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1. Harmonic functions

Let Cµ(E) = C0,µ(E), 0 < µ ≤ 1, be the ordinary Hölder space of functions

ϕ(z), z ∈ E ⊆ C, which is Banach with respect to the norm

|ϕ|µ = |ϕ|0 + [ϕ]µ; |ϕ|0 = sup
z∈E

|ϕ(z)|, [ϕ]µ = sup
z,z′∈E, z 6=z′

|ϕ(z) − ϕ(z′)|

|z − z′|µ
. (1.1)

In the case µ = 1 it is called the Lipschitz space and denoted by C0,1(E). If the set

E is not closed a function ϕ ∈ Cµ(E) is extended to the function ϕ̃ ∈ Cµ(E) and

[ϕ]µ,E = [ϕ̃]µ,E . Besides if the set E is bounded then (1.1) is equivalent to the norm

|ϕ| = |ϕ(c)| + [ϕ]µ, c ∈ E.

Let a function u(z) = u(x, y) be harmonic in the unit disk B = {|z| < 1}

and belong to Cµ(B), 0 < µ < 1. The known Privalov theorem 1 asserts that the

analytic function φ(z) for which

u = Reφ, (1.2)

belongs to the same class and the estimate [φ]µ ≤M |u|µ is valid where the constant

M > 0 depends only on µ. We extend this result to the case when B is an arbitrary

Lipschitz domain but u is a solution of a second order elliptic system with constant

and only leading coefficient.

The work was supported by the program of Russian Universities (project No. UR 04.01.486)



March 12, 2007 11:56 WSPC - Proceedings Trim Size: 9.75in x 6.5in soldatov

2

Recall the definition of the mentioned domains. Following Stein 2 the set

{z = x+ iy | f(x) < y}, (1.3)

where f ∈ C0,1(R), is called by a special Lipschitz domain. We attribute the do-

mains to the same type which result by motion from (1.3). In the general case a

finite domain D is Lipschitz if there exist open sets V1, . . . , Vn and special Lipschitz

domains D1, . . . , Dn such that

∂D ⊆ V1 ∪ . . . ∪ Vn, D ∩ Vi = Di ∩ Vi, i = 1, . . . , n. (1.4)

To illustrate our approach we consider first the classic case of harmonic functions.

Our approach is based on the following property of Hölder spaces.

Lemma 1. Let a function ϕ(x, y) be bounded and continuously differential in a

Lipschitz domain D, and the following estimate
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≤ C[ρ(z, ∂D)]µ−1, 0 < µ ≤ 1, (1.5)

hold where ρ(z, ∂D) denotes the distance from a point z ∈ D to the boundary ∂D.

Then ϕ ∈ C0,µ(D) and

[ϕ]µ,D ≤MC, (1.6)

where the constant M > 0 depends only on µ and D.

Apparently this result is known but for completeness we produce its proof below.

Proof. Let us first assume that D is the special Lipschitz domain D of the form

(1.4). Let θ(z) be the angle between the vector z ∈ C and the y−axis and thus

θ(z) = arctan(|x|/y), z = x+ iy. Let K(α), 0 < α < π/2, be a sector {z | θ(z) < α}.

Note that the distance from z ∈ K to its boundary is defined by the equality

ρ[z, ∂K(α)] = |z| sin[α− θ(z)]. (1.7)

Let the sector Ka be received by parallel translation of K to the vertex a =

a1 + ia2 ∈ Γ = ∂D. Verify that Ka(α) ⊆ D under assumption

[f ]1 < cotα. (1.8)

In fact let

tan θ(z − a) =
|x− a1|

y − a2
< tanα,

or y > f(a1) + |x− a1| cotα. As |f(x) − f(a1)| ≤ [f ]1|x− a1|, we have y > f(x) +

(cotα− [f ]1)|x− a1|. Taking (1.8) into account we receive y > f(x).

Let us set 0 < α < α0, where α0 satisfies (1.8) and put for brevity Ka =

Ka(α), K0
a = Ka(α0). Then by virtue of (1.7) for z ∈ Ka we have

ρ(z, ∂D) ≥ ρ(z, ∂K0
a) ≥ |z − a| sin(α0 − α).

So the estimate (1.5) in Ka transforms into
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≤M1C|z − a|µ−1, z ∈ Ka. (1.9)
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Let us consider the ray L = {a + te |t > 0} ⊆ Ka with the end a and a

unit vector e. For the function ψ(t) = ϕ(a + te) on this ray (1.9) takes the form

|ψ′(t)| ≤M1Ct
µ−1, so

|ψ(t) − ψ(t′)| ≤M1C

∫ t′

t

sµ−1ds ≤ µ−1M1C(t′ − t)µ, t ≤ t′.

Thus we have the estimate

|ϕ(z) − ϕ(z′)| ≤M2C|z − z′|µ (1.10)

for every z, z′ ∈ L ⊆ Ka, which does not depend on a ∈ Γ and the ray L.

If the points z, z′ ∈ D satisfy the condition

y ≤ y′, θ(z′ − z) < α, (1.11)

then these points lie on the ray L ⊆ Ka, where a is a point of intersection of the

straight line through z and z′ with ∂D. So (1.10) holds for these points.

In the opposite case y ≤ y′, θ(z′ − z) ≥ α let us consider the triangle with the

vertices z, z′ and z′′ = x′ + it, t > f(x′). Let θ, θ′ and θ′′ be the angles in these

vertices. Let us choose the value t such that θ′′ = α. Then the pairs of points z, z′′

and z′, z′′ satisfy (1.11) and therefore

|ϕ(z) − ϕ(z′)| ≤ |ϕ(z) − ϕ(z′′)| + |ϕ(z′) − ϕ(z′′)| ≤M2C(|z − z′′|µ + |z′ − z′′|µ).

On the other hand from the sine theorem it follows that

|z − z′′|

|z − z′|
=

sin θ′

sinα
≤

1

sinα
,

|z′ − z′′|

|z − z′|
=

sin θ

sinα
≤

1

sinα
,

and hence |z−z′′|µ+|z′−z′′|µ ≤M3|z−z′|µ. Combined with the previous inequality

we receive (1.10) with a constant M4, and (1.5) is proved in the considered case.

Suppose that the function ϕ satisfies (1.5) only in a disk |z− z0| < r with center

z0 ∈ ∂D. Then analogues reasonings show that there exists 0 < r0 < r such that

[ϕ]µ,G ≤M0C, G = D ∩ {|z − z0| < r0}. (1.12)

Let us turn to a general Lipschitz domain D. By virtue of (1.4) there exists

r > 0 such that for every point z0 ∈ ∂D the set D ∩ {|z − z0| < r} is contained in

Vi for some i. So we can suppose that (1.12) holds for every point z0 ∈ ∂D. Let us

consider the compact K = {z ∈ D, ρ(z, ∂D) ≥ r0}. The estimate (1.4) shows that

the partial derivatives of ϕ do not exceed Crµ−1
0 by module on K and therefore

[ϕ]µ,K ≤M1C. Together with (1.12) this estimate proves (1.5).

With the help of the lemma it is easy to establish the following generalization

of Privalov theorem.

Theorem 1. Let a function u ∈ Cµ(D), 0 < µ < 1, be harmonic in a simply

connected Lipschitz domain D. Then the analytic function φ in (1.2) belongs to the

same class and

[φ]µ ≤M [u]µ, (1.13)
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where the constant M > 0 depends only on µ and D.

Proof. If a disk B = {|z − z0| < r} ⊆ D then the estimate
∣

∣

∣

∣

∂u

∂x
(z0)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂u

∂y
(z0)

∣

∣

∣

∣

≤Mrµ−1[u]µ,B (1.14)

is valid, where the constant M > 0 does not depend on B. In fact without loss

of generality we can assume u(z0) = 0. Putting z0 = 0 and ũ(z) = u(rz), we can

also content ourself with the case r = 1. So B is the unit circle and u(0) = 0, and

therefore |u|0 ≤ [u]µ. In this case (1.14) follows from Poisson formula.

Obviously we can set r = ρ(z0, ∂D) in (1.14). By virtue of the relation

φ′ =
∂u

∂x
− i

∂u

∂y
, (1.15)

which is inverse to (1.2) we can substitute u for φ in the left side of this estimate.

On the basis of Lemma 1 applying to φ we receive (1.13).

2. Elliptic systems

Let us consider the elliptic system

A11
∂2u

∂x2
+ (A12 +A21)

∂2u

∂x∂y
+A22

∂2u

∂y2
= 0 (2.1)

with constant coefficients Aij ∈ Rl×l for an unknown vector-valued function u =

(u1, . . . , ul) ∈ C2. The condition of ellipticity means that detA22 6= 0 and the

characteristic polynomial

χ(z) = detP (z), P (z) = A11 + (A12 +A21)z +A22z
2, (2.2)

has no real roots.

Recall the representation formula 3 of a general solution of the system (2.1) in

a simply connected domain D. Let us introduce the block- matrix

A∗ =

(

0 1

−A−1
22 A11 −A−1

22 (A12 +A21)

)

,

its spectrum σ(A∗) consists of roots of the characteristic polynomial (2.2). Then

(2.1) can be written in the form

∂∇u

∂y
= A∗

∂∇u

∂x
, ∇u =

(

∂u

∂x
,
∂u

∂y

)

.

Let the matrix B∗ reduce A∗ to the Jordan form

B−1
∗ A∗B∗ = J∗, J∗ = diag (J, J), (2.3)

where the spectrum of the matrix J ∈ C
l×l lies in the upper half plane. As the

matrix A∗ is real the matrix B∗ can be chosen in block form

B∗ =

(

B B

BJ BJ

)

. (2.4)
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So the l−vector-valued function ψ from the equality

B∗ψ∗ = 2∇u, ψ∗ = (ψ, ψ), (2.5)

satisfies the system

∂ψ

∂y
− J

∂ψ

∂x
= 0. (2.6)

Solutions of this system are said to be Douglis analytic functions or shortly

J−analytic functions. For the case of a Toeplitz matrix J the system was firstly

investigated by Douglis 4 in the frame of so called hypercomplex numbers. Later

first order elliptic systems studied by many authors (5-10). It is easy to show 3 that

a Douglis analytic function ψ(z) in the neighborhood of each point z0 ∈ D expands

in a generalized power series

ψ(z) =

∞
∑

k=0

1

k!
(z − z0)

k
Jψ

(k)(z0), ψ(k) =
∂kψ

∂xk
,

where zJ , z = x + iy, denotes the matrix x1 + yJ. Besides, if this function is

continuous up to the boundary ∂D, then the generalized Cauchy formula

ψ(z) =
1

2πi

∫

∂D

dtJ(t− z)−1
J ψ(t), z ∈ D, (2.7)

holds, where the matrix differential dtJ has the same sense and the contour ∂D

is oriented positively with respect to D. The function ψ can be also expressed

through usual analytic functions. Let the matrix J in (2.3) be written in the form

J = diag (J1, . . . , Jn), Jk ∈ Clk×lk , where σ(Jk) = νk, Im νk > 0, and therefore

(Jk − νk)lk = 0. Then the system (2.6) decompose into

∂ψk

∂y
− Jk

∂ψk

∂x
= 0, ψ = (ψ1, . . . , ψn).

In these notations J−analytic vector- valued functions ψ = (ψ1, . . . , ψn) can be

uniquely represented by the formula

ψ = Λψ̃, (Λψ̃)k(x+ iy) =

l−1
∑

r=0

yr

r!
(Jk − νk)rψ̃

(r)
k (x+ νky), (2.8)

where the lk-vector ψ̃k is analytic in the domain Dk = {x+ νky | z = x+ iy ∈ D}.

The inverse formula is

ψ̃k(x+ νky) =

l−1
∑

r=0

(−y)r

r!
(Jk − νk)rψ

(r)
k (x+ iy), k = 1, . . . , n.

Let us turn to the relation (2.5). After integrating it takes the form

u = ReBφ, (2.9)

where φ is the Douglis analytic function

φ(z) =

∫ z

z0

dtJψ(t) + φ(z0).
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Accordingly the inverse relation is

φ′ = B1
∂u

∂x
+B2

∂u

∂y
, 2B−1

∗ =

(

B1 B2

B1 B2

)

. (2.10)

The representation (2.9) of a general solution of the elliptic system (2.1) was firstly

received by Soldatov 11 and Yeh 12. Note that (2.9), (2.10) are analogous to (1.2),

(1.15) with respect to solutions of (2.1). Substitution the formula (2.8) for corre-

sponding functions φ and φ̃ into (2.9) gives the known Bitsadze representation 13

through the analytic function φ̃.

Recall that the elliptic system (2.1) is called weakly connected 13 if the matrix

B in (2.4) is invertible. This condition is equivalent 14 to invertibility of the matrix
∫

R

P−1(t)dt ∈ R
l×l, (2.11)

where P is defined by (2.2).

Theorem 2. Let the elliptic system (2.1) be weakly connected and a function u ∈

Cµ(D), 0 < µ < 1, be its solution in a simply connected Lipschitz domain D. Then

the function φ in (2.9) belongs to the same class and (1.13) holds with a constant

M depending only on µ and D.

Proof. The Proof is identical with the one of Theorem 1 under the assumption

that the following fact is true. If u ∈ Cµ(B) is a solution of (2.1) in the unit disk

B = {|z| < 1}, then the inequality
∣

∣

∣

∣
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∣
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∣

∣

∣

∣

∂u
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∣

∣

∣

≤M [u]µ (2.12)

is valid. Substituting B for the circle {|z| < 1/2}, we can assume u ∈ C1(B). Then

taking (2.10) into account the function φ in (2.9) belongs to the same class and

(2.12) reduces to

|φ′(0)| ≤M [ReBφ]µ, (2.13)

where the constant M > 0 does not depend on the Douglis analytic function φ ∈

Cµ(B).

Let X be the class of these functions with the additional condition φ(0) = 0. It

follows from the Cauchy formula (2.7) that

|φ′(0)| ≤M [φ]µ

and (2.13) reduces to the estimate

[φ]µ ≤M [ReBφ]µ φ ∈ X. (2.14)

As it was shown in 15 the Riemann- Hilbert problem

ReBφ |∂B = f

is Fredholm in the class X, i.e. the operator (Rφ)(t) = ReBφ(t), t ∈ ∂B, is Fred-

holm X → Cµ(∂B). So its image Y = R(X) is a closed subspace of Cµ(∂B) of finite
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co-dimension but its kernel X0 = kerR is a finite dimensional subspace of X . Thus

there exists a bounded operator R(−1) : Y → X such that RR(−1)f = f, f ∈ Y,

and hence

X = X0 ⊕X1, X1 = R(−1)(Y ). (2.15)

By virtue of the boundedness of R(−1) the norms [φ]µ and [ReBφ]µ are equivalent

on X1. Obviously the same is true on the finite dimensional space X0. Taking (2.15)

into account (2.14) follows. That completes the proof.

3. Estimates in weighted Hölder spaces

Let D be a simply connected domain with piecewise smooth boundary ∂D and

one sided tangents at its angular points are different. In particular D is a Lipschitz

domain. Let 0 ∈ ∂D and a solution u of the weakly connected system (2.1) belongs to

Cµ
loc(D\0). The last implies that u satisfies a Hölder condition in Dε = D∩{|z| > ε}

for each ε > 0. Then on basis of Theorem 2 the Douglis analytic function in (2.9)

belongs to the same class. We are interested in the question whether if u(z) =

O(|z|λ) as z → 0 it is true for φ. More exactly we describe the power behavior of

functions with the help of weighted Hölder spaces. Recall 15 that the Banach space

Cµ
λ = Cµ

λ (D, 0), λ ∈ R, consists of all functions ϕ(z) on D \ 0 with finite norm

|ϕ| = ||z|−λϕ(z)|0 + [|z|µ−λϕ(z)]µ. (3.1)

In notations (1.1) we can give another definition of this space.

Lemma 2. Let the integer m be such that Dk = {z′ | 2−kz′ ∈ D, 1/2 < |z′| < 2} 6=

∅, k ≥ m and Dk = ∅, k < m− 1. Then (3.1) is equivalent to the norm

|ϕ|′ = sup
k≥m

2kλ|ϕ(2−kz′)|µ,Dk
. (3.2)

Proof. Obviously

||z|−λϕ|0 ≤ |2||λ||ϕ|′.

Let |z1| ≤ |z2| and zj = 2−kz′j , where k is defined by condition 1 ≤ |z′1| < 2. Then

there are two cases, when |z′2| ≤ 1/2 and |z′2| > 1/2. In the first case

A =
||z1|µ−λϕ(z1) − |z2|µ−λϕ(z2)|

|z1 − z2|µ
≤

{

|z′1|
µ−λ + |z′2|

µ−λ

|z′1 − z′2|
µ

}

|ϕ|′

and in the second case

A ≤

{

|z′1|
µ−λ +

||z′1|
µ−λ − |z′2|

µ−λ|

|z′1 − z′2|
µ

}

|ϕ|′.

In both cases the figured expressions are bounded by a constant depending only on

µ and λ. According to (3.1), (3.2) these estimates yield |ϕ| ≤M |ϕ|′.

To receive the inverse inequality let us denote ψ(z) = |z|µ−λϕ(z). Then |ϕ(z)| ≤

|z|λ[ψ]µ ≤ |z|λ|ϕ| and hence

2kλ|ϕ(2−kz′)| ≤ |z′|λ|ϕ|, 1/2 < |z′| < 2.
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Further we have

2kλ |ϕ(2−kz′1) − ϕ(2−kz′2)|

|z′1 − z′2|
µ

=
|z′1|

µ−λψ(z1) − |z′2|
µ−λψ(z2)

|z1 − z2|µ

≤

{

|z′1|
µ−λ +

||z′1|
λ−µ − |z′2|

λ−µ|

|z′1 − z′2|
µ

|z′2|
µ

}

|ϕ|.

Together with the previous inequality we receive the required estimate |ϕ|′ ≤M |ϕ|.

By definition the space Cµ

(λ) = Cµ

(λ)(D, 0), 0 < λ < 1, consists of functions

ϕ ∈ C(D) such that ϕ(z) − ϕ(0) ∈ Cµ
λ . It is convenient to set Cµ

(λ) = Cµ
λ for λ ≤ 0.

Lemma 3. The space Cµ

(λ), λ 6= 0, can be defined by the equivalent norm

|ϕ|′ = |ϕ(c)| + [ϕ]µ,(λ), [ϕ]µ,(λ) = sup
k≥m

2kλ[ϕ(2−kz′)]µ,Dk
, (3.3)

where c ∈ D is a fixed point.

Proof. Let us first consider the case λ < 0. Let us choose points z′i ∈ Di ∩ Di+1,

i = m,m+ 1, . . . . By virtue of Lemma 1 the equality

|ϕ| = sup
k≥m

2kλ{|ϕ(2−kz′k)| + [ϕ(2−kz′)]µ,Dk
}

defines an equivalent norm in Cµ
λ . Without loss of generality we can set c = 2−mz′m

in (3.3). Then

|ϕ(2−kz′k)| ≤ |ϕ(c)| +
k−1
∑

i=m

|ϕ(2−kz′i+1) − ϕ(2−kz′i)|.

As

|ϕ(2−kz′i+1) − ϕ(2−kz′i)| ≤ 2−iλ[ϕ]µ,(λ)|z
′
i+1 − z′i|

µ ≤ 4 2−iλ[ϕ]µ,(λ),

it follows that

|ϕ(2−kz′k)| ≤ |ϕ(c)| + 4(2−λ − 1)−12−kλ[ϕ]µ,(λ)

and thus |ϕ| ≤M |ϕ|′. The inverse inequality is obvious.

The case 0 < λ < 1 can be considered analogously. Without loss of generality

we can set c = 0 in (3.3). On basis of Lemma 2 the equality

|ϕ| = |ϕ(0)| + sup
k≥m

2kλ{|ϕ̃(2−kz′k)| + [ϕ̃(2−kz′)]µ,Dk
}, ϕ̃(z) = ϕ(z) − ϕ(0),

defines an equivalent norm in Cµ

(λ). So

|ϕ̃(2−kz′k)| ≤
∞
∑

i=k

|ϕ(2−kz′i+1) − ϕ(2−kz′i)| ≤ 4(1 − 2−λ)−12−kλ[ϕ]µ,(λ),

and therefore |ϕ| ≤M |ϕ|′.

Theorem 3. Let D be a simply connected domain with piecewise smooth boundary

∂D and with different one-sided tangents at its angular points. Let 0 ∈ ∂D and a

function u ∈ Cµ

(λ)(D, 0), where 0 < µ < 1,λ < 1, λ 6= 0, satisfy the weakly connected
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elliptic system (2.1) in D. Then the function φ in (2.9) belongs to the same class

and the estimate

[φ]µ,(λ) ≤M [u]µ,(λ), (3.4)

holds with a constant M depending only on µ, λ and D.

Proof. Let us set

D0 = D ∩ {|z| < ε}, D1 = D ∩ {|z| > ε/2},

where ε > 0 is sufficiently small. Then D1 is a Lipschitz domain and on basis of

Theorem 2 the function φ ∈ Cµ(D1). So without loss of generality we can assume

D = D0. Then ∂D is formed by an arc L of the circumference |z| = ε and two smooth

arcs Γ1,Γ2 with the common end z = 0. In polar coordinates r = |z|, θ = arg z these

arcs are described by equations θ = hj(r), where

hj(r) ∈ C[0, ε] ∩C1(0, ε], lim
r→0

rh′j(r) = 0, j = 1, 2. (3.5)

Assuming h1(0) 6= h2(0) modulo 2π, we can suppose that h1(r) < h2(r) for all

0 ≤ r ≤ ε and D is defined by the inequalities h1(r) < θ < h2(r), 0 < r < ε. In

particular the domains Dk = {z′ | 2−kz′ ∈ D, 1/2 < |z′| < 2} in (3.1) are described

by the inequalities h1(2
−kr) < θ < h2(2

−kr), 1/2 < r < 2. By virtue of (3.5) the

functions hj(2
−kr) → hj(0) as k → ∞ in C1[1/2, 2]. Hence the estimate (1.13) in

Theorem 2 with respect to Dk holds uniformly by k ≥ m. In particular

[φ(2−kz′)]µ,Dk
≤M [u(2−kz′)]µ,Dk

,

where the constant M > 0 does not depend on k. On basis of Lemma 3 it follows

that the function φ ∈ Cµ

(λ)(D, 0) and the estimate (3.4) is valid.

4. Conjugate functions

Let u(z) be a solution of the elliptic system (2.1). Consider the function v(z) which

is defined by the relation

∂v

∂x
= −

(

A21
∂u

∂x
+A22

∂u

∂y

)

,
∂v

∂y
= A11

∂u

∂x
+A12

∂u

∂y
. (4.1)

The existence of this function follows from (2.1) written in the form

∂

∂x

(

A11
∂u

∂x
+A12

∂u

∂y

)

+
∂

∂y

(

A21
∂u

∂x
+A22

∂u

∂y

)

= 0.

The function v is said to be conjugate to the solution u. It is defined with accuracy

of a constant vector ξ ∈ Rl. This function is closely connected with the second

boundary value problem

2
∑

i,j=1

Aijni

∂u

∂xj

∣

∣

∣

∣

∂D

= g, (4.2)
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where x1 = x, x2 = y and n = (n1, n2) denotes the external normal to the boundary.

In fact by virtue of (4.1) this boundary condition we can write in the form

v′s = g, (4.3)

where ( )′s means the tangent differentiation.

As it is seen from (4.1) theorems 2 and 3 are valid with respect to the conjugate

function v. This fact also follows from the representation of this function

v = ξ + ReCφ, C = −(A21B +A22BJ), (4.4)

where the Douglis analytic function φ is given in (2.9).

The proof of this representation is not complicated. On the basis of (2.6), (2.9)

the equation (2.1) gives the identity

Re [A11B + (A12 +A21)BJ +A22BJ
2]φ′′ = 0.

It follows that A11B + (A12 +A21)BJ +A22BJ
2 = 0 or

C = −(A21B +A22BJ), CJ = A11B +A12BJ. (4.5)

Thus we can rewrite the relations (4.1) in the form

∂v

∂x
= ReCφ′,

∂v

∂y
= ReCJφ′.

So the partial derivatives of v − ReCφ are equal to 0 that proves (4.4).

It follows from (4.3), (4.4) that the second boundary value problem (4.2) reduces

to the Riemann-Hilbert problem

ReCφ|∂D = f, f ′
s = g,

with a constant matrix coefficient C. Hence the condition detC 6= 0 is necessary
15 for this problem to be Fredholm. The equality detC = 0 is closely connected

with the case of a constant conjugate function v, when the right-hand side of (4.1)

is identically equal to 0. In this case the solution u of the system (2.1) is called

degenerate.

In such a way the degenerate solutions are defined by the over-determined first

order system

Ai1
∂u

∂x
+Ai2

∂u

∂y
= 0, i = 1, 2. (4.6)

It is obvious that the polynomials of first degree u(x) = ξ0 + ξ1x + ξ2y, where

Ai1ξ1 +Ai2ξ2 = 0, give the simplest example of degenerate solutions.

It is convenient below to consider numerical l × l−matrices as linear operators

in Cl. Let us put

P = A−1
11 A12, Q = A−1

22 A21, X = Ker (1 − PQ) ∩ Ker (1 −QP ), (4.7)

and introduce the subspace Y of vectors η ∈ Cl such that

ReCJkη = 0, k = 0, 1, 2. (4.8)
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The class of all degenerate solutions can be described with the help of this space.

Namely the solution u is degenerate if and only if all partial derivatives of the

second order of the function (4.4) are equal to 0, that is equivalent to the condition

η = φ′′(z) ∈ Y for all z.

Lemma 4. The space Y is invariant with respect to the operator J and described

by the equivalent conditions

ReBη ∈ X, ReCη = 0. (4.9)

Proof. Make sure first that the space defined by (4.9) is invariant with respect to

J. Let η satisfy (4.9). It is obviously that the operators P and Q are invariant and

mutually inverse on X . Besides we can rewrite (4.5) in the form

C = −A22(QB +BJ), CJ = −A11(B + PBJ). (4.10)

So (4.8) becomes

ReBJη = −QReBη ∈ X,

ReCJη = A11PRe (Bη + PBJ)η = A11PRe (QBη +BJη) = 0

and (4.9) is really invariant with respect to J.

In particular (4.9) implies (4.8). Conversely let η satisfy (4.9). It follows from

(4.10) that

CJ2 = A11BJ −A11P (A−1
22 C +QB)J = A11(1 − PQ)BJ −A11PA22−1CJ.

Let us set x = ReBη, y = ReBJη for brevity and substitute (4.10) and the last

expression into (4.8). Then we receive the relations Qx + y = 0, x + Py = 0, (1 −

PQ)y = 0, that imply x = ReBη ∈ X.

Theorem 4. If X = 0, then every degenerate solution of the elliptic system is a

polynomial of first order. Otherwise the class of degenerate solutions is infinitely di-

mensional. The case X = 0 is provided by det C 6= 0. In general case the dimension

of X is even.

Proof. By virtue of Lemma 4 the dimension of Y coincides with dimX. So if X = 0,

then φ′′(z) ∈ Y is equivalent φ′′ = 0.

If X 6= 0, then the class of all Douglis analytic functions φ, such that φ′′(z) ∈ Y

is invariant with respect to J and therefore it contains all functions of the form

φ(z) = (z − z0)
−k
J η, η ∈ Y, k = 1, 2 . . . , (4.11)

where the fixed point z0 = x0 + iy0 lies outside D. So this class is infinitely dimen-

sional.

Suppose further by contradiction that detC 6= 0 but dim X > 0. Let us consider

the system (2.1) in the upper half-plane Im z > 0. Then the functions (4.11) for

Im z0 < 0 define degenerate solutions u = ReBφ of this system. In particular,

ReCφ′(x) = 0, x ∈ R, where R is the real axis of the complex plane C. According to

(2.8) we can write φ = Λφ̃, φ̃ = (φ̃1, . . . , φ̃n), where the lk-vector valued function φ̃k
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is analytic on C \ {x0 + νky0} and has the same degree −k at infinity as φ. Formula

(2.8) also shows that φ(x) = φ̃(x), x ∈ R. Hence ReCφ̃′(x) = 0, x ∈ R, and in

particular the function Cφ̃′(z) is analytically extended to the lower half-plane. As

φ̃′(z) → 0 at ∞ and under the assumption detC 6= 0, it follows φ̃′ = 0. Hence

φ′ = 0, that contradicts the choice of φ.

Recall that P and Q from Lemma 4 act on X as mutually inverse operators. We

assert that these operators have no real eigenvalues. Really assuming the contrary

let Pξ = µξ and Qξ = µ−1ξ for µ ∈ R and ξ ∈ X not equal to 0. Then

2
∑

i,j=1

(Aijtitj)ξ = [A11(t1 + Pt2)t1 +A22(Qt1 + t2)t2]ξ = 0, t1 + µt2 = 0.

That contradicts to the ellipticity condition

det

(

∑2

i,j=1
Aijtitj

)

6= 0, |t1| + |t2| > 0, (4.12)

of the system (2.1). Thus the operators P andQ acting onX have no real eigenvalues

and hence dimX is even.

5. Strengthen elliptic systems

Due to Vishik16 the system (2.1) is strongly elliptic if
((

∑2

i,j=1
Aijtitj

)

ξ, ξ

)

> 0 (5.1)

for all tj ∈ R, |t1| + |t2| 6= 0 and nonzero vectors ξ ∈ Rl. Here and below ( , )

denotes the inner product in Rl. In particular the condition (2.11) for the system

to be weakly connected is fulfilled. A narrower class of elliptic systems is defined 14

by the conditions

A⊤
ji = Aij ,

∑2

i,j=1
(Aijξj , ξi) ≥ 0, ξi ∈ R

l, (5.2)

i.e the block matrix

A =

(

A11 A12

A21 A22

)

(5.3)

is positive semidefinite. These systems are said to be strengthened elliptic. Note

that the ellipticity condition (4.12) for these systems is equivalent to the following

property. If Aξ = 0, ξ = (ξ1, ξ2), where t1ξ1 + t2ξ2 = 0, |t1| + |t2| 6= 0, then ξ1 =

ξ2 = 0.

Theorem 5. Let the system (2.1) be strengthened elliptic. Then X = 0 is equivalent

to detC 6= 0 and is provided by

rangA ≥ 2l− 1. (5.4)
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Proof. On basis of Theorem 4 detC 6= 0 implies X 6= 0. To prove that detC = 0

implies dimX > 0 we suppose by contradiction that detC = 0 but X = 0. Let

Cη = 0 for a nonzero η ∈ Cl and set

φ̃(z) = (z − z0)
−1η, Im z0 < 0, (5.5)

Let the Douglis analytic function φ be connected with φ̃ by (2.8) i.e φ = Λφ̃. As

φ(x) = φ̃(x), x ∈ R, we have the equality

Cφ(x) = 0, x ∈ R. (5.6)

In particular the conjugate function v = ReCφ, to the solution u = ReBφ of (2.1)

is equal to 0 on the boundary R = ∂D of the half-plane D = {Im z > 0}.

The Green formula applied to the scalar product of (2.1) with u gives the equality

∫

D

2
∑

i,j=1

(

Aij

∂u

∂xi

,
∂u

∂xj

)

dx1dx2 = −

∫

R

(

A21
∂u

∂x
+A22

∂u

∂y
, u

)

dx,

where x1 = x, x2 = y. By virtue of (5.6)

A21
∂u

∂x
+A22

∂u

∂y
= −

∂v

∂x
= 0

on the boundary R = ∂D, so we have

∫

D

2
∑

i,j=1

(

Aij

∂u

∂xi

,
∂u

∂xj

)

dx1dx2 = 0.

Together with (5.2) the relations (4.4) follow. Thus the solution u is degenerate

and by virtue of Theorem 4 it is a polynomial of the first degree. In particular

ReBφ′′ = 0 on the half-plane D and therefore the function φ′ is constant. But this

fact contradicts to (5.5).

Let us turn to the second assertion of the theorem. It follows from (4.7), (5.3)

that

A =

(

A11 0

0 A22

) (

1 P

Q 1

)

and therefore ξ ∈ X implies Aξ̃ = 0, ξ̃ = (ξ,Qξ). Hence dimX ≤ dim(KerA) =

2l − rangA. Taking (5.4) into account we have the inequality dimX ≤ 1. But on

basis of Theorem 4 the dimension of X is even, and this dimension has to be equal

to 0.

The assertion of Theorem 4 on the evenness of dimX we can complete in the

following way.

Lemma 5. For every even number s between 0 and l there exists a strengthened

elliptic system such that dimX = s.

Proof. Let the matrices P0, Q0 = P−1
0 ∈ R

s×s be orthogonal and have no real

eigenvalues. Let us set R
l = R

s×R
l−s and according to this representation introduce
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the matrices P = diag (P0, 0) and Q = diag (Q0, 0). Then P⊤ = O, PQ = diag (1, 0)

and therefore

|P (ξ1, ξ2)| = |(ξ1, Qξ2)| ≤ |ξ1||ξ2|, ξj ∈ Rl,

|P (ξ, ξ)| = |(ξ,Qξ)| < |ξ|2, ξ 6= 0.

(5.7)

It is also clear that the space X in (4.7) coincides with Rs × 0 for these matrices.

Let us consider the system (2.1) with the coefficients A11 = A22 = 1, A12 =

P, A21 = Q and make sure that it is strengthened elliptic. By virtue of (5.7) we

have for this system

(ξ1 + Pξ2, ξ1) + (Qξ1 + ξ2, ξ2) = |ξ1|
2 + |ξ2|

2 + 2(Qξ1, ξ2) ≥ 0,

i.e. condition (3.2) is fulfilled. Besides the left hand side of this expression is positive

for ξj = tjξ and therefore the considered system is strengthened elliptic.
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