at the pumping wells for
different c+

Fig. 3.16. The macroscopic model: concentration of the acid at the pumping wells for
different λ

for k and μ1 as constant values,
∂ v

∂x
= δ

∂ m

∂t
,

∂

∂t

(
m (c+

1

γ
)
)
=

∂

∂x
(αc

∂ c

∂x
− v c),

m
∂ci
∂t

+ v
∂ ci
∂x

= −(
δ(ci − c0i ) + ci

)∂m
∂t

,

∂r

∂t
= λ c(x, t),
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p(0, t) = p+(t), p(1, t) = p−(t), t > 0,

ci(0, t) = 0, i = 1, . . . , n, c(0, t) = c+(t),
∂ c

∂x
(1, t) = 0,{

c(x, 0) = c0(x), ci(x, 0) = 0, i = 1, . . . , n, r(x, 0) = r0(x),

m(x, 0) = m0(x) ≈ π r20(x) + 2
(
r20(x)− 2π r30(x)

)
.

For δ = 1.5, γ = 1, c01 = 0.001, αc = 0.0004, T = 6993 sec, p+ = 1000, p− = 0, c0 = 0, r0 = 2−1 we
calculate concentration c1 of the first product of chemical reactions at the pumping wells for different
values of c+ = 0.1; 0.15; 0.2 with fixed λ = 1, and for different values of λ = 0.1; 1; 10 with fixed
c+ = 0.2 (see Figs. 3.13–3.16).

Fig. 3.17. The concentration of the reagent at t=360 days

Fig. 3.18. The concentration of the reagent at t=720 days

For the case of two spacial variables and the system of differential equations in the domain Ω = {0 <
x1 < L, 0 < x2 < H} (see Fig. 3.7) we have studied the initial-boundary value problem, describing
in-situ leaching at the macroscopic level (3.43)–(3.55) and for δ = 1.5, γ = 1, c01 = 0.01, αc = 0.004,
p+ = 1000, p− = 0, c0 = 0 we have calculated concentration c1 of the first product of chemical
reactions at the pumping wells for different moments of time with fixed c+ = 1 (see Fig. 3.17-3.18).

4. Dynamics of Cracks in Underground Rocks

4.1. Accumulation of the energy in a single crack: the microscopic (pore) level. Let Ω0

be a bounded domain with a C2 continuous boundary S = ∂Ω0 and Ω = R
3\Ω0. We suppose that Ω

is a poroelastic medium, which consists of the solid skeleton Ωs and pore space Ωf , and Ω0 is a single
crack. The crack Ω0 and pore space Ωf are filled by the same liquid.

In dimensionless variables x → x
L , w → w

L , t → t
τ , ρ → ρ

ρ 0 , the evolution of the displacements w,

pressure p, and temperature ϑ of the solid skeleton is governed in Ωs for t > 0 by the nonisothermal
Lamé equations [22]

ατ�s
∂2w

∂t2
= ∇ · Ps, (4.1)
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αp,s
∂p

∂t
+∇ · ∂w

∂t
= 0, (4.2)

∂ϑ

∂t
= �ϑ. (4.3)

The velocity v = ∂w
∂t , pressure p, and temperature ϑ of the liquid satisfy in Ωf and Ω0 for t > 0 the

Stokes system for a viscous compressible thermofluid

ατ�f
∂2w

∂t2
= ∇ · Pf , (4.4)

αp,f
∂p

∂t
+∇ · ∂w

∂t
= 0, (4.5)

∂ϑ

∂t
= �ϑ. (4.6)

On the boundaries Sf = ∂Ωs ∩ ∂Ω0 ⊂ S and Γ = ∂Ωs ∩ ∂Ωf between Ωs and Ω0, and between Ωs

and Ωf correspondingly, displacements (velocities), normal tensions, temperature, and heat fluxes are
continuous:

lim
x→x0∈Sf

x∈Ωs

w(x, t) = lim
x→x0∈Sf

x∈Ω0

w(x, t), lim
x→x0∈Sf

x∈Ωs

ϑ(x, t) = lim
x→x0∈Sf

x∈Ω0

ϑ(x, t), (4.7)

lim
x→x0∈Sf

x∈Ωs

Ps(x, t) · n = lim
x→x0∈Sf

x∈Ω0

Pf (x, t) · n, lim
x→x0∈Sf

x∈Ωs

∂ϑ

∂n
(x, t) = lim

x→x0∈Sf

x∈Ω0

∂ϑ

∂n
(x, t), (4.8)

lim
x→x0∈Γ
x∈Ωs

w(x, t) = lim
x→x0∈Γ
x∈Ωf

w(x, t), lim
x→x0∈Γ
x∈Ωs

ϑ(x, t) = lim
x→x0∈Γ
x∈Ωf

ϑ(x, t), (4.9)

lim
x→x0∈Γ
x∈Ωs

Ps(x, t) · n = lim
x→x0∈Γ
x∈Ωf

Pf (x, t) · n, lim
x→x0∈Γ
x∈Ωs

∂ϑ

∂n
(x, t) = lim

x→x0∈Γ
x∈Ωf

∂ϑ

∂n
(x, t). (4.10)

The surface S\Sf is the boundary between the liquid in Ωf and the liquid in Ω0, and we do not need
any boundary condition there because it is the same liquid.

The problem is completed with initial conditions

w(x, 0) =
∂w

∂t
(x, 0) = 0, x ∈ R

3, (4.11)

ϑ(x, 0) = ϑ0(x), x ∈ R
3. (4.12)

In (4.7)–(4.10) n is a normal vector to the boundary Γ, Pf = αμD(x,v)−(p+α ϑ)I, Ps = αλD(x,w)−
(p + αϑ)I, D(x,u) = 1

2

(∇u+∇u∗), ατ = L
gτ2

, αμ = 2μ
τLg ρ 0 , αλ = 2λ

Lg ρ 0 , αp,f = Lg
�f c 2

f
, αp,s =

Lg
�s c 2

s
, L

is the characteristic size of the physical domain in consideration, τ is the characteristic time of the
physical process, ρ 0 is the mean density of water, g is the acceleration due to gravity, �f and �s are
the respective mean dimensionless densities of the liquid in pores and the solid skeleton, correlated
with the mean density of water ρ 0, μ = const is the viscosity of the liquid, λ = const is the Lamé’s
coefficient of the solid skeleton, and I is the unit tensor. Positive constants cf and cs are the speed of
compressive sound waves in the pore liquid and in the solid skeleton respectively [22].

Function ϑ0 is infinitely smooth
ϑ0 ∈ C∞(R3) (4.13)

and has a finite support.
Dimensionless criteria ατ , αμ, αλ are different for different physical processes. Some of them might

be small, some of them might be large. Accumulation in time of the energy in cracks is a long-term
process. Therefore ατ and αμ are sufficiently small, while αλ is close to unity.

It is clear that the mathematical model of a physical process should be as simple as possible, but
must still describe all of its main features. That is why we use homogenization to simplify exact
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mathematical models at the pore scale. Note that any additional term in a mathematical model at
the pore scale creates additional technical problems in the homogenization. Therefore, we should do
all simplifications before homogenization.

For joint motion of the elastic skeleton and liquid in pores when the velocity of acoustic waves is

so great that they do not play any significant role, one usually neglects the inertial term ατ
∂2w

∂t2
in

dynamic equation (4.1) for the elastic skeleton:

∇ · Ps = 0, x ∈ Ωs, t > 0. (4.14)

The second significant simplification is the assumption that

αμ = μ ε2, (4.15)

where ε = l
L is the dimensionless pore size and l is the average size of pores.

This assumption for the stationary Stokes system results in the well-known Darcy’s law for liquid
motion in the pores of an absolutely rigid body.

But if we consider a joint motion of the viscous compressible liquid in pores and in a reservoir
governed by the stationary Stokes system under this assumption, then after homogenization we arrive
at the system of differential equations

∇ p+ f = 0, αp,f
∂p

∂t
+∇ · v = 0

in the reservoir, which does not determine the motion inside the crack.
Thus, combining the nonstationary Lamé’s equations and the Stokes system (4.1) and (4.4) is the

best method to describe the joint motion of the elastic skeleton, the liquid in pores and the liquid in
the crack.

To estimate displacements, we multiply equation (4.1) by
∂w

∂t
and integrate the result of multi-

plication over the domain Ωs. Next we multiply equation (4.4) by
∂w

∂t
and integrate the result of

multiplication over the domains Ωf and Ω0 and sum the integrals, obtaining the following expressions
after integration by parts:

ατ

2

d

dt

∫
R3

((
(1− χ0)χ+ χ0

)
�f + (1− χ)�s

)
|∂w
∂t

(x, t)|2dx

+
αλ

2

d

dt

∫
R3

(1− χ0)(1 − χ)D
(
x,w(x, t)

)
: D

(
x,w(x, t)

)
dx

+ αμ

∫
R3

(
(1− χ0)χ

ε + χ0

)
D
(
x,

∂w

∂t
(x, t)

)
: D

(
x,

∂w

∂t
(x, t)

)
dx

−
∫
Ωs

p(x, t)∇ · ∂w
∂t

(x, t)dx −
∫

Ωf∪Ω0

p(x, t)∇ · ∂w
∂t

(x, t)dx = α

∫
R3

ϑ(x, t)∇ · ∂w
∂t

(x, t)dx.

Integrals over the boundary Γ disappear due to boundary conditions (4.7)–(4.10).

In the sequel, we exclude∇·∂w
∂t

in the last three terms using equations (4.2) and (4.5), and integrate

the result with respect to time over the interval (0, T )

ατ

2

∫
R3

(
χ�f + (1− χ)�s

)∂w
∂t

(x, t)|2dx+
αp,s

4

∫
Ωs

|p(x, t)|2dx+
αp,f

4

∫
Ωf∪Ω0

|p(x, t)|2dx
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+
1

4αp,s

∫
Ωs

|∇ ·w(x, t)|2dx+
1

4αp,f

∫
Ωf∪Ω0

|∇ ·w(x, t)|2dx+
αλ

2

∫
Ωs

D
(
x,w(x, t)

)
: D

(
x,w(x, t)

)
dx

+ αμ

T∫
0

∫
Ωf∪Ω0

D
(
x,

∂w

∂t
(x, t)

)
: D

(
x,

∂w

∂t
(x, t)

)
dxdt

= α

∫
R3

ϑ(x, t)∇ ·w(x, t)dx− α

T∫
0

∫
R3

∂ϑ

∂t
(x, t)∇ ·w(x, t)dxdt. (4.16)

The temperature ϑ and its time derivative
∂ϑ

∂t
are bounded and tend to zero as t → ∞. It follows

from the equations and boundary conditions, and from [17] that we have

ϑ(x, t) =
1

(4πt)
3
2

∫
R3

exp
(− |x− y|

4t

)
ϑ0(y)dy (4.17)

and (4.13).
Thus,

max
0<t<∞

(
ατ

∫
R3

|∂w
∂t

(x, t)|2dx+

∫
Ωs

D
(
x,w(x, t)

)
: D

(
x,w(x, t)

)
dx

)

+ max
0<t<∞

∫
R3

|p(x, t)|2dx+ max
0<t<∞

∫
R3

|∇ ·w(x, t)|2dx

+ αμ

∞∫
0

∫
Ωf∪Ω0

D
(
x,

∂w

∂t
(x, t)

)
: D

(
x,

∂w

∂t
(x, t)

)
dxdt ≤ C,

where C depend only on the norms on the interval [0,∞) of ϑ and
∂ϑ

∂t
given by (4.17).

Let χ0 be the characteristic function of the domain Ω0, and χ be the characteristic function of the
domain Ωf : χ0(x) = 1 for x ∈ Ω0 and χ0(x) = 0 for x ∈ R

3\Ω0, χ(x) = 1 for x ∈ Ωf and χ(x) = 0
for x ∈ Ωs.

The latter estimate shows that the problem (4.1)–(4.5), (4.7), (4.8), (4.12)–(4.14) has a unique weak
solution in the sense of distributions: functions w, p, and ϑ satisfy integral identity

− ατ

T∫
0

∫
R3

(
�f

(
χ0 + (1− χ0)χ

)
+ �s(1− χ0)(1− χ)

)∂w
∂t

· ∂ϕ
∂t

dxdt

+

T∫
0

∫
R3

(
(1− χ0)

(
χPf + (1− χ)Ps

)
+ χ0 Pf

)
: D(x, ϕ)dxdt = 0 (4.18)

for any smooth functions ϕ with compact support, and the continuity equation(
χαp,f + (1− χ)αp,s

)
p+∇ ·w = 0 (4.19)

in the usual sense in R
3 for any interval 0 < t < T.

Let

517



Π(Ω, t) =

∫
R3

αλ(1− χ0)(1− χ)D
(
x,w(x, t)

)
: D

(
x,w(x, t)

)
dx

+

∫
R3

(
αp,f

(
χ0 + (1− χ0)χ

)
+ (1− χ0)(1− χ)αp,s

)
|p(x, t)|2dx

denote the potential energy of the domain Ω at time t, and as Π(Ω0, t) =
∫
R3

αp,f χ0 |p(x, t)|2dx we

denote the potential energy of the crack Ω0 at the same moment t.
At the at t = 0 Π(Ω, 0) = Π(Ω0, 0) = 0. Only relations (4.16) show how potential energies Π(Ω, t)

and Π(Ω0, t) behave after the heat impact. Will they be positive? And if they are positive then will
they preserve their strictly positive values as T → ∞?

This means exactly the accumulation of the energy in the crack during the heat impact, if Π(Ω, t)
and Π(Ω0, t) preserve their strictly positive values as T → ∞. But we cannot state exactly this fact

because of the presence of viscous energy I∞ = αμ

∞∫
0

∫
R3

D
(
x, ∂w∂t (x, t)

)
: D

(
x, ∂w∂t (x, t)

)
dxdt. This is

certainly strictly positive and the other term on the right-hand side of (4.16) might be zero at infinity.
This is why we are going to analyze this situation for the homogenized system under the assumption

αμ → 0 as ε → 0.

4.2. Energy accumulation in a single crack: the macroscopic description. Let a pore space
Ωf be defined by the characteristic function χε(x) = χ(xε ) with 1-periodic in y function χ(y), y ∈ Y,

Y = (0, 1)3 ∈ R
3, Yf = {y ∈ Y : χ(y) = 1}, Ys = {y ∈ Y : χ(y) = 0}. The boundary γ between Yf

and Ys is supposed to be Lipschitz continuous.
We look for the homogenized system under the following assumptions: αμ = μ3 ε

3, ατ = τ0,
αλ = λ3 ε

3, where μ3, τ0, and λ3 do not depend on ε.
Let for given ε > 0 functions wε, pε, and ϑε be a solution of problem (4.1)–(4.12). We suppose that⎧⎪⎨

⎪⎩
χ0(x)wε(x, t) = χ0(x)wf (x, t) + o(ε),(
1− χ0(x)

)
χε(x)wε(x, t) =

(
1− χ0(x)

)
χε(x)w(x, t) + o(ε),(

1− χ0(x)
)(
1− χε(x)

)
wε(x, t) =

(
1− χ0(x)

)(
1− χε(x)

)
w(x, t) + o(ε),

(4.20)

pε(x, t) = χ0pf (x, t) + (1− χ0)p(x, t) + o(ε). (4.21)

To derive homogenized dynamic equations, we use representations (4.20)-(4.21) in the integral
identity (4.18) and pass from there to the limit as ε → 0

0 =

T∫
0

∫
R3

ατ

(
�f

(
(1− χ0)χ

ε + χ0

)
+ �s(1− χ0)(1− χε)

)∂wε

∂t
· ∂ϕ
∂t

dxdt

+

T∫
0

∫
R3

(
χ0(pf+αϑ)+(1−χ0)(p+αϑ)

)∇ · ϕdxdt−
T∫
0

∫
R3

αμ

(
(1−χ0)χ

ε+χ0

)
D
(
x,

∂wε

∂t
) : D

(
x, ϕ)dxdt

−
T∫
0

∫
R3

αλ(1− χ0)(1 − χε)D
(
x,wε) : D

(
x, ϕ) dxdt + o(ε) → I,

I =

T∫
0

∫
R3

(
τ0�f

∂wf

∂t
+ �̂(1− χ0)

∂w

∂t

) · ∂ϕ
∂t

+
(
χ0 (pf + αϑ) + (1− χ0)(p + αϑ)∇ · ϕ) dxdt = 0,

where �̂ = m�f + (1−m) �s.
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To derive the macroscopic continuity equation, we consider a corresponding mass conservation law
in a form of the integral identity at the microscopic level. To this end, we multiply equations (4.2)
and (4.5) by a test function ξ with compact support, integrate by parts over corresponding domains
and sum results
T∫
0

∫
R3

((
αp,f

(
χ0 pf + (1− χ0)χε p

)
+αp,s (1− χ0)(1−χε) p

)
ξ − (

χ0wf + (1− χ0)w
) · ∇ξ

)
dxdt = o(ε).

After the limit as ε → 0 we arrive at the integral identity

T∫
0

∫
R3

((
αp,f

(
χ0 pf + (1− χ0)mp

)
+ αp,s (1− χ0)(1−m) p

)
ξ − (

χ0wf + (1− χ0)w
) · ∇ξ

)
dxdt = 0,

which is equivalent to the macroscopic continuity equation

ĉp p+∇ ·w = 0

in Ω for t > 0 (χ0 = 0), where ĉp = mαp,f + (1−m)αp,s, and the continuity equation

αp,f pf +∇ ·wf = 0

in Ω0 for t > 0 (χ0 = 1).

4.2.1. A joint motion of the elastic body and the liquid in crack. This joint motion is described by
the system of integral identities

T∫
0

∫
R3

(
τ0
(
�fχ0

∂wf

∂t
+ �̂(1−χ0)

∂w

∂t

) · ∂ϕ
∂t

+
(
χ0 (pf +αϑ)+ (1−χ0)(p+αϑ)

)∇ ·ϕ
)
dxdt = 0, (4.22)

T∫
0

∫
R3

((
αp,f

(
χ0 pf+(1−χ0)mp

)
+αp,s (1−χ0)(1−m) p

)
ξ−(

χ0wf+(1−χ0)w
)·∇ξ

)
dxdt = 0, (4.23)

which are valid for all smooth functions ϕ and ξ with compact supports.
It contains dynamics and continuity equations

τ0 �̂
∂v

∂t
+∇ (p+ αϑ) = 0, (4.24)

ĉp
∂p

∂t
+∇ · v = 0 (4.25)

for the velocity v =
∂w

∂t
and pressures p of the poroelastic medium in the domain Ω for t > 0, and

dynamics and continuity equations for the liquid velocity v =
∂wf

∂t
and pressure pf

τ0 �f
∂vf

∂t
+∇ (pf + αϑ) = 0, (4.26)

αp,f
∂pf
∂t

+∇ · vf = 0, (4.27)

in the crack Ω0 for t > 0, and boundary conditions

p = pf , (4.28)

v · n = vf · n (4.29)

at the boundary S, where n is a unit normal to S.
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The problem is completed with initial conditions

vf (x, 0) = 0, x ∈ Ω0, (4.30)

v(x, 0) = 0, x ∈ Ω. (4.31)

Note that in (4.22)–(4.31) the temperature ϑ is given by (4.17).

4.2.2. Accumulation of the energy in a single crack. To get the basic integral identity, we multiply
equation (4.26) for the liquid velocity in the crack by vf and integrate by parts over the domain Ω0.
Then we multiply equation (4.24) by the velocity v of the poroelastic medium, integrate by parts over
the domain Ω and sum the equalities obtained

1

2

d

dt

∫
R3

(
τ0
(
�fχ0|vf (x, t)|2+�̂(1−χ0)|v(x, t)|2

)
+
(
αp,fχ

0|pf (x, t)|2+ĉp(1−χ0)|pf (x, t)|2
))

dx

= α
d

dt

∫
R3

ϑ
(
αp,fχ

0pf (x, t)+ĉp(1−χ0)pf (x, t)
)
dx−α

∫
R3

∂ϑ

∂t

(
αp,fχ

0pf (x, t)+ĉp(1−χ0)pf (x, t)
)
dx.

Integration over (0, T ) gives us

1

2

∫
R3

(
τ0

(
�fχ0|vf (x, T )|2 + �̂(1− χ0)|v(x, T )|2

)
+

(
αp,f χ

0 |pf (x, T )|2 + ĉp (1− χ0) |p(x, T )|2)) dx

= α

∫
R3

ϑ(x, T )
(
αp,f χ

0 pf (x, T ) + ĉp (1− χ0) p(x, T )
)
dx

− α

T∫
0

∫
R3

∂ϑ

∂t
(x, t)

(
αp,f χ

0 pf (x, t) + ĉp (1− χ0) p(x, t)
)
dxdt. (4.32)

Representation (4.17) implies lim
T→∞

ϑ(x, T ) = lim
T→∞

∂ϑ
∂t (x, T ) = 0 and ∂ϑ

∂t (x, t) < 0 for t > 0. Therefore,

α

∫
R3

ϑ(x, T )
(
αp,f χ

0 pf (x, T ) + ĉp (1− χ0) p(x, T )
)
dx → 0,

−α

T∫
0

∫
R3

∂ϑ

∂t
(x, t)

(
αp,f χ

0 pf (x, t) + ĉp (1− χ0) p(x, t)
)
dxdt → E∗ > 0,

Π(Ω0, T ) =

∫
R3

αp,f χ0 |pf (x, T )|2dx → Π∗ > 0 = Π(Ω0, T )

as T → ∞. This is exactly the accumulation of the energy in the crack during the heat impact.

4.3. Macroscopic model of crack propagation. As we have shown before, the potential energy
Π(Ω0, T ) is increasing in time. It is very natural to suppose that for every single crack there exists
some limit P∗ = P∗(Ω0) for the average pressure P (T ) = P (Ω0;T ) = 1

V (Ω0,t)

∫
Ω0

|pf (x, T )|dx inside this

geological fault Ω0 such that at the moment t∗, when P (Ω0, t∗) = P∗, this fracture starts to collapse.
We will describe the motion of the fracture after this specific moment t∗ by mean of the curvature

flow [8]
Dn = σ (P∗ − P ) k, (4.33)

where Dn is a velocity of the moving (free) boundary S = ∂Ω0 toward the outer normal n to S and k
is a mean curvature of S.
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More precisely, this mechanism is governed by the hysteresis law (see Fig. 4.1).

Fig. 4.1. Hysteresis law for the crack propagation

Ground surface displacement (cm)

Total displacement (km)

Ground surface displacement (cm)

Total displacement (km)

t=15 t=50

Ground surface displacement (cm)

Total displacement (km)

Ground surface displacement (cm)

Total displacement (km)

t=70 t=100

Fig. 4.2. Dynamics of a crack in rock

There are two positions for the state of the crack. The position M stands for the motion of the
crack and the position R stands for the state of rest. If in the state of rest the average pressure P
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achieves the limiting value P∗ the crack changes state from R to M and starts to move. We assume
that the product of average pressure and the volume V of crack are the same during the movement:

P (t) · V (t) = const. (4.34)

Thus, when the crack propagates and its volume decreases, the pressure P (t) inside the crack increases
up to value P∗ and after that the crack returns to the position R.

Obviously, the movement of the fracture creates seismic waves, which may reach the Earth’s surface.
This stage of the process can be described by Lamé’s system of elasticity

ατ�s
∂2w

∂t2
= ∇ · (αλ D(x,w)− pI

)
for the displacements w and pressure p of the rock material in the domain Ω, coupled with the mean
curvature flow (4.33) for the free boundary S of the domain Ω0. The problem is completed with the
postulate (4.34), which gives boundary conditions

(αλD(x,w)− pI
) · n = −P (t)n

for the Lamé equations at the boundary S. Corresponding numerical implementations [24] confirm
this suggested model (see Fig. 4.2).
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